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New Trigonometric Identities and Generalized Dedekind Sums

Shinji FUKUHARA

Tsuda college

Abstract. We obtain new trigonometric identities. We show that the coefficients of Laurent expansions of the
identities give rise to the relation between special values of Hurwitz zeta function and Bernoulli numbers. Then we
look into in detail the parameterized cotangent sums appearing in the identities.

1. New trigonometric identities, Hurwitz zeta values and Bernoulli numbers

Our starting point is the following identity (reciprocity law for parameterized cotangent
sums): for p, q ∈ Z+ such that gcd(p, q) = 1, and for z ∈ C,
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= − cot(pz) cot(qz) + 1
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(1.1)

This identity can be derived from Theorem 2.4 of Dieter [4]. His proof rests on clever
use of properties of trigonometric functions. An alternative proof of the identity, which uses
Dedekind symbols of Jacobi forms, has been given in [6].

One of purposes of this article is to obtain a collection of identities which are similar to
the identity (1.1). They are formulated in the following theorem.

THEOREM 1.1. Let p and q be positive integers with gcd(p, q) = 1, and z ∈ C.

(1) For p even, we have
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(1.2)
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(2) For both p and q odd, we have
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(1.3)

(3) For p odd, we have
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(1.4)

(4) For p and q with odd parity, we have
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(1.5)

We will prove the identities in Theorem 1.1 by means of complex analysis. Incidentally,
this gives an alternative proof to the identity (1.1). The conditions imposed on p and q in
Theorem 1.1 are essential. Indeed, without the conditions it is easy to come up with counter
examples.

Secondly, we compare the coefficients of Laurent expansions of the identities in Theo-
rem 1.1 to obtain the relations between special values of Hurwitz zeta function ζ(s, α) and
Bernoulli numbers Bn (n = 0, 2, . . . ). These relations are variations of the following relation
(1.6) already obtained by Apostol [2, Theorem 2]: for p, q ∈ Z+ such that gcd(p, q) = 1,
and for n ∈ Z, n > 1,
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B2kB2n−2kp
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.

(1.6)

The equation (1.6) can also be derived from (1.1) while the following equations (1.7),
(1.8), (1.9) and (1.10) are derived from (1.2), (1.3), (1.4) and (1.5) respectively.

THEOREM 1.2. Assume that p and q are positive integers with gcd(p, q) = 1, and
n > 1.
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(1) For p even, we have
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(1.7)

(2) For both p and q odd, we have
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(1.8)

(3) For p odd, we have
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(1.9)

(4) For p and q with odd parity, we have
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(1.10)

These relations between special values of Hurwitz zeta function and Bernoulli numbers
are, we believe, to be new.
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We also obtain a corollary to Theorem 1.1 which can be regarded as new variants of the
following reciprocity law for the classical Dedekind sums (refer to, for example, [10] or [12]):
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(1.11)

COROLLARY 1.3. Let p and q be positive integers such that gcd(p, q) = 1. Then the
following formulae hold:

(1) For p even, we have
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(1.12)

(2) For both p and q odd, we have
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(1.13)

(3) For p odd, we have
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(1.14)

(4) For p and q with odd parity, we have
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PROOF. The formulae (1.12), (1.13), (1.14) and (1.15) in Corollary 1.3 can be obtained
from the identities (1.2), (1.3), (1.4) and (1.5), respectively, by cancelling the poles and then
taking limz→0 in the both sides of the identities. �
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REMARK 1.1. The last equation (1.15) seems to be especially appealing. Fukumoto–
Furuta–Ue [7] have recently discovered that Fukumoto–Furuta’s w-invariants of some 3-
manifolds are presented in terms of the “alternating cosecant sums” discussed in the equation
(1.15). In fact, these three authors have obtained the reciprocity law
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applying the index theorem of Atiyah-Singer and Kawasaki [9].

2. The parameterized cotangent sums

We will study the trigonometric sums involved in (1.1):

1
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cot

(
µqπ
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)
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(
z + µπ

p

)
.

DEFINITION 2.1. Let p, q be integers such that gcd(p, q) = 1 and p > 0, and x ∈ R.
We define

D(p, q; x) = 1

p

p−1∑
µ=1

cot

(
µqπ

p

)
cot

(
x + µπ

p

)
.

We call D(p, q; x) a parameterized cotangent sum (refer to [8] or [12] for cotangent sums,
refer to [3], [10] and [11] for similar sums).

The parameterized cotangent sum D(p, q; x) is a kind of generalized Dedekind symbol
(refer to [5] for detail). We can regard (1.1) as the reciprocity law of the generalized Dedekind
symbol D(p, q; x).

Let us recall generalized Dedekind sums sk(q, p) introduced by Apostol [1].

DEFINITION 2.2 (Apostol [1, 2]).

sk(q, p) =
p−1∑
µ=1

µ

p
B̄k

(
µq

p

)
=

p−1∑
µ=1

µ

p
Bk

(
µq

p
−

[
µq

p
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.
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Here Bk(x) is k-th Bernoulli polynomial, B̄k(x) k-th Bernoulli function, and [x] is the
greatest integer ≤ x. It was shown by Apostol [2, pp. 2,4] that

s1(q, p) = 1

4p

p−1∑
µ=1

cot

(
µqπ

p

)
cot

(
µπ

p

)
,

s2n−1(q, p) = i(2n − 1) !
(2πip)2n−1

p−1∑
µ=1

cot

(
µqπ

p

)
ζ

(
2n − 1,

µ

p

)
(n > 1) .

(2.1)

We will prove

PROPOSITION 2.1. The function D(p, q; x) has following Taylor expansion at x = 0 :

D(p, q; x) =
∞∑

n=1

(−1)n−122np2n−2

(2n − 1) ! s2n−1(q, p)x2n−2 .

This proposition shows the sum D(p, q; x) is a generating functin of Apostol gen-
eralized Dedekind sums. We can regard the generalized Dedekind sums as functions on
V := {(p, q) ∈ Z+ × Z | gcd(p, q) = 1}. Furthermore we can identify V with Q assigning
q/p ∈ Q to (p, q) ∈ V . From this point of view we can regard the generalized Dedekind
sums as functions on Q/Z.

We claim that the correspondence which maps any element q/p mod Z in Q/Z to the
sequence of generalized Dedekind sums, {s2n−1(q, p)}∞n=1, is injective.

THEOREM 2.2. Let p, q, p′, q ′ be integers such that gcd(p, q) = gcd(p′, q ′) = 1,

p > 0 and p′ > 0. Then the following three conditions are equivalent:
(1) p = p′ and q ≡ q ′ ( mod p),
(2) s2n−1(q, p) = s2n−1(q

′, p′) for any n ∈ Z+,
(3) D(p, q; x) = D(p′, q ′; x).

3. Proving Theorem 1.1

In this section we give proof of Theorem 1.1.

PROOF OF THEOREM 1.1 We will prove the identity (1.2) first. We let f (z) and g (z)

denote the left and right hand side of (1.2), respectively. Namely

f (z) = 1

p

p−1∑
µ=1

(−1)µ cot

(
µqπ

p

)
cot

(
z + µπ

p

)
+ 1

q

q−1∑
µ=1

csc

(
µpπ

q

)
cot

(
z + µπ

q

)

and

g (z) = − csc(pz) cot(qz) + 1

pq
csc2(z) .

We claim that
f (z) = g (z) .
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First note that both f (z) and g (z) are meromorphic functions, and both have simple
poles at the points z = −µπ/p + nπ (µ = 1, 2, . . . , p − 1; n = 0,±1,±2, . . . ) and
z = −µπ/q + nπ (µ = 1, 2, . . . , q − 1; n = 0,±1,±2, . . . ). Furthermore, the residues at
these points are equal, that is,

Resz=−µπ/p+nπ (f ) = 1

p
(−1)µ cot

(
µqπ

p

)
= Resz=−µπ/p+nπ (g ) ,

and

Resz=−µπ/q+nπ (f ) = 1

q
csc

(
µpπ

q

)
= Resz=−µπ/q+nπ (g ) .

Next we investigate other poles. We may assume without loss of generality that g (z)

having no pole of order greater than 1. This is because the principal parts of − csc(pz) cot(qz)

and (1/pq) csc2(z) at z = nπ (n = 0,±1,±2, . . . ) are −1/pq(z−nπ)2 and 1/pq(z−nπ)2,
respectively and they cancel out in g (z) (it is easy to see this at z = 0, then notice that g (z) is
periodic with period π from the hypothesis that p is even). Clearly f (z) has no pole of order
greater than 1. Thus we know the principal parts of f (z) and g (z) coincide at all of their poles
so that f (z) − g (z) is an entire function.

It is obvious that f (z) and g (z) are bounded on the set R1 := {z ∈ C | |�(z)| ≥ 1},
because both cot(z) and csc(z) are bounded on R1. Hence f (z)−g (z) is also bounded on R1.
Now, since f (z)−g (z) is bounded on the compact set U := {z ∈ C | |�(z)| ≤ 1, |	(z)| ≤ π},
and f (z) − g (z) is periodic with period π , we see that f (z) − g (z) is bounded on the set
R2 := {z ∈ C | |�(z)| ≤ 1}. Noting that C = R1 ∪R2, we see that f (z)− g (z) is bounded on
the complex plane C. Thus we can conclude that f (z) − g (z) is a bounded entire function on
C, and then it must be a constant by the well-known Liouville Theorem. This constant must
be zero, as (noting limz→i∞ cot(z) = −i, limz→i∞ csc(z) = 0)

lim
z→i∞ f (z) = −i

p

p−1∑
µ=1

(−1)µ cot

(
µqπ

p

)
+ −i

q

q−1∑
µ=1

csc

(
µpπ

q

)
= 0, lim

z→i∞ g (z) = 0 .

Here we make use of the identities

p−1∑
µ=1

(−1)µ cot

(
µqπ

p

)
=

p−1∑
µ=1

(−1)p−µ cot

(
(p − µ)qπ

p

)
= −

p−1∑
µ=1

(−1)µ cot

(
µqπ

p

)

and
q−1∑
µ=1

csc

(
µpπ

q

)
=

q−1∑
µ=1

csc

(
(q − µ)pπ

q

)
= −

q−1∑
µ=1

csc

(
µpπ

q

)
.

This proves our claim that f (z) = g (z), and hence the identity (1.2).
Similarly (1.3), (1.4) and (1.5) can be proved; detailed verifications are left to the

reader. �
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4. Proving Theorem 1.2

In this section we give a proof of Theorem 1.2. We need the following lemma to prove
Theorem 1.2.

LEMMA 4.1. Let α be a real number such that 0 < α < 1. Then, for sufficiently small
y ∈ R, we have the following expansions at y = 0 :

π cot(π(y + α)) = π cot(πα) +
∞∑

k=1

{(−1)kζ(k + 1, α) − ζ(k + 1, 1 − α)}yk(4.1)

π csc(π(y + α)) =π csc(πα) +
∞∑

k=1

1

2k+1

{
(−1)kζ

(
k + 1,

α

2

)

− (−1)kζ

(
k + 1,

1 + α

2

)
+ ζ

(
k + 1,

1 − α

2

)

− ζ

(
k + 1,

2 − α

2

)}
yk .

(4.2)

PROOF. We proved (4.1) in [6, Lemma 5.4]. Hence we will prove (4.2). Applying a
well-known formula csc(x) = limN→∞

∑N
n=−N(−1)n/(x + nπ) for |x| < π , we have

π csc(π(y + α)) = lim
N→∞

N∑
n=−N

(−1)n

y + n + α
= lim

N→∞

N∑
n=−N

(−1)n

n + α

∞∑
k=0

( −y

n + α

)k

=
∞∑

k=0

{
lim

N→∞

N∑
n=−N

(−1)n

(n + α)k+1

}
(−y)k

= π csc(πα) +
∞∑

k=1

{ ∞∑
n=0

(−1)n

(n + α)k+1
+ (−1)k

∞∑
n=0

(−1)n

(n + 1 − α)k+1

}
(−y)k

= π csc(πα) +
∞∑

k=1

{
(−1)k

1

2k+1

[
ζ(k + 1,

α

2
) − ζ(k + 1,

1 + α

2
)

]

+ 1

2k+1

[
ζ(k + 1,

1 − α

2
) − ζ(k + 1,

2 − α

2
)

]}
yk.

Here we applied the formula
∑∞

n=0 (−1)n/(n + α)s = (1/2s){ζ(s, α/2) − ζ(s, (1 +
α)/2)}. �

PROOF OF THEOREM 1.2. First we will prove (1.7). We expand both sides of (1.2)
and compare their coefficients. Using the formula (4.1) in Lemma 4.1, for sufficiently small
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x ∈ R, we have

1

p

p−1∑
µ=1

(−1)µ cot

(
µqπ

p

)
cot

(
x + µπ

p

)

= 1

p

p−1∑
µ=1

(−1)µ cot

(
µqπ

p

)
cot

(
µπ

p

)
+ 1

p

∞∑
k=1

1

πk+1

p−1∑
µ=1

(−1)µ cot

(
µqπ

p

)

×
{
(−1)kζ

(
k + 1,

µ

p

)
− ζ

(
k + 1, 1 − µ

p

)}
xk

= 1

p

p−1∑
µ=1

(−1)µ cot

(
µqπ

p

)
cot

(
µπ

p

)

+ 2

p

∞∑
k=2

k even

1

πk+1

p−1∑
µ=1

(−1)µ cot

(
µqπ

p

)
ζ

(
k + 1,

µ

p

)
xk

(because cot((p − µ)qπ/p) = − cot(µqπ/p))

= 1

p

p−1∑
µ=1

(−1)µ cot

(
µqπ

p

)
cot

(
µπ

p

)

+
∞∑

n=2

{
2

pπ2n−1

p−1∑
µ=1

(−1)µ cot

(
µqπ

p

)
ζ

(
2n − 1,

µ

p

)}
x2n−2 .

(4.3)

Similarly we have, (noting csc((q − µ)pπ/q) = − csc(µpπ/q) for p even)

1

q

q−1∑
µ=1

csc

(
µpπ

q

)
cot

(
x + µπ

q

)

= 1

q

q−1∑
µ=1

csc

(
µpπ

q

)
cot

(
µπ

q

)

+
∞∑

n=2

{
2

qπ2n−1

q−1∑
µ=1

csc

(
µpπ

q

)
ζ

(
2n − 1,

µ

q

)}
x2n−2 .

(4.4)

On the other hand using the following formulae (by our convention, 0 ! = 1):

cot(x) = 1

x

( ∞∑
n=0

(−1)n22nB2n

(2n) ! x2n

)
, csc(x) = − 1

x

( ∞∑
n=0

(−1)n(22n − 2)B2n

(2n) ! x2n

)
,

csc2(x) = − 1

x2

( ∞∑
n=0

(−1)n(2n − 1)22nB2n

(2n) ! x2n

)



10 SHINJI FUKUHARA

we have

− csc(px) cot(qx) + 1

pq
csc2(x)

= 1

px

( ∞∑
n=0

(−1)n(22n − 2)B2n

(2n) ! (px)2n

)(
1

qx

)( ∞∑
n=0

(−1)n22nB2n

(2n) ! (qx)2n

)

+ 1

pq

(−1

x2

∞∑
n=0

(−1)n(2n − 1)22nB2n

(2n) ! x2n

)

= 1

pqx2

∞∑
n=0

{ n∑
k=0

(−1)n(22k − 2)22n−2kB2kB2n−2kp
2kq2n−2k

(2k) ! (2n − 2k) ! x2n

}

−
∞∑

n=0

{
(−1)n(2n − 1)22nB2n

pq(2n) !
}
x2n−2

=
∞∑

n=0

(−1)n22n

pq(2n) !
{ n∑

k=0

(
2n

2k

)
(1 − 21−2k)B2kB2n−2kp

2kq2n−2k

− (2n − 1)B2n

}
x2n−2 .

(4.5)

Comparing the coefficients of x2n−2 in (4.3), (4.4) and (4.5), we have

2

pπ2n−1

p−1∑
µ=1

(−1)µ cot

(
µqπ

p

)
ζ

(
2n − 1,

µ

p

)

+ 2

qπ2n−1

q−1∑
µ=1

csc

(
µpπ

q

)
ζ

(
2n − 1,

µ

q

)

= (−1)n22n

pq(2n) !
{ n∑

k=0

(
2n

2k

)
(1 − 21−2k)B2kB2n−2kp

2kq2n−2k − (2n − 1)B2n

}

for n ∈ Z such that n > 1. This proves the identity (1.7).
Secondly we prove (1.8). Starting from (1.3), we obtain

2

pπ2n−1

p−1∑
µ=1

(−1)µ csc

(
µqπ

p

)
ζ

(
2n − 1,

µ

p

)

+ 2

qπ2n−1

q−1∑
µ=1

(−1)µ csc

(
µpπ

q

)
ζ

(
2n − 1,

µ

q

)

= (−1)n+122n

pq(2n) !
{ n∑

k=0

(1 − 21−2k)(1 − 21−2n+2k)

(
2n

2k

)
B2kB2n−2kp

2kq2n−2k

+ (2n − 1)B2n

}
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for n ∈ Z such that n > 1 by the similar argument. This implies (1.8).
Thirdly we will prove (1.9). We expand both sides of (1.4) and compare their coefficients.

Using the formula (4.2) in Lemma 4.1, for sufficiently small x ∈ R, we have

1

p

p−1∑
µ=1

(−1)µ cot

(
µqπ

p

)
csc

(
x + µπ

p

)

= 1

p

p−1∑
µ=1

(−1)µ cot

(
µqπ

p

)
csc

(
µπ

p

)

+ 1

p

∞∑
k=1

1

(2π)k+1

p−1∑
µ=1

(−1)µ cot

(
µqπ

p

) {
(−1)kζ(k + 1,

µ

2p
)

−(−1)kζ(k + 1,
p + µ

2p
) + ζ

(
k + 1,

p − µ

2p

)
− ζ

(
k + 1,

2p − µ

2p

)}
xk

= 1

p

p−1∑
µ=1

(−1)µ cot

(
µqπ

p

)
csc

(
µπ

p

)

+ 1

p

∞∑
k=1

1

(2π)k+1

p−1∑
µ=1

(−1)µ cot

(
µqπ

p

) {
(−1)kζ

(
k + 1,

µ

2p

)

−(−1)kζ

(
k + 1,

2p − µ

2p

)
+ ζ(k + 1,

µ

2p
) − ζ

(
k + 1,

2p − µ

2p

)}
xk

(because cot((p − µ)qπ/p) = − cot(µqπ/p))

= 1

p

p−1∑
µ=1

(−1)µ cot

(
µqπ

p

)
csc

(
µπ

p

)

+ 2

p

∞∑
k=2

k even

1

(2π)k+1

p−1∑
µ=1

(−1)µ cot

(
µqπ

p

){
ζ

(
k + 1,

µ

2p

)

−ζ

(
k + 1,

2p − µ

2p

)}
xk

= 1

p

p−1∑
µ=1

(−1)µ cot

(
µqπ

p

)
csc

(
µπ

p

)

+
∞∑

n=2

2

p(2π)2n−1

p−1∑
µ=1

(−1)µ cot

(
µqπ

p

) {
ζ

(
2n − 1,

µ

2p

)

−ζ

(
2n − 1, 1 − µ

2p

)}
x2n−2 .

(4.6)
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Similarly we have, (noting csc((q − µ)pπ/q) = csc(µpπ/q) for p odd)

1

q

q−1∑
µ=1

csc

(
µpπ

q

)
csc

(
x + µπ

q

)

= 1

q

q−1∑
µ=1

csc

(
µpπ

q

)
csc

(
µπ

q

)
+

∞∑
n=2

2

q(2π)2n−1

q−1∑
µ=1

csc

(
µpπ

q

)

×
{
ζ(2n − 1,

µ

2q
) − ζ

(
2n − 1, 1 − µ

2q

)}
x2n−2 .

(4.7)

For the right hand side of (1.9), we have

− csc(px) cot(qx) + 1

pq
csc(x) cot(x)

= 1

px

( ∞∑
n=0

(−1)n(22n − 2)B2n

(2n) ! (px)2n

)(
1

qx

)( ∞∑
n=0

(−1)n22nB2n

(2n) ! (qx)2n

)

− 1

pqx2

( ∞∑
n=0

(−1)n(22n − 2)B2n

(2n) ! x2n

)( ∞∑
n=0

(−1)n22nB2n

(2n) ! x2n

)

= 1

pqx2

∞∑
n=0

{ n∑
k=0

(−1)n(22k − 2)22n−2kB2kB2n−2kp
2kq2n−2k

(2k) !(2n − 2k) ! x2n

}

− 1

pqx2

∞∑
n=0

{ n∑
k=0

(−1)n(22k − 2)22n−2kB2kB2n−2k

(2k) !(2n − 2k) ! x2n

}

=
∞∑

n=0

(−1)n

pq(2n) !
n∑

k=0

(
2n

2k

)
{(22k − 2)22n−2kB2kB2n−2kp

2kq2n−2k

− (22k − 2)22n−2kB2kB2n−2k}x2n−2 .

(4.8)

Comparing the coefficients of x2n−2 in (4.6), (4.7) and (4.8), we have

2

p(2π)2n−1

p−1∑
µ=1

(−1)µ cot

(
µqπ

p

){
ζ

(
2n − 1,

µ

2p

)
− ζ

(
2n − 1, 1 − µ

2p

)}

+ 2

q(2π)2n−1

q−1∑
µ=1

(
µpπ

q

){
ζ

(
2n − 1,

µ

2q

)
− ζ

(
2n − 1, 1 − µ

2q

)}

= (−1)n

pq(2n) !
n∑

k=0

(
2n

2k

)
{(22k − 2)22n−2kB2kB2n−2kp

2kq2n−2k − (22k − 2)22n−2kB2kB2n−2k}

for n ∈ Z such that n > 1. This proves the identity (1.9).
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Finally we will prove (1.10). Starting from the equation (1.5), we have

2

p(2π)2n−1

p−1∑
µ=1

(−1)µ csc

(
µqπ

p

){
ζ

(
2n − 1,

µ

2p

)
− ζ

(
2n − 1, 1 − µ

2p

)}

+ 2

q(2π)2n−1

q−1∑
µ=1

(−1)µ csc

(
µpπ

q

){
ζ

(
2n − 1,

µ

2q

)
− ζ

(
2n − 1, 1 − µ

2q

)}

= − (−1)n

pq(2n) !
n∑

k=0

(
2n

2k

)
{(22k − 2)(22n−2k − 2)B2kB2n−2kp

2kq2n−2k

+ (22k − 2)22n−2kB2kB2n−2k}
for n ∈ Z such that n > 1 by the similar argument. This proves the identity (1.10) and

completes the proof of Theorem 1.2.

5. Proving Theorem 2.2

Finally we give proofs of Proposition 2.1 and Theorem 2.2.

PROOF OF PROPOSITION 2.1. We make use of the formula (4.1) as we did in the proof
of Theorem 1.2.

D(p, q; x) = 1

p

p−1∑
µ=1

cot

(
µqπ

p

)
cot

(
x + µπ

p

)

= 1

p

p−1∑
µ=1

cot

(
µqπ

p

)
cot

(
µπ

p

)
+

∞∑
n=2

{
2

pπ2n−1

p−1∑
µ=1

cot

(
µqπ

p

)
ζ

(
2n − 1,

µ

p

)}
x2n−2

= 4s1(q, p) +
∞∑

n=2

{
(−1)n−122np2n−2

(2n − 1) ! s2n−1(q, p)

}
x2n−2 (by (2.1))

=
∞∑

n=1

(−1)n−122np2n−2

(2n − 1) ! s2n−1(q, p)x2n−2 .

This completes the proof. �

PROOF OF THEOREM 2.2. (1)⇒(2). If q ≡ q ′( mod p), then, by Definition 2.2, it is
clear that s2n−1(q, p) = s2n−1(q

′, p) for any n ∈ Z+. This implies (2).
(2)⇒(3). Assume s2n−1(q, p) = s2n−1(q

′, p′) for any n ∈ Z+. Then D(p, q; x) =
D(p′, q ′; x) by Proposition 2.1.

(3)⇒(1). Assume that D(p, q; x) = D(p′, q ′; x). The simple poles of D(p, q; x) and
D(p′, q ′; x) which are the nearest to 0 are x = ±π/p and x = ±π/p′ respectively. Since
they should coincide, we obtain π/p = ±π/p′. Then, by the assumption that p,p′ > 0,
we know p = p′. Hence we can assume that D(p, q; x) = D(p, q ′; x). Let us consider the
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residues

Resz=−π/pD(p, q; z) = 1

p
cot

(
qπ

p

)
and Resz=−π/pD(p, q ′; z) = 1

p
cot

(
q ′π
p

)
.

Since they should coincide, we obtain cot(qπ/p) = cot(q ′π/p). This equation implies q ≡
q ′( mod p) as required. �
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