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1. Introduction

Let C (resp. R) be the complex (resp. real) number field. We consider a connected simply
connected complex simple Lie group G¢ and its connected noncompact simple real form G.
In this article we shall always fix a maximal compact subgroup K of G, and assume that rank
G =rank K. This assumption is equivalent to G 1is inner. Let g and € be respectively the Lie
algebras of G and K. Let 6 be the Cartan involution which stabilizes K. Then g is decompsed
by g = £ @ p, where p is the eigenspace of 6 in g with the eigenvalue —1. Let gc be the Lie
algebra of G¢. We shall denote, for each subspace v of g, by vc the complexification of v in
gc. pc is a K-module by the adjoint action of K. Let B be a maximal abelian subgroup of K.
Then B is also a maximal abelian subgroup (Cartan subgroup) of G. Let b be the Lie algebra
of B. Then the root system X of the pair (gc, bc) is decomposed by ¥ = Y'x U X, where
X'k (resp. X,) is the set of all compact (resp. noncompact) roots in X. Then X'k is also the
root system of (¢c, bc). We choose a positive root system P, and always fix it.

Let us state our purpose of this article. Let ¢ be a Pg-dominant integral form on bc and
(7w, Vi) a simple K-module with highest weight 1. We consider a simple Harish-Chandra
(g, K)-module U (gc) V), which contains (7, V,,) with multiplicity one, where U (gc) is the
universal enveloping algebra of gc. Let pc ® pc ® V), be the tensor K-module. Canonically
this space has a unitary K-module structure. We define a K-linear homomorphism e of
pc®@pc® VytoU(ge)Vubym(X ® Y ®v) = XYvfor X,Y e pc,ve V. LetVbea
finite K-module. We define a projection operator P, on V by

(1.1) P,(v) = degnM/ kvtracem, (k)dk forveV,
K

where deg 7, = dim V), and dk is the Haar measure on K normalized as || x dk = 1. Since
P,w = w P,, w induces a K-module linear homomorphism of M (1) = P, (pc @pc @ V1)
to V, C U(gc)Vyu. Letm = m(u) be the multiplicity of V,, in M (w). M () is decomposed
by M(n) = @;": 1 U(Bc)vj, where v; is the highest weight vector of the simple K-module
U (tc)v; and U (Ec) is the universal enveloping algebra of £c. Let v(u) be the highest weight
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vector of V. Since @ is a K-module linear homomorphism of M (u) to V,,, there exsists
a complex number x; such that @ (v;) = x;v(u), 1 < i < m. We choose the root vectors
Xo,a € X normalized as ¢ (X, X—¢) = 1, where ¢ is the Killing form on gc. Then we
have Hy = ad(Xy)X_, € bc. Let X, be a root vector corresponding to a noncompact root
. We have (H — u(H)1)Py,(Xo» ® X_o» ® v()) = 0, H € b, where 1 is the identity in
U (¥c). Since p is the highest weight of V,,, there exist the complex constants c,, ; such that

m
Pu(Xo® X ® 0(1) — Pu(X_0 ® X ® V(1) = €0 jV; -
Jj=1

Let P be a positive root system of X' containing Px and P, the set all noncompact roots in
P‘ We put P, = {wls @, Q)N}, X0 = t(xlv X2yttt xm)» b = I(M(Ha)l)s M(Ha)z)s Y
w(Hyy)) and A = (¢, j). Then X is a solution of the system of the linear equations;

(1.2) Ax=h.

We note that all entries in A are given by the Clebsch-Gordan coefficients of the tensor K-
module pc ® V,, (see Corollary 4.7). This indicates that the action of X, on V,, C U(gc)Vy
is controlled by the Clebsch-Gordan coefficients of pc ® V), (cf. also [1]). Our motivation is
to study the equation (1.2).

Let us state the first result after the following preparations. Let H, be the element in
bc satisfying ¢ (Hy,, H) = pn(H) for all H € bc. Then the centralizer K (1) of Hy, in K
is reductive, and contains B. Let X'k (,) be the root system of the pair (¢(u)c, bc), where
€(u) is the Lie algebra of K(u). We put Pk = Px N Xku). Pk 1S a positive root
system of Xk (.. A noncompact root w € X, is said to be Pk ,)-highestif w + o ¢ X for
all @ in Pk (). When w in X, is Pk y)-highest,  is actually the highest weight of a simple
K ()-submodule of pc. The set of all Px-dominant integral form on b¢ will be denoted by
k. In §5 we shall prove the following theorem.

THEOREM 1. Let u € I'k and assume that | is admissible (see Definition 5.2). Then
the multiplicity m(p) of V), in the K-module M (1) is given by

m(u) = o € Xy : wis Pgu-highest},
where 1S is the number of the elements in a set S.

We shall state our second result. Let P be a positive root system containing Px. For a
subset @ in the simple root system ¥ of P, we denote by P(®) the set of all positive roots in
P generated by @ over the ring of integers. The dual space of the real vector space /—1b will
be denoted by (v/—1b)*. Let C* be the positive Weyl chamber of (/—1b)* corresponding to
P. We define a subset C(®)* in the topological closure c/(C*) of C* by

C(O)*={necC* :(a,n) =0fora € P(O®) and (a,n) > Ofora € P\P(O)},

where (o, n) is the inner product on (+/—1b)* induced from the Killing form ¢ on gc. Let
be an element in C(®)* and H,, the element in /—1b determined by ¢ (H,, H) = n(H), H €
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/—1b. Consider the centralizer K (1)) of Hy in K. Then K (1) contains B, and is uniquely
determined by C(®)*. We put K(®@) = K (). Let p™ be the subspace of pc generated by the
set of all root vectors corresponding to P N X,. Let 7 be the conjugation of g¢ with respect
to the compact real form £ @ +/—1p. A simple K (@)-submodule q of pc is said to be the first
(resp. the second) kind if 7(q) = q (resp. ¢ C p* or (q) C p*). A noncompact root @ in
X, is said to be the first (resp. the second) kind if w is a weight of a simple K (®)-submodule
of pc of the first (resp. the second) kind. The triple (Px, P(®), P) is standard if each simple
K (®)-submodule q of pc is either the first kind or the second kind. The following theorem
will be proved in §7.

THEOREM II. Let u € I'k. Then there exists a standard triple (Pg, P(®), P) such
that u € C(®)*. Moreover, we have K(®) = K ().

Let (Px, P(®), P) be a standard triple. We consider an element p in C(®)* N 'k and a
noncompact root w satisfying i+ € I'r. We define a projection operator P14, onpc® V,
by the same as in (1.1). We put

P, = Z Puto -

weX, NP, u+wely
Let us define a K-submodule N (i) of M () by N () = the K-module generated by the set
N={P(XQPL(Y®V)-YRP(XQRV):X,Yepc,veV,}.

THEOREM III. Let (Pg, P(®), P) be a standard triple and ju € C(®)*NIk. Suppose
that w is sufficiently Pg\ Pk o)-regular. Then p is admissible. Furthermore, we have

n(w) =fH{w € PN X, : wis Pg@)-highest and of the second kindy} ,
where n(j) is the multiplicity of V,, in N ().

In §8 we shall prove this theorem by using the asymptotic behaviour of the Clebsch-
Gordan coefficients of pc ® V.

2. Preliminaries
Let X be the root system of the pair (gc, bc). We put, fora € X,
ge ={X €gc:ad(H)X =a(H)X forall H € bc}.

Then we have gc = bc @ (Byexdo)- Let g, = €D +/—1p be the compact real form of gc.
We choose a canonical Weyl basis X, € go, @ € X satisfying the followings (cf. the proof of
Theorem 6.3 in [2]):

2.1 Xog—X o, V-1Xg+X_y)egy and Xy, X ) =1,

where ¢ (X, Y) = trace(ad(X)ad(Y)) is the Killing form on gc. We put Hy = ad(Xy) X .
Then we have ¢ (Hy, H) = a(H) for all H in bc. Let u be a linear form on the real vector
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space /—1b. Then there exists a unique Hy, in /—1b such that ¢(Hy, H) = w(H) for all
H in v/—16b. Let (+/—1b)* be the dual space of ~/—1b. We define a positive definite bilinear
form (u, A) by (, A) = ¢(Hy, Hy) for pu, A € (v/—1b)*. We put, for each pair of & and S
in X, a complex number < «, 8 > by

. p) - :qs(ad(xa)xﬁ, X op) if a+BeX,

2.2) .
0 otherwise .

Then (o, B) is a pure imaginary number. Let p and g be two nonnegative integers satisfying
ja+ B € X iff —q < j < p. Then we have (cf. Lemma 4.3.8 and Corollary 4.3.12 in [4])

(23) 2B, @lel =g —p, p+qg=3.
Furthermore, we have (cf. Lemma 4.3.22 in [4])
|
5
A root ¢ in X is compact (resp. noncompact) if X, € £c (resp. Xy € pc). Since €c and pc
are invariant under ad(b), X' is given by the disjoint union of the set of all compact roots X'x
and the set of all noncompact roots X,. X'k is also the root system of the pair (€c, bc). Let

o (resp. 7) be the conjugation of g¢ with respect to the real form g (resp. g,). By our choice
for the Weyl basis of gc we have

2.5) 0(Xy)=—Xq for ¢ € Xk, o0Xyg)=X_y forael,,

(2.4) e, BYI* = p(g + 1)

(2.6) T(Xy)=—X_o for xeX.

3. Two step tensor K -module

The adjoint action Ad (k) (k € K) on pc will be denoted by kX for X in pc. We define
a hermitian structure (X, Y) of pc by (X,Y) = —¢(X,7(Y)), X,Y € pc. Thereby pc is
a unitary K-module. Fix u € Ik, and consider a unitary simple K-module (7, V) with
highest weight w. For the simplicity of our notations we shall denote the action 7 (k) (k € K)
on V, by kv for v € V,,. Let dk be the Haar measure on K normalized as [, dk = 1. We
define a character yx,, of the K-module (7, V,,) by

3.1 Xu(k) = degmytracem, (k) ,

where k € K and deg w;, = dim V,,. Then we have
(32) [ 0 0 o = 8.
K
Let V be a finite dimensional K-module. We define a projection operator P, on V by

3.3) P, (v) =/ kvyx,(k)dk for veV,
K
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where m is the complex conjugate of x, (k). By (3.2) we have
(3.4 (P =P,
Furthermore, we have

(3.5) kP, = Pk forall ke K.

A unitary K-module structure on the two step tensor space pc ® pc ® Vy, is defined by
(3.6) kX®YQ®v)=*kXQkY ®kv) for X,Y epc, veV, and ke K,

(3.7) XQY®uX @Y @v)=X X)Y,Y)Wv)
for X, Y, X', Y € pcand v, v’ € V,. The K-module M (i) = P, (pc ® pc ® V,,) is decom-
posed into a finite number of the simple modules which are K -isomorphic to V,,. Therefore
(3.83) M) =m(u)Vy
where m (1) is the multiplicity of V,, in M (u).

LEMMA 3.1. We put

W) ={Ze M) : HZ = u(H)Z forall H € b}.

Then we have m(p) = dim W (w).

PROOF. Let M(n) = @:":(’f) V; be the decomposition of M () by the simple K-
modules V;. Then we have

m()
W =P wewnvi.

i=1

Since V; is a simple K-module, we have dim W () N'V; = 1 foralli, 1 <i < m(u). This
implies that dim W () = m(u).

DEFINITION 3.2. Let p be a nonnegative integer and b a symbol. We define [T, by

My = {¢}, [ = {(a1,00,---,ap) 1 a; € Pg}for p >0, and put [T = U‘;O:OHP. Then IT
is a semigroup by the -operation with the identity ¢, where  is defined by
IxJ=(ar, - op,p1,.Bg), [=(a1,---,ap), J=(B1,-,Bg) €.

DEFINITION 3.3. Let U(£c) be the universal enveloping algebra of £c. We define a
semigroup homomorphism of I7 to U (£c) by

0@) =1 and O()=X_oXa, X, for I = (a1, a2, ap).

DEFINITION 3.4. Let ! = (a1,a2,---,ap) € [T and J € I1. When J is of the form

J:(ail,aiz,---,aiq),lfil <i2<---<iq§por.l=q§wedenotebyj<l. We also
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define /\J € IT by
IN = @y oevaj,)e where (i, ja . jpmg)d = (1,2, PNt -+ ig)
satisfying j1 < jo <+ < jp—q -

We note that I\(/\J) = Jand I\J < I.

Let ¢ be the mapping of I1 defined by ¥(I) = (ap,op—1,---,a1), I =
(ar, a2, -+, ap)
€ IT. Since 2 is the identity on [T,  is a bijection. Let J € IT and @ € Pg.
Then we have

(3.9 QW (INX—g=QW(axJ)).

For I = (a1, a2, -, ap), weputil = pand (I) =YV | ;.

LEMMA 3.5. Lety,8 € X, andl € Il. Assume that y + § = (I). Then we have
Pu(Xy @ Xs @ Q(Dv(w) = Y (=D Pu(Q ()X, ® QW UI\I)Xs @ v(W)),

J=I,Jell
where v(jL) is the highest weight vector of V,, normalized as |[v(w)| = 1.

Proof by an induction on /. When #/ = 0, our assertion is obvious. Assume that the
identity is true for all L in IT and &, n € X, satisfying 1L < i/ and &€ +n = (L) . We have
axL =1 fora € Py and L € II. Bearing in mind —(L) + y +§ + u > w and p is the
highest weight of M (1) we have P, (X, ® Xs ® Q(L)v()) = 0. Since Q(I) = X_4Q(L),
we have

Pu(Xy @ Xs @ Q(Dv(w) = Pu(Xy @ X_o(Xs ® Q(L)v(w)))

— Pu(Xy ®ad(X_o)Xs ® Q(L)v(1))
=—Pu(ad(X-o)Xy ® X5 ® Q(L)v(n))
— Pu(Xy ®ad(X o) Xs ® Q(L)v(w)) .
Applying the inductive hypothesis to L € IT and y, § — « (resp. y — «, §) we have
Pu(Xy, ® Xs ® Q(H)v(w))

(3.10) = (D Y {PUQ (@ * )Xy ® QU (L\I)Xs ® v(1))

JL
+ P QW (1) Xy ® QY (o x (L\J)) X5 @ v())} -
Here we used (3.9). Since o x (L\J) = I\J, L\J = I\a x J for J < L and
(J:II1,Jell}={J:J<xL,Jell}UlaxJ:J<XL,Jell},
(3.10) implies the identity of this lemma.

LEMMA 3.6. Let S be the set of all vectors P (X_, ® X, @ v(u)), y € Xy. Then we
have W () = [S], where [S] is the linear span of the set S.
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PROOF. Since V,, is a simple K-module, V), is generated by the set {Q(Hv(u) : I €
IT}. By (3.5) we have HP,, = P, H, H € b. This implies that W (u) is generated by the set

S'={P,(X, ® Xs @ Q(v(w)) :y,8 € Ty, I €,y +8=(I)}.

Let us prove that S’ C [S]. Let Z = P, (X, ® Xs ® Q(I)v(n)) be each element in §’. By
Lemma 3.5 we have

Z = (D" PuQW )X, ® QW (I\J))X5 ® v(1))

J=I

=(-D* Z cy.gcs,1NJ Pu(Xy—(y @ Xs—(n\g) ®v(W)),
I

where ¢, j = ¢ (Q(W(J))X,, Xy (s)). Since (J) + (I\J) = (I) and y +6 = (I), we have
S" C [S]. Moreover since W(u) = [S'] C [S] C W(w), we have W (u) = [S].

4. Weight subspace W () of M ()

First we restate the following three lemmas in [3].
LEMMA 4.1. Let (t,, V,) be a simple K-module with highest weight (1. Then we have
pPc® Vu = @ PM+u)(pC® VM):
weXy , u+wely
where Py, (pc ® V) = {0} or is a simple K -module.

For a proof cf. Lemma 3.4 in [3].
The following two lemmas are also proved respectively by Corollary 3.5 and Lemma 3.6
in [3].

LEMMA 4.2. Let w be a noncompact rootin X'. Assume that u € I' and Py, (pc ®
V) # {0}. Then we have | Py (Xy @ v(10))| # 0, where v(ji) is the highest weight vector
inVy,.

LEMMA 4.3. Letp € I'k, w € Xy, and assume that p +w € I'k, Pyyo(pc @ V) #
{0}. Then, for each y € X, we have
(Ir+ o = 2+ 7D Puto(Xy @ v = D 20 )P Puto(Xy1a @ (),
ae Pk
where . = 1 + pg and pk is one half the sum of all roots in Pk.

LEMMA 4.4. Let € I'x andy,w € Xy,. Assume that p + w € I'x and Py ,(pc @
V) # {0}. Then we have

(Pu(X—y @ Putw(Xy @ v()) s Pu(X—0 ® Putio(Xo ® v(1))))

= c(1t; ©)? | Putor(Xy @ V()2 Pusor(X o @ (1)),



162 HISAICHI MIDORIKAWA

deg
where c(u; ) = ./ degﬂﬂiw'

PROOF. We note that (kX_,, X_y) = (kXy, Xo). By (3.6) and (3.7) we have

4.1 (PA(XQ®YQv), P(X' ®Y ®V)) = / kX, XV kY, Y')(kv, ') (k)dk .
K

Let {v;} (1 < i < degm,,vi = v(n)) be an orthonormal basis of V. Since yx, (k) =
degm, Y ;(kv;, v;), we have

(Pu(X—y ® Puto(Xy @ (1)), Pu(X—0 ® Putw(Xw ® v(1))))

=degmy, Z/K k(Xy @vi), Xoo @ Vi) (kPpyw(Xy @ v()), Purow(Xeo ® v(n)))dk

=degmy, Z/K kPuto(Xy @ Vi), Putow(Xe ® v;))
i

X (kPpto(Xy @ v(1)), Puto(Xo ® v(n))dk

= deg 7, (deg Tuta) ™' Y (Putw(Xy ® V(1)) , Pyt (Xy ® 1))

1

X (Puyo(Xo @ (1), Puyo(Xo @ vi))
= c(1t: )| Puto (Xy ® 0GP Puto(Xo ® V()
Here we used the orthogonality relation on K. Hence the lemma follows.

COROLLARY 4.5. Assume that (v, 0 + @ € I'y and Pyy,(pc ® V) # {0}, Then
Pu(pc ® Puiwlpc ® Vy,)) is a simple K-module with highest weight . Let v, (11) be the
highest weight vector of the simple K -module P, (pc ® Puto(Pc ® V) determined by

Pu(X—6® Purow(Xe ® () = c(p; 0)|Priw(Xo @ V(1)) Pvp (1) .

Then we have |v, ()| = 1 and

Pu(X—y ® Puiow(Xy @v())) = c(; @) Puto(Xy ® U(M))|2Uw(l/«) Jorall y e Xy,

deg
where c¢(u; w) = ,/ m.

PrROOF. By Lemma4.2 and Lemma 4.4, we have

1Pu(X ey ® Putor(Xep ® 0))| = (15 0)| Putor(Xey @ v())|* # 0.

Therefore P, (pc ® Putoc ® Vi) # {0} and |v,(10)| = 1. Replacing V), with the simple
K-module P, ,(pc ® V) in Lemma 4.1, we have P, (pc ® P10 (pc ® V) is simple. We
put

Pu(X—y ® Puto(X, ® v(1)) = c()e(t; o) Puto(Xy @ v(1))*v0(p) ,
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where c(y) is a complex number. By Lemma 4.4 we have
e )% Puto(Xy @ V()| Puro(Xo ® v(0) I
= (Pu(X—y ® Puyo(Xy @ (1)), Pu(X—0 ® Puiw(Xo @ v(1))))
= c(i: 0| Puso(Xy @ V() *| Pt (Xo ® v(w)[.
This implies that c(y) = 1, and hence we have the formula.

THEOREM 4.6. Let u € I'y and W () the weight subspace of the K-module M ().
Then we have

4.2) dim W (i) = 25w .

where Xy ={we Xy i u+welk, Pirolpc ® V) # {0}

PROOF. Weput A = {P,(X_y Q@ Puyo(X, ®v(n))) : v, w € Xy, u+w e I'g}. First
we shall prove that W(u) = [A]. Let Z = P, (X—y ® Putw(X, ® v(n))) be an element in
A. Since the action of K commutes with P, and P4, (see (3.5)), we have HZ = u(H)Z
for all H in bc. This implies that A C W (). Conversely let Z be an element in W(u). By
Lemma 3.6 we have

Z=) ¢, PuX,®X, Qv(w),
yEZy
where ¢, is a complex constant. Then by Lemma 4.1 we have
Z=Y Y ¢y PuXy ® Pup(X, @ ().
yeXy, weX, , ntwely
Thus W () = [A] as claimed. Let us now prove this theorem. By Corollary 4.5 we have
(4.3) W () =[A]l = [{| Puto(Xo ® V(1)) Pv0(1) t @ € Ty, o+ € Tk}

Letw,y € Xy, w # y. Assume that Py, (pc ® V) and P4y (pc ® Vy,) are nontrivial.
Since these spaces are orthogonal, P, (pc ® Puro(Pc ® Vy)) and Py (pc ® Pty (Pc ® Vi)
are also orthogonal (see (4.1)). Hence (4.3) and Lemma 4.2 imply (4.2).

In view the proof of the above theorem we have the following.

COROLLARY 4.7. Letw,y € X, w # y. Consider two highest weight vectors v, (i)
and vy, () as in Corollary 4.5. Then vy,(1) and vy, (ju) are orthogonal. Moreover, we have

Pu(X—y ®@ X, @v(w) = Y c(i; )| Puto(Xy ® v(0)Pro (i) .
wEEW(ﬂ)
5. Admissible dominant integral form

In this section we shall determine the multiplicity m () of V), in the K-module M (1)
for an admissible integral form p in I'k (for the definition, see below). Let 3(H,) be the
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centralizer of H, in gc. Since one dimensional algebra CH,, is o and t invariant, 3(H,,) is
also invariant under these anti-automorphisms of gc. We now put [(u) = 3(H,) N g. Since
0 = o, [(n) is a f-stable reductive algebra with Cartan subalgebra b. Therefore [(1) has the
following Cartan decomposition.

5.1) W) =tw ®p(), where B(u) =ENI(w) and p() = p N I(k).

Let L(u) be the centralizer of H, in G. We put K (1) = K N L(p). Then K (u) is a maximal
compact subgroup of L(u). Furthermore, since H, € bc, B is a Cartan subgroup of K ()

(resp. L()).

DEFINITION 5.1. Let u € I'x and K (u) the centralizer of H, in K. For the root
system Xk, of the pair (8(t)c, be) we put Pk () = Pk N k).

DEFINITION 5.2. Anelement u € Ik is admissible if p has the following properties.
For Sp(n, R)andSO (2m, 2n + 1), (u, a) > 2 for all short roots & € Pk \ Pk (u)-

For the the type of G2, 2(u, oz)|oz|’2 > 3 for all shortroots o € P\ Pk (u)-

If G satisfies that all noncompact roots have the same length, then u is always admissible.

REMARK. The inner type noncompact real simple Lie groups are classified by
Sp(n,R), SO(2m,2n + 1), the type G2 and the groups which satisfy all noncompact roots
have the same length (cf. Table II, p. 354 in [2]). When G is of the type G2 then Px has
exactly one simple short (resp. long) root.

DEFINITION 5.3. A noncompact root w in X' is Pk )-highest if w + « ¢ X for all
(VS PK(u)o

Let w be a noncompact root and m a nonnegative integer. We define five sets A(w),
A+ (@), Ay (@) and Ay (w)* by

Alw)={a e Pk :wo+a € X},

Ai(w) ={a € Px : (o, w) > 0},
5.2) 5
Ap(w) = {a € A(w) : 2(w, @)|a| ™" =m},

Ap()* ={a e Ap(w) :0—a € X}.

We have the following lemma (see Lemma 6.1 in [3]).

LEMMA 5.4. Let G be an inner type noncompact real simple Lie group and w a non-
compact root. Then we have the followings.

(1) Alw) = A_(0) UAp(w) UA(0), Ao(w) = Ao(w)* and Ai(w) = Ai(w)*.

2) If Ao(w) # ¢, then G iseither Sp(n,R) or SO2m,2n+1), and A(w) =

Ap(@)*UA_i().

B3) IfA_1(w)*UA(w)* # ¢, then G is of the type G».
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Let u € I'y and w € X,. Assume that Py, (pc ® V) # {0}. Then there exists a
rational function f(n; w) in n € (+/—1b)* (cf. Theorem 5.5 in [3]) such that

(5.3) 1Pt (Xo @ () = f(h+ w; 0),

where A = i + pg. The function f(n; w) has the following product formula (cf. Theorem
6.5 in [3]).

THEOREM 5.5. Let w be a noncompact root in X. Then f(n + w; w) is given by the

followings.
(1) If Ap(w)* U A_j(w)* U A (w)* = ¢, then we have

fo+oo)= [] G+o,amo™.
aeA_(w)

2) If Ao(w)* # ¢, then G is either Sp(n,R) or SO(2m, 2n + 1) and
fo+oo)= [] O+ @™

aeA_1(w)

<[] emo—laem o+,

aeAg(w)*
3) IfA(@)*UA_{(w)* # ¢, then G is of the type G2 and
fo+wio)= [] O+o, 000

aeA_(w)

< ] em e —la®m o) + o)™
aeA(w)*

< ] 2« —lePem o+l
aeA_1(w)*

We also restate the following theorem (see Theorem 7.6 in [3]).

THEOREM 5.6. Let u© € I'x and w € X,. Assume that @ + w € I'x. Then the
K-module P, ,(pc ® V) # {0} if and only if f(A + w; w) > 0.

LEMMA 5.7. Let u € I'x and w € X,. Assume that u + w € 'y and Ag(w)* N
Pk () # {@}. Then there exists a simple root « € Py such that o € Ag(w)™ N P ).

PROOF. Let o be the lowest root in Ag(w)* N Pk (). Assume that « is not simple
in Px. Then we can choose B,y € Pk satisfying o = g + y. From (u,«a) = 0 and
u € Ik, it follows that (u, 8) = (u, y) = 0. Moreover, since (w, ®) = 0, we have either
(w, B) = (w,y) =0o0r (v, B)(w, y) < 0. Consider the first case. Since [ X, [Xg, X,/ 1] # 0,
Jacobi’s identity implies w + B € X or w + y € X. There is no loss of generality assuming
thatw+ B € X. Since B € Ap(w)* N Pk () and « > B, we have a contradiction to the choice
of «. For the latter case we can assume (w, 8) < 0. Therefore (u + w, B) < 0, B € Pk. This
is a contradiction to the assumption y + w € I'k. Thus « is simple in Pgk.
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LEMMA 5.8. Let n € I'k and w € X,. Assume that  is admissible. Then we have
that w + w € I'k and Py, (pc ® V) # {0} if and only if w is Pk )-highest.

PROOF. Bearing in mind w is Pk (,)-highest iff A(w) N Pk () = ¢, it is sufficient to
prove that © + w € I'x and f(A + w; w) > 0iff A(w) N Pk (u) = ¢ (see Theorem 5.6). First
we assume that A(w) N Pk ) = ¢. We note that (i, &) > 0 for o € A(w). Let us prove that
w4 e Ik and f(A+w; w) > 0. If Ag(w)*UA_1(w)*UA(w)* = ¢, then by (1) in Lemma
5.4 we have A(w) = A_(w). By (2.3) we have A(w) = A_j(w) U A_x(w) U A_3(w). Let
be an element in A_;(w). Since (i, &) > 0, we have 2(A + w, @)|a| 2 > 0. If o € A_»(w),
thena € Ag(w+a)*. By (2) in Lemma 5.4 we have G is one of Sp(n, R) and SO (2m, 2n+1).
Since « is a short root, the admissibility of u implies 2(A + w, |2 >0.Ifa € A_3(w),
then ¢ € A_j(w + @)*. By (3) in Lemma 5.4 G is of the type G2, and « is a short root. By
the admissibility of u we have also (A + w, @) > 0. Thus (A + w, «) > Oforall « € Pk, and
especially u+w € I'k. Moreover, by (1) in Theorem 5.5 we have f(A+w; w) > 0. Consider
the case Ag(w)* # ¢. By (2) in Lemma 5.4 we have A(w) = Ag(w)* U A_j(w). By using
the same arguments as above we can prove that u +® € 'k and (A + w, @) > Ofora € Pk.
Moreover, since (u, @) > 0 for @ € Ag(w)*, we have 2(A, oz)|oz|’2 > 1. Hence by (2) in
Theorem 5.5 we have f (A + w; w) > 0 for this case. Assume that A_j(w)* U Aj(w)* # ¢.
Then G is of the type G,. From Lemma 5.4 and (2.3) it follows that A(w) = A_3(w) U
A_1(w) U A(w)*. For @ € A_3(w) the admissibility of u implies (© + w, @) > 0. If
a € A_j(w), then by (i, ) > 0 we have (u + w, ) > 0. Letax € Aj(w)* U A_1(w)*.
Since « is a short root, the admissibility implies 2(ut, @)|«|> > 3. Therefore 4 + w € I'k
and 201, @)|a| ™2 > 1 (resp. (A, o)|a|™% > 1) fora € Aj(w)* (resp. a € A_1(w)*). By
(3) in Theorem 5.5 we have f(A 4+ w; w) > 0. Conversely assume that © + w € Ik and
f(A+ w; w) > 0. Since A(w) = A_(w), for the case Ag(w)* U A_1(w)* U Aj(w) = ¢, the
assumption u+w € I'k implies that A(w) N Pk () = ¢. Suppose that Ag(w)* # ¢. Then we
have (1, @) > 0 fora € A_j(w). Let o € Ag(w)*. We shall prove that (1, o) > 0. Suppose
that (u, @) = 0. Since Ag(w)* N Pg () # ¢, Lemma 5.7 implies that there is a simple root
B in Pk such that B € Ag(w)* N Pk (). We have 2(A, B)IBI 2 =1, B € Ao(w)*, and hence
by (2) in Theorem 5.5 we have f(\ + w, w) = 0. This is a contradiction to the assumption
f( 4+ w; w) > 0. Thus (i, o) > 0 fora € A(w), and hence A(w) N Pk () = ¢ for the case
Ao(w)* # ¢. Finally assume that « € A_j(w)* U Aj(w)*. We note that « is a simple short
rootin Pk. Since u +w € I'k and f(A + w; w) > 0, (3) in Theorem 5.5 implies (u, @) > 0.
Thus we can prove thatif 4 + o € I'g and f(A + w; w) > 0, then A(w) N Pk () = @.

THEOREM 5.9. Let u € I'x and V,, a simple K-module with the highest weight .
Consider the K-module M (j1) = P, (pc ® pc ® V), and assume that  is admissible. Then
the multiplicity m(u) of 'V, in M () is given by

m(p) = t{w € Xy : wis Pgy)-highest} .

PROOF. Letw € X,. Thenby Lemma 5.8 4 +w € I'g and Py, (pc ® V) # {0} if
and only if w is Pk ,)-highest. Consequently by Theorem 4.6 we have our assertion.
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6. Positive root system associated with a Px -dominant integral form

In this section we shall give a good positive root system associated with u € 'k (see
Lemma 6.5 below). An element H in »/—1b is said to be regular if «(H) # 0 for all « in X.
Anelement H in +/—1b is said to be singular unless H is regular. Let (+/—1b)’ denote the set
of all regular elements in +/—1b and P a positive root system satisfying Px C P. We define
a subset C in (v/—1b)’ by

C={He—=-1b:a(H)>0foralla € P}.

Each topological connected component of (v/—1b)’ is said to be a Weyl chamber. Especially
C is the positive Weyl chamber corresponding to P. Let W be the Weyl group of the pair
(gc, be). W acts simply transitively on the set of all Weyl chambers (cf. Theorem 4.3.18 in
[4]). Moreover we have

W —=1b) = U sC ( disjoint union) .

seW

Let s be an element in W. Then sC is the positive Weyl chamber corresponding to the positive
root system s P.

LEMMA 6.1. The number of positive root systems containing Pk is (W : Wg), where
(x @ %) is the group index and W is the Weyl group of (tc, be).

PROOF. We denote the set of all positive root systems containing Pg by {s; P : 1
i <p,s; € W,s1 = 1}. Itis enough to prove that

IA

4
(6.1) W = Wks; (disjoint union).

i=1

Let Ck be the positive Weyl chamber corresponding to Pg. First we shall prove W =
P Wksi. Let s be an element in W. Since sC C Urew, tCk, there is t in Wk such

that tCx N sC # ¢. We can choose H € C satisfying t~'sH e Ck. Since a(t~'sH) > 0
forall @ € Px, we have Px C t~'sP. Welett~ls = s; fori, 1 <i < p. Thens € Wgs;,
and hence the identity in (6.1) follows. Next we shall prove that if Wgs; N Wgs; # ¢, then
i = j. Thereist € Wk such that ts; = s;. If t # 1, then we have ta < O fora € Pk. Since
a € 5; P, we have o = 5; 8 for B € P. This implies that ts; 8 € s; P N (—Pg). Since s; P is a
positive root system and Px C s; P, we have a contradiction. Thus# = l and i = j.

LEMMA 6.2. Assume that the pair (G, K) is hermitian symmetric. Then for the posi-
tive root system Pk of Xk we can choose a positive root system P’ satisfying the following
properties:

Pk CP', pc=p"@®p and ad(tc)p® Cp*,
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where p is the subspace of pc generated by the set of all root vectors corresponding to the
noncompact roots in P’ (resp. —P").

PROOF. Let Hp be a nonzero element in the center of ¢c. We note that y (Hp) # 0
for all y € X, (cf. Corollary 7.3 in [2]). We can assume that Hy € ~/—16. Let by be
the orthogonal complement of Hp in b. Then b; is a Cartan subalgebra of the semisimple
Lie algebra &) = [€, £]. Let K; be the analytic subgroup of G corresponding to £;. Then
Pk, = Pk is a positive root system of ((£1)c, (b1)c). Let Ck, be the positive Weyl chamber
in /=16, corresponding to Pg,. We choose H € Cg,, and put H, = %H + Hy for all
positive integers n. Since lim,—, 4 ¥ (H,) = v (Hp), there exists a sufficiently large number
N such that y (Hy) and y (Hp) have the same signature for all y € X,. We put

P' ={a e X :a(Hy) > 0}.

Since Hy is regular, P’ is a positive root system of ¥ containing Pk . Then p* are c-invariant
andpc=pT Dp~.

LEMMA 6.3. Let i € I'y and () the centralizer of H, in g. Then the inner type
reductive Lie algebra (i) has the following decomposition by the ideals.

(w)y=hehelh,

where all 1;’s are inner and 0-invariant, v C ¥, and each simple ideal of || (resp. p) is
noncompact nonhermitian (resp. hermitian).

PROOF. Let [(n) = @fzo g; be the decompostion by ideals of [(t), where g is the
center of [(u) and the other qs are all simple. Since qo C b, it is enough to prove that g;
(1 <i < p)is an inner type f-invariant simple Lie algebra. Let p; be the projection of [(u)
to q;. Then we have [p;(b), p;(b)] = {0} for i, j,i # j. This implies that {0} = [b, b] =

?zl[pi(b), pi(b)], and hence p;(b) is an abelian subalgebra of g;. Since [b, p; (b)] = {0}
and b is a maximal abelian subalgebra of [(1), we have p;(b) C b and p;(b) is maximal
abelian in q;. Thus g; is an inner type simple Lie algebra. Moreover since p; (b) C q;N0(q;) C
(), we have q; = 0(q;).

DEFINITION 6.4. Let P be a positive root system of X containing Pgx. We put p™ =
Ducs,np 9o and p~ = P,cx, np 9-o- Let q be a simple K (u)-submodule of pc. Then q
is said to be the first (resp. the second) kind with respect to P if 7(q) = q (resp. q C p*+ or
qCpo).

LEMMA 6.5. Let u € I'k. Then we can choose a positive root system P* of X satis-

fying the following properties: Px C P*, and each K (i)-simple submodule q of pc is either
the first kind or the second kind with respect to P*.

PROOF. Consider the decomposition of [(11) as in Lemma 6.3. Let X; (0 <i < 2) be
the root system of the pair ((l;)c, ([; N b)c). Since each ¢ € X; can be extended to b, we

have ¥; C Y. Furthermore since [; is f-invariant, we have Py ;) = U,'Zzo(PK(u) N X;) and
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Pg ) N X is a positive root system of ((I; N €)¢, (I; N b)c). We put Py = Pg () N Xp. For
the algebra [; we choose a positive root system P; of X satisfying Pg ;) N X1 C Py. For the
hermitian case [, we choose a positive root system P, of X satisfying Px(,) N X2 C P as
in Lemma 6.2. We now put

2
6.2 P =J P
i=0

Then P (1) is a positive root system of (I(i)c, bc), and Pg () C P(1). Let us now choose a
positive root system P* of X' as follows. Let [, = [I(u), [(1)] be the drived algebra of [(w).
We put b, = bN [,. Then by is a Cartan subalgebra of the real semisimple Lie algebra [,.. Let
Cx(11) be the positive Weyl chamber of /—1b, corresponding to P(11). We choose an ele-
ment Hy in C, () and put H,, = %HO -+ H,, for all positive integers n. Then for a sufficiently
large number N, o(H,,) and o(Hy) have the same signature for all « € X\ (P () U—P(u)).
‘We now put

(6.3) P*={a e X :a(Hy) > 0}.

Immediately we have P(u) C P*. Moreover by the choice of Hy we have a(Hy) > 0
for « € Pg\Pgy). This implies that Px C P*. Finally we shall prove that each simple
K (n)-submodule g of pc is the first kind or the second kind with respect to P*. Let [(1n) =
&(u) @ p(w) be the Cartan decomposition of [(i) as in (5.1) and ¢ the orthogonal complement
of p(w) in p. Then v is K (u)-invariant and pc = p(u)c @ te. Since q is a simple K (u)-
module, we have

(6.4) qCp(w)c or gCrc.

In the first case in (6.4), we have (1) g C ([1)c or (2) g C (I2)¢. Since each simple ideal of [}
is nonhermitian, q is the first kind for the case (1). For the case (2) the choice of the positive
root system P implies that g is the second kind. Let us consider the latter case in (6.4). Let
X, be the K (u)-highest weight vector in q. Since w ¢ P(u), we have that w(H,) # 0.
Since each weight (noncompact root) § of q is of the form § = w — ZaePK(M) Mo, My 18
an integer, we have 6(H,) = w(Hy). This implies that §(Hy) and w(Hy) have the same
signature. Hence ¢ is the second kind for this case. Thus each K (u)-simple submodule ¢ of

pc is the first kind or the second kind.

COROLLARY 6.6. Let P(u) be the positive root system of X (I(i)c, be) as in (6.2)
and p(u) = p N (). Then each simple K (w)-submodule of p(u)c is the first kind or the
second kind with respect to P (). Moreover each simple root in P (i) is also simple in P*.

PROOFE. It is sufficient to prove that if « is simple in P(u), then « is simple in P*.
Suppose that « is not simple in P*. Then there exist 8 and y in P* such that = S8 + y.
Therefore 0 = a(H,) = B(H,) + y(H,). By the choice of P*in (6.3) we have 8(H,) =0
and y(H,) = 0, and hence « = B + v, B, ¥ € Pk(y). This is a contradiction to « is simple
in Pk ).
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7. Standard triple of the positive root systems

Our purpose of this section is to prove Theorem 7.5.

LEMMA 7.1. Let P be a positive root system of X containing Px and ¥ the simple
root system of P. For a subset ® of ¥ we denote by P(®) the set of all roots in P generated
by the set ® over the ring of integers. Then there exists a reductive subalgebra [(®) of g
containing b such that P(®) is a positive root system of the pair (I(®)c, bc).

PROOF. Let C be the positive Weyl chamber of 4/—1b corresponding to P. We put

(7.1) CE)={Hecl(C):a(H)=0forain ® and a(H) > 0 for & in ¥\O},

where cl(C) is the topological closure of C in /—1b. It is sufficient to prove this lemma for
the case P(®) # P. Since ® # ¥, we can choose H € C(®)\{0}. The centralizer [(H)
of H in g is reductive, and contains b. Let X'z be the root system of ([(H)c, bc). Then we
have P(®) = X'y N P. Hence P(®) is a positive root system of the pair ([(®)c, bc), where
(®) =I(H).

LEMMA 7.2. Let ® be a subset of ¥, and define C(®) by (7.1). Let H be an ele-
ment in C(®) and K (O) the centralizer of H in K. Then the group K(®) is determined
independently by the choice of H in C(®).

PROOF. Let K (©)° be the analytic subgroup of G corresponding to [(©)NE. In view of
the proof of Lemma 7.1 K (@) is uniquely determined by ©. Let k be an element in K (©).
Then there exists ko in K (0)° such that Ad (k) = Ad (ko). We putz = k~'k¢. Since z belongs
to the center Z of K, we have K(®) C ZK(©)Y. On the other hand, since K is connected,
B is a maximal abelian subgroup of K (cf. Corollary 2.7 in [2]). This implies that Z C B.
Since B C K(®), we have K(®) = ZK(©)Y. Thus K (©) is determined independently by
the choice of H.

DEFINITION 7.3. Let P be a positive root system of X' containing Pg . For a subset ®
in the simple root system ¥ of P, we consider the positive root system P(®) as in Lemma
7.1. Then the triple (Pg, P(®), P) is standard if each simple K (®)-submodule of pc is
either the first kind or the second kind with respect to P.

DEFINITION 7.4. Let (Px, P(®), P) be a standard triple. A root y in X, is said to be
the first (resp. the second) kind if the simple K (®)-module q,, generated by X, is the first
(resp. the second) kind.

REMARK. Let P be a positive root system containing Px. For ® = ¢, we have
P(®) = ¢ and K(®) = B. Moreover, (Pk, ¢, P) is standard, and C(®) is the positive
Weyl chamber.

THEOREM 7.5. For u € Ik, there exists a standard triple (Px, P(®), P) such that
H,, € C(®). Moreover we have K(®) = K ().
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PROOF. We first assume that H,, is regular. Then we have £(;1) = b. In this case we
put P = {o € ¥ : a(H,) > 0}. Then (Pg, ¢, P) is standard, H, € C(¢), K(®) = K(u)
and [(®) = b. Let us now assume that H,, is singular. Let () be the centralizer of H, in g.
We choose the positive root systems P* and P(u) the same as in Lemma 6.5 and Corollary
6.6 respectively. Let ¥* be the simple root system of P*. By Corollary 6.6 the simple root
system ® of P(u) is a subset of ¥*. We put P = P*. Since P(®) = P(u), the triple
(Pg, P(®), P) is standard, H, € C(®) and K(®) = K (u).

8. Principal weight space PW (u)

In this section we shall fix a standard triple (Pg, P(®), P), and consider the convex cone
C(®) corresponding to this triple. We now put C(©)* = {n € (+/=1b)* : H, € C(O)}. Let
w e C(®)* NIk and V), a unitary simple K -module with highest weight ;1. We shall fix the
highest weight vector v(i) normalized as [v(n)| = 1.

DEFINITION 8.1. Let P, be the set of all noncompact roots in P. We define a projec-
tion operator Py on the K-module pc ® V, by P = Zwepmwrwen( Puio.

DEFINITION 8.2. Let W(u) be the weight subspace of M (w) as in Lemma 3.1. We
define a subspace PW (i) of W(u) by

PW(u) = [{Pu(X—y @ Pr(Xy @v(pn)) — Xy @ Pr(X—, Qu(w))) : v € Pu}].
LEMMA 8.3. Let N(u) be the K -submodule of M (i) generated by the set
{(PAX®PL(YQ®V)—Y®Pr(X®v)): X,Y €pc,veV,}.

Then we have N(u) N W(w) = PW(w). Especially dim PW () is the multiplicity of V,, in
N(w).

PROOF. It is enough to prove that N(u) N W(w) C PW(u). Let Z be an element in
N(u) N W(wr). We can assume that

Z =P, (X, ® P (Xs ® O()v()) — X5 ® P+ (X, ® Q(1)v(w))),
where y,6 € X, [ € I1,y + 6 = (I). By Lemma 3.5 we have

Z= Z(—l)”{PM(Q(I//(J))Xy ® P (Q(WU\I))Xs @ v(w)))

J<I
— Pu(QW(I)Xs @ PL(Q(W(I\I) Xy ® v(1)))}.
Since (I\J) < I and I\(/\J) = J, we have
Z= (—l)ﬁ{ Z Pu(QW(I)Xy @ PL(QW(I\J)Xs @ v()))

J<I

- Z Pu(QWUN\I)Xs @ PL(QW () Xy ® v(u)))} .

J<I
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Sincey +6 = (J) + (I\J), we have Z € PW ().

LEMMA 8.4. Let u be an element in C(®)* N I'x and V,, the simple K -module with
highest weight . Suppose that U(€(®)c)X, > Xs for two noncompact roots y,§ in X.
Then, for each noncompact root w satisfying u + w € I'k, we have

1Pt (Xy @ v = | Puto(Xs @ v(0)?.

PROOF.  We first prove that X,v(pt) = 0 for all @ € Yk (). Since v(u) is the highest
weight vector of V,, it is sufficient to prove that X _4v(un) = 0 for all @ € Pg). Since
ad (X)X _qv(n) = a(H)v(n) = 0, we have X, X_,v(p) = 0. By the choice of Xy in
(2.1), we have 0 = (XoX_qv(p), v()) = |X_qv(w)|?. This implies that X_yv(n) = 0.
Let us now prove this lemma. By the asummption for y and §, there exist a nonzero complex
number ¢ and a finite number of roots a1, a2, - - -, &g € Yk (o) such that

ad(Xe Xoy -+ Xay)) Xy = cXs.
Then we have
€| Putor(Xs @ v()I* = (Putw(@d(Xe, X, - - “Xay) Xy @ v(W), Puto(Xs @ v(n)))
= (Xo Putow(@d(Xe, -+ Xo, ) Xy @ v())s Puto(Xs ® v()))
— (Puto(ad(Xay - Xay) Xy ® Xay (1)), Puto(Xs @ v(w))),
= (Puto(@d(Xa, -+ Xa ) Xy @ (), Putow(@d(X—q))Xs ® v(1)))

= (Pu(Xy ® v(1), Pu(ad(X—q, -+ X—a)) X5 ® v(1)))
= | Pyt (X, @ v(w)|?,

where ¢ = ¢(ad(X—q, - - X—a;)Xs, X—y). Since the Killing form ¢ is 7 invariant, (2.6)
implies that

= (—l)qu(ad(Xaq ce Xal)ng, Xy) = ¢p(X_s, ad(quXaz e 'Xaq)Xy) =cC.

Thus we have | P (Xy ® v(i)] = | Puso(Xs ® v()].

THEOREM 8.5. Let (Pg, P(®), P) be a standard triple and u € C(®)*NT'g. Assume
that  is admissible. Then we have

PW(u) =[{Z(y) : vy is a Pk )-highest root in P, and of the second kind }],
where Z(y) = Py (X—y @ P1(X, @ v(n)) — Xy @ PL(X—), @ v(w))).

PROOF. Let y be a noncompact root in X'. By using Corollary 4.7 we have

B Z = Y e o)(|PuroXy @ V() = |Putn(X—y @ v(i))H)vw (1)
€PNy )
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By Lemma 8.4 if two vectors X,, and X5 belong to the same simple K (®)-submodule in pc,
then we have

(8.2) Z(y) = Z(9).

Especially if y is of the first kind, then we have
(8.3) Z(y)=0.

Hence by (8.1), (8.2) and (8.3) we have our assertion of this theorem.
DEFINITION 8.6. Let (Pg, P(®), P) be a standard triple and u € C(®)* N I'k. We
define ||@ by

2w, @)
(8.4) |#le = min al? ta € Pk\Pko) | -

We note thatif |u|e > 3, then p is admissible. Hence by Lemma 5.8 we have P, 1, (pc®
V) # {0} for u satisfying |u|e > 3 and a Pk (g)-highest root w € P,.

LEMMA 8.7. Let w be a Pk p)-highest noncompact root in P and y a noncompact
root. Then there exists a positive integer N (> 3) such that

1Prro(Xy @ v())? < [Pyt (X @ v()]?
forall p € C(®©)* N Ik satisfying |ile > N.

PROOF. Let q,, be the simple K (®)-module generated by X,,. Suppose that X, € q,,.
By Lemma 8.4 we have the inequality in this lemma for all © € C(®)* N Ik satisfying
|ule > 3. Let us consider the case X, ¢ q,. By Lemma 4.3 we have

2{er, y)I?
85  Puro(Xy @u)IF = ) TR |2|Pu+w(xy+a®v(u)>|2.
a€Pg y
By (2.4) we have
(8.6) 2, ¥)| < 3laf?.

By Lemma 3.8 in [3] if P40 (Xy ® v(1t)) # 0, then there exists I = (a1, o2, -+, g) € IT
such that @ — y = (I). Moreover, since X, ¢ qu, we have a, ¢ Pg @) for a root «p in
{ar, az, - - -, ag}. This implies that

q
Mt ol =y =20 a) +lof — |y

i=1

(8.7) 5 5
= 2(u, ap) + |of” = |y

2 2 2
> [ulolep|” + 0" = |y[7.
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Hence by (8.5), (8.6) and (8.7) there exists a positive integer N1 such that

|Puto(X, @ v()|* < max | Pyt (Xy o ® v()|?
K

forall u € C(®)* N Ik satisfying ||e@ > Ni. By using this argument successively we can
prove this lemma.

COROLLARY 8.8. Letw,y € X,. Suppose that w and y are Pk g)-highest. Then we
have

im  [Puto(Xy @ v()> =80y
[le—>—+00

where 8, is Kronecker’s delta.

PROOF. Assume that X, ¢ q,. By Lemma 8.7 and (8.5), there exists a number N’
such that

2/, y)I?
|h+ o = |1+

|Puto(Xy @ () < D

a€Pg

Sl Prro (X0 ® v()l?

forall u € C(®)* N Ik satisfying || > N’. This inequality and (8.7) imply

lim  [Puiw(Xy @ v()> =0.

|l =00

Consider the case y = w. We can assume that [|g of u € C(®)* N Ik is sufficiently large.

Then u +w € I'k and Py, (pc ® V) # {0}. Since | Py (Xo ® v(u))l2 =f(A4+ow:w),
Theorem 5.5 implies that

lim | Puro(Xeo ® v(u)* = 1.

[ulo—>+oo

THEOREM 8.9. Let (Pk, P(®), P) be a standard triple, and C(®)* = {n €
(v —=1b)* : H, € C(®)}. Then there exists a sufficiently large number N such that

dim PW(u) = t{w € P, : wis Pge)-highest and of the second kind)}
forall u € C(O®)* N Ik satisfying |[;t|le > N.
PROOF. Let w and y be two Pk (@)-highest roots in P,. We put
oy (W) = ¢(t; ©) (| Puro(Xy @ V) = | Puso(X—y @ v(w)P) .
By Corollary 4.5 we have
Pu(X—y ® P1(Xy @v(w) — Xy ® Pr(X—y @ v(w)))
(8.8) = D oy (Wve(n).

wEPnﬂEW(M)
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Since degm, = ]_[aePK (A, @) (px, )", we have lim| | g — 400 c(; @) = d(w), where d(w)
is a positive constant. Hence by Corollary 8.8 we have

lim a,,(w) =dw)dy, forw,y e Py,
[ulo—>+o0

where
Po = {y € P, : y is Pg(e)-highest and of the second kind} .

In view of Theorem 8.5 and (8.8) we can prove there exists a number N such that
dim PW () = g Pe forall u € C(®)* N Ik satisfying |[ule > N.
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