On Two Step Tensor Modules of the Maximal Compact Subgroups of Inner Type Noncompact Real Simple Lie Groups

Hisaichi MIDORIKAWA

Tsuda College

1. Introduction

Let ${\bf C}$ (resp. ${\bf R}$) be the complex (resp. real) number field. We consider a connected simply connected complex simple Lie group $G_{\bf C}$ and its connected noncompact simple real form G. In this article we shall always fix a maximal compact subgroup K of G, and assume that rank $G={\rm rank}\ K$. This assumption is equivalent to G is inner. Let ${\mathfrak g}$ and ${\mathfrak k}$ be respectively the Lie algebras of G and K. Let ${\mathfrak h}$ be the Cartan involution which stabilizes K. Then ${\mathfrak g}$ is decompsed by ${\mathfrak g}={\mathfrak k}\oplus{\mathfrak p}$, where ${\mathfrak p}$ is the eigenspace of ${\mathfrak h}$ in ${\mathfrak g}$ with the eigenvalue -1. Let ${\mathfrak g}_{\bf C}$ be the Lie algebra of $G_{\bf C}$. We shall denote, for each subspace ${\mathfrak v}$ of ${\mathfrak g}$, by ${\mathfrak v}_{\bf C}$ the complexification of ${\mathfrak v}$ in ${\mathfrak g}_{\bf C}$. ${\mathfrak p}_{\bf C}$ is a K-module by the adjoint action of K. Let ${\mathfrak h}$ be a maximal abelian subgroup of K. Then ${\mathfrak h}$ is also a maximal abelian subgroup (Cartan subgroup) of ${\mathfrak h}$. Let ${\mathfrak h}$ be the Lie algebra of ${\mathfrak h}$. Then the root system ${\mathfrak L}$ of the pair $({\mathfrak g}_{\bf C},{\mathfrak h}_{\bf C})$ is decomposed by ${\mathfrak L}={\mathfrak L}_K\cup{\mathfrak L}_n$, where ${\mathfrak L}_K$ (resp. ${\mathfrak L}_n$) is the set of all compact (resp. noncompact) roots in ${\mathfrak L}$. Then ${\mathfrak L}_K$ is also the root system of $({\mathfrak k}_{\bf C},{\mathfrak h}_{\bf C})$. We choose a positive root system ${\mathfrak L}$, and always fix it.

Let us state our purpose of this article. Let μ be a P_K -dominant integral form on $\mathfrak{b}_{\mathbb{C}}$ and (π_{μ}, V_{μ}) a simple K-module with highest weight μ . We consider a simple Harish-Chandra (\mathfrak{g}, K) -module $U(\mathfrak{g}_{\mathbb{C}})V_{\mu}$ which contains (π_{μ}, V_{μ}) with multiplicity one, where $U(\mathfrak{g}_{\mathbb{C}})$ is the universal enveloping algebra of $\mathfrak{g}_{\mathbb{C}}$. Let $\mathfrak{p}_{\mathbb{C}} \otimes \mathfrak{p}_{\mathbb{C}} \otimes V_{\mu}$ be the tensor K-module. Canonically this space has a unitary K-module structure. We define a K-linear homomorphism ϖ of $\mathfrak{p}_{\mathbb{C}} \otimes \mathfrak{p}_{\mathbb{C}} \otimes V_{\mu}$ to $U(\mathfrak{g}_{\mathbb{C}})V_{\mu}$ by $\varpi(X \otimes Y \otimes v) = XYv$ for $X, Y \in \mathfrak{p}_{\mathbb{C}}, v \in V_{\mu}$. Let V be a finite K-module. We define a projection operator P_{μ} on V by

(1.1)
$$P_{\mu}(v) = \deg \pi_{\mu} \int_{K} kv \, \overline{trace} \pi_{\mu}(k) dk \quad \text{for } v \in V,$$

where $\deg \pi_{\mu} = \dim V_{\mu}$ and dk is the Haar measure on K normalized as $\int_{K} dk = 1$. Since $P_{\mu}\varpi = \varpi P_{\mu}$, ϖ induces a K-module linear homomorphism of $M(\mu) = P_{\mu}(\mathfrak{p}_{\mathbb{C}} \otimes \mathfrak{p}_{\mathbb{C}} \otimes V_{\mu})$ to $V_{\mu} \subset U(\mathfrak{g}_{\mathbb{C}})V_{\mu}$. Let $m = m(\mu)$ be the multiplicity of V_{μ} in $M(\mu)$. $M(\mu)$ is decomposed by $M(\mu) = \bigoplus_{j=1}^{m} U(\mathfrak{k}_{\mathbb{C}})v_{j}$, where v_{j} is the highest weight vector of the simple K-module $U(\mathfrak{k}_{\mathbb{C}})v_{j}$ and $U(\mathfrak{k}_{\mathbb{C}})$ is the universal enveloping algebra of $\mathfrak{k}_{\mathbb{C}}$. Let $v(\mu)$ be the highest weight

vector of V_{μ} . Since ϖ is a K-module linear homomorphism of $M(\mu)$ to V_{μ} , there exsists a complex number x_i such that $\varpi(v_i) = x_i v(\mu)$, $1 \le i \le m$. We choose the root vectors $X_{\alpha}, \alpha \in \Sigma$ normalized as $\phi(X_{\alpha}, X_{-\alpha}) = 1$, where ϕ is the Killing form on $\mathfrak{g}_{\mathbb{C}}$. Then we have $H_{\alpha} = ad(X_{\alpha})X_{-\alpha} \in \mathfrak{b}_{\mathbb{C}}$. Let X_{ω} be a root vector corresponding to a noncompact root ω . We have $(H - \mu(H)1)P_{\mu}(X_{\omega} \otimes X_{-\omega} \otimes v(\mu)) = 0$, $H \in \mathfrak{b}$, where 1 is the identity in $U(\mathfrak{k}_{\mathbb{C}})$. Since μ is the highest weight of V_{μ} , there exist the complex constants $c_{\omega,j}$ such that

$$P_{\mu}(X_{\omega} \otimes X_{-\omega} \otimes v(\mu)) - P_{\mu}(X_{-\omega} \otimes X_{\omega} \otimes v(\mu)) = \sum_{i=1}^{m} c_{\omega,j} v_{j}.$$

Let P be a positive root system of Σ containing P_K and P_n the set all noncompact roots in P. We put $P_n = \{\omega_1, \omega_2, \cdots, \omega_N\}$, $\mathbf{x_0} = {}^t(x_1, x_2, \cdots, x_m)$, $\mathbf{b} = {}^t(\mu(H_{\omega_1}), \mu(H_{\omega_2}), \cdots, \mu(H_{\omega_N}))$ and $A = (c_{\omega_i,j})$. Then $\mathbf{x_0}$ is a solution of the system of the linear equations;

$$A\mathbf{x} = \mathbf{b}.$$

We note that all entries in A are given by the Clebsch-Gordan coefficients of the tensor K-module $\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu}$ (see Corollary 4.7). This indicates that the action of X_{ω} on $V_{\mu} \subset U(\mathfrak{g}_{\mathbb{C}})V_{\mu}$ is controlled by the Clebsch-Gordan coefficients of $\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu}$ (cf. also [1]). Our motivation is to study the equation (1.2).

Let us state the first result after the following preparations. Let H_{μ} be the element in $\mathfrak{b}_{\mathbb{C}}$ satisfying $\phi(H_{\mu}, H) = \mu(H)$ for all $H \in \mathfrak{b}_{\mathbb{C}}$. Then the centralizer $K(\mu)$ of H_{μ} in K is reductive, and contains B. Let $\Sigma_{K(\mu)}$ be the root system of the pair $(\mathfrak{k}(\mu)_{\mathbb{C}}, \mathfrak{b}_{\mathbb{C}})$, where $\mathfrak{k}(\mu)$ is the Lie algebra of $K(\mu)$. We put $P_{K(\mu)} = P_K \cap \Sigma_{K(\mu)}$. $P_{K(\mu)}$ is a positive root system of $\Sigma_{K(\mu)}$. A noncompact root $\omega \in \Sigma_n$ is said to be $P_{K(\mu)}$ -highest if $\omega + \alpha \notin \Sigma$ for all α in $P_{K(\mu)}$. When ω in Σ_n is $P_{K(\mu)}$ -highest, ω is actually the highest weight of a simple $K(\mu)$ -submodule of $\mathfrak{p}_{\mathbb{C}}$. The set of all P_K -dominant integral form on $\mathfrak{b}_{\mathbb{C}}$ will be denoted by Γ_K . In §5 we shall prove the following theorem.

THEOREM I. Let $\mu \in \Gamma_K$ and assume that μ is admissible (see Definition 5.2). Then the multiplicity $m(\mu)$ of V_{μ} in the K-module $M(\mu)$ is given by

$$m(\mu) = \sharp \{ \omega \in \Sigma_n : \omega \text{ is } P_{K(\mu)}\text{-highest} \},$$

where $\sharp S$ is the number of the elements in a set S.

We shall state our second result. Let P be a positive root system containing P_K . For a subset Θ in the simple root system Ψ of P, we denote by $P(\Theta)$ the set of all positive roots in P generated by Θ over the ring of integers. The dual space of the real vector space $\sqrt{-1}\mathfrak{b}$ will be denoted by $(\sqrt{-1}\mathfrak{b})^*$. Let C^* be the positive Weyl chamber of $(\sqrt{-1}\mathfrak{b})^*$ corresponding to P. We define a subset $C(\Theta)^*$ in the topological closure $cl(C^*)$ of C^* by

$$C(\Theta)^* = \{ \eta \in cl(C^*) : (\alpha, \eta) = 0 \text{ for } \alpha \in P(\Theta) \text{ and } (\alpha, \eta) > 0 \text{ for } \alpha \in P \setminus P(\Theta) \},$$

where (α, η) is the inner product on $(\sqrt{-1}\mathfrak{b})^*$ induced from the Killing form ϕ on $\mathfrak{g}_{\mathbb{C}}$. Let η be an element in $C(\Theta)^*$ and H_{η} the element in $\sqrt{-1}\mathfrak{b}$ determined by $\phi(H_{\eta}, H) = \eta(H), H \in$

 $\sqrt{-1}\mathfrak{b}$. Consider the centralizer $K(\eta)$ of H_{η} in K. Then $K(\eta)$ contains B, and is uniquely determined by $C(\Theta)^*$. We put $K(\Theta) = K(\eta)$. Let \mathfrak{p}^+ be the subspace of $\mathfrak{p}_{\mathbb{C}}$ generated by the set of all root vectors corresponding to $P \cap \Sigma_n$. Let τ be the conjugation of $\mathfrak{g}_{\mathbb{C}}$ with respect to the compact real form $\mathfrak{k} \oplus \sqrt{-1}\mathfrak{p}$. A simple $K(\Theta)$ -submodule \mathfrak{q} of $\mathfrak{p}_{\mathbb{C}}$ is said to be the first (resp. the second) kind if $\tau(\mathfrak{q}) = \mathfrak{q}$ (resp. $\mathfrak{q} \subset \mathfrak{p}^+$ or $\tau(\mathfrak{q}) \subset \mathfrak{p}^+$). A noncompact root ω in Σ_n is said to be the first (resp. the second) kind if ω is a weight of a simple $K(\Theta)$ -submodule of $\mathfrak{p}_{\mathbb{C}}$ of the first (resp. the second) kind. The triple $(P_K, P(\Theta), P)$ is standard if each simple $K(\Theta)$ -submodule \mathfrak{q} of $\mathfrak{p}_{\mathbb{C}}$ is either the first kind or the second kind. The following theorem will be proved in §7.

THEOREM II. Let $\mu \in \Gamma_K$. Then there exists a standard triple $(P_K, P(\Theta), P)$ such that $\mu \in C(\Theta)^*$. Moreover, we have $K(\Theta) = K(\mu)$.

Let $(P_K, P(\Theta), P)$ be a standard triple. We consider an element μ in $C(\Theta)^* \cap \Gamma_K$ and a noncompact root ω satisfying $\mu + \omega \in \Gamma_K$. We define a projection operator $P_{\mu+\omega}$ on $\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu}$ by the same as in (1.1). We put

$$P_{+} = \sum_{\omega \in \Sigma_{n} \cap P, \mu + \omega \in \Gamma_{K}} P_{\mu + \omega}.$$

Let us define a K-submodule $N(\mu)$ of $M(\mu)$ by $N(\mu)$ = the K-module generated by the set

$$N = \{ P_{\mu}(X \otimes P_{+}(Y \otimes v) - Y \otimes P_{+}(X \otimes v)) : X, Y \in \mathfrak{p}_{\mathbb{C}}, v \in V_{\mu} \}.$$

THEOREM III. Let $(P_K, P(\Theta), P)$ be a standard triple and $\mu \in C(\Theta)^* \cap \Gamma_K$. Suppose that μ is sufficiently $P_K \setminus P_{K(\Theta)}$ -regular. Then μ is admissible. Furthermore, we have

$$n(\mu) = \sharp \{ \omega \in P \cap \Sigma_n : \omega \text{ is } P_{K(\Theta)}\text{-highest and of the second kind} \},$$

where $n(\mu)$ is the multiplicity of V_{μ} in $N(\mu)$.

In §8 we shall prove this theorem by using the asymptotic behaviour of the Clebsch-Gordan coefficients of $\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu}$.

2. Preliminaries

Let Σ be the root system of the pair $(\mathfrak{g}_{\mathbb{C}}, \mathfrak{b}_{\mathbb{C}})$. We put, for $\alpha \in \Sigma$,

$$\mathfrak{g}_{\alpha} = \{X \in \mathfrak{g}_{\mathbb{C}} : ad(H)X = \alpha(H)X \text{ for all } H \in \mathfrak{b}_{\mathbb{C}}\}.$$

Then we have $\mathfrak{g}_{\mathbb{C}} = \mathfrak{b}_{\mathbb{C}} \oplus (\oplus_{\alpha \in \Sigma} \mathfrak{g}_{\alpha})$. Let $\mathfrak{g}_u = \mathfrak{k} \oplus \sqrt{-1}\mathfrak{p}$ be the compact real form of $\mathfrak{g}_{\mathbb{C}}$. We choose a canonical Weyl basis $X_{\alpha} \in \mathfrak{g}_{\alpha}$, $\alpha \in \Sigma$ satisfying the followings (cf. the proof of Theorem 6.3 in [2]):

$$(2.1) X_{\alpha} - X_{-\alpha}, \quad \sqrt{-1}(X_{\alpha} + X_{-\alpha}) \in \mathfrak{g}_u \quad \text{and} \quad \phi(X_{\alpha}, X_{-\alpha}) = 1,$$

where $\phi(X, Y) = trace(ad(X)ad(Y))$ is the Killing form on $\mathfrak{g}_{\mathbb{C}}$. We put $H_{\alpha} = ad(X_{\alpha})X_{-\alpha}$. Then we have $\phi(H_{\alpha}, H) = \alpha(H)$ for all H in $\mathfrak{b}_{\mathbb{C}}$. Let μ be a linear form on the real vector

space $\sqrt{-1}\mathfrak{b}$. Then there exists a unique H_{μ} in $\sqrt{-1}\mathfrak{b}$ such that $\phi(H_{\mu}, H) = \mu(H)$ for all H in $\sqrt{-1}\mathfrak{b}$. Let $(\sqrt{-1}\mathfrak{b})^*$ be the dual space of $\sqrt{-1}\mathfrak{b}$. We define a positive definite bilinear form (μ, λ) by $(\mu, \lambda) = \phi(H_{\mu}, H_{\lambda})$ for $\mu, \lambda \in (\sqrt{-1}\mathfrak{b})^*$. We put, for each pair of α and β in Σ , a complex number $<\alpha, \beta>$ by

(2.2)
$$\langle \alpha, \beta \rangle = \begin{cases} \phi(ad(X_{\alpha})X_{\beta}, X_{-\alpha-\beta}) & \text{if } \alpha + \beta \in \Sigma, \\ 0 & \text{otherwise.} \end{cases}$$

Then $\langle \alpha, \beta \rangle$ is a pure imaginary number. Let p and q be two nonnegative integers satisfying $j\alpha + \beta \in \Sigma$ iff $-q \le j \le p$. Then we have (cf. Lemma 4.3.8 and Corollary 4.3.12 in [4])

(2.3)
$$2(\beta, \alpha)|\alpha|^{-2} = q - p, \quad p + q \le 3.$$

Furthermore, we have (cf. Lemma 4.3.22 in [4])

(2.4)
$$|\langle \alpha, \beta \rangle|^2 = p(q+1) \frac{|\alpha|^2}{2}.$$

A root α in Σ is compact (resp. noncompact) if $X_{\alpha} \in \mathfrak{k}_{\mathbb{C}}$ (resp. $X_{\alpha} \in \mathfrak{p}_{\mathbb{C}}$). Since $\mathfrak{k}_{\mathbb{C}}$ and $\mathfrak{p}_{\mathbb{C}}$ are invariant under $ad(\mathfrak{b})$, Σ is given by the disjoint union of the set of all compact roots Σ_K and the set of all noncompact roots Σ_n . Σ_K is also the root system of the pair $(\mathfrak{k}_{\mathbb{C}}, \mathfrak{b}_{\mathbb{C}})$. Let σ (resp. τ) be the conjugation of $\mathfrak{g}_{\mathbb{C}}$ with respect to the real form \mathfrak{g} (resp. \mathfrak{g}_u). By our choice for the Weyl basis of $\mathfrak{g}_{\mathbb{C}}$ we have

(2.5)
$$\sigma(X_{\alpha}) = -X_{\alpha} \text{ for } \alpha \in \Sigma_K, \quad \sigma(X_{\alpha}) = X_{-\alpha} \text{ for } \alpha \in \Sigma_n,$$

(2.6)
$$\tau(X_{\alpha}) = -X_{-\alpha} \quad \text{for } \alpha \in \Sigma.$$

3. Two step tensor K-module

The adjoint action Ad(k) $(k \in K)$ on $\mathfrak{p}_{\mathbb{C}}$ will be denoted by kX for X in $\mathfrak{p}_{\mathbb{C}}$. We define a hermitian structure (X,Y) of $\mathfrak{p}_{\mathbb{C}}$ by $(X,Y)=-\phi(X,\tau(Y)), X,Y\in\mathfrak{p}_{\mathbb{C}}$. Thereby $\mathfrak{p}_{\mathbb{C}}$ is a unitary K-module. Fix $\mu\in \Gamma_K$, and consider a unitary simple K-module (π_μ,V_μ) with highest weight μ . For the simplicity of our notations we shall denote the action $\pi(k)$ $(k\in K)$ on V_μ by kv for $v\in V_\mu$. Let dk be the Haar measure on K normalized as $\int_K dk=1$. We define a character χ_μ of the K-module (π_μ,V_μ) by

(3.1)
$$\chi_{\mu}(k) = \deg \pi_{\mu} trace \pi_{\mu}(k) ,$$

where $k \in K$ and $\deg \pi_{\mu} = \dim V_{\mu}$. Then we have

(3.2)
$$\int_{\nu} \chi_{\mu}(k^{-1}k')\chi_{\mu}(k)dk = \chi_{\mu}(k').$$

Let V be a finite dimensional K-module. We define a projection operator P_{μ} on V by

(3.3)
$$P_{\mu}(v) = \int_{K} kv \overline{\chi_{\mu}(k)} dk \quad \text{for } v \in V,$$

where $\overline{\chi_{\mu}(k)}$ is the complex conjugate of $\chi_{\mu}(k)$. By (3.2) we have

$$(3.4) (P_{\mu})^2 = P_{\mu} .$$

Furthermore, we have

$$(3.5) kP_{\mu} = P_{\mu}k for all k \in K.$$

A unitary K-module structure on the two step tensor space $\mathfrak{p}_{\mathbb{C}} \otimes \mathfrak{p}_{\mathbb{C}} \otimes V_{\mu}$ is defined by

$$(3.6) k(X \otimes Y \otimes v) = (kX \otimes kY \otimes kv) for X, Y \in \mathfrak{p}_{\mathbb{C}}, v \in V_{\mu} and k \in K,$$

$$(3.7) (X \otimes Y \otimes v, X' \otimes Y' \otimes v') = (X, X')(Y, Y')(v, v')$$

for $X, Y, X', Y' \in \mathfrak{p}_{\mathbb{C}}$ and $v, v' \in V_{\mu}$. The K-module $M(\mu) = P_{\mu}(\mathfrak{p}_{\mathbb{C}} \otimes \mathfrak{p}_{\mathbb{C}} \otimes V_{\mu})$ is decomposed into a finite number of the simple modules which are K-isomorphic to V_{μ} . Therefore

$$(3.8) M(\mu) \cong m(\mu)V_{\mu},$$

where $m(\mu)$ is the multiplicity of V_{μ} in $M(\mu)$.

LEMMA 3.1. We put

$$W(\mu) = \{ Z \in M(\mu) : HZ = \mu(H)Z \text{ for all } H \in \mathfrak{b} \}.$$

Then we have $m(\mu) = \dim W(\mu)$.

PROOF. Let $M(\mu) = \bigoplus_{i=1}^{m(\mu)} V_i$ be the decomposition of $M(\mu)$ by the simple K-modules V_i . Then we have

$$W(\mu) = \bigoplus_{i=1}^{m(\mu)} W(\mu) \cap V_i.$$

Since V_i is a simple K-module, we have dim $W(\mu) \cap V_i = 1$ for all $i, 1 \le i \le m(\mu)$. This implies that dim $W(\mu) = m(\mu)$.

DEFINITION 3.2. Let p be a nonnegative integer and $\tilde{\phi}$ a symbol. We define Π_p by $\Pi_0 = \{\tilde{\phi}\}, \Pi_p = \{(\alpha_1, \alpha_2, \cdots, \alpha_p) : \alpha_i \in P_K\}$ for p > 0, and put $\Pi = \bigcup_{p=0}^{\infty} \Pi_p$. Then Π is a semigroup by the \star -operation with the identity $\tilde{\phi}$, where \star is defined by

$$I \star J = (\alpha_1, \dots, \alpha_p, \beta_1, \dots, \beta_q), \quad I = (\alpha_1, \dots, \alpha_p), \quad J = (\beta_1, \dots, \beta_q) \in \Pi.$$

DEFINITION 3.3. Let $U(\mathfrak{k}_{\mathbb{C}})$ be the universal enveloping algebra of $\mathfrak{k}_{\mathbb{C}}$. We define a semigroup homomorphism of Π to $U(\mathfrak{k}_{\mathbb{C}})$ by

$$Q(\tilde{\phi}) = 1$$
 and $Q(I) = X_{-\alpha_1} X_{-\alpha_2} \cdots X_{-\alpha_p}$ for $I = (\alpha_1, \alpha_2, \cdots, \alpha_p)$.

DEFINITION 3.4. Let $I = (\alpha_1, \alpha_2, \dots, \alpha_p) \in \Pi$ and $J \in \Pi$. When J is of the form $J = (\alpha_{i_1}, \alpha_{i_2}, \dots, \alpha_{i_q}), 1 \le i_1 < i_2 < \dots < i_q \le p$ or $J = \tilde{\phi}$ we denote by $J \le I$. We also

define $I \setminus J \in \Pi$ by

$$I \setminus J = (\alpha_{j_1}, \alpha_{j_2}, \cdots, \alpha_{j_{p-q}}),$$
 where $\{j_1, j_2, \cdots, j_{p-q}\} = \{1, 2, \cdots, p\} \setminus \{i_1, \cdots, i_q\}$ satisfying $j_1 < j_2 < \cdots < j_{p-q}$.

We note that $I \setminus (I \setminus J) = J$ and $I \setminus J \leq I$.

Let ψ be the mapping of Π defined by $\psi(I)=(\alpha_p,\alpha_{p-1},\cdots,\alpha_1),\ I=(\alpha_1,\alpha_2,\cdots,\alpha_p)$

 $\in \Pi$. Since ψ^2 is the identity on Π , ψ is a bijection. Let $J \in \Pi$ and $\alpha \in P_K$. Then we have

(3.9)
$$Q(\psi(J))X_{-\alpha} = Q(\psi(\alpha \star J)).$$

For $I = (\alpha_1, \alpha_2, \dots, \alpha_p)$, we put $\sharp I = p$ and $\langle I \rangle = \sum_{i=1}^p \alpha_i$.

LEMMA 3.5. Let $\gamma, \delta \in \Sigma_n$ and $I \in \Pi$. Assume that $\gamma + \delta = \langle I \rangle$. Then we have

$$P_{\mu}(X_{\gamma} \otimes X_{\delta} \otimes Q(I)v(\mu)) = \sum_{J \leq I, J \in \Pi} (-1)^{\sharp I} P_{\mu}(Q(\psi(J))X_{\gamma} \otimes Q(\psi(I \setminus J))X_{\delta} \otimes v(\mu)) \,,$$

where $v(\mu)$ is the highest weight vector of V_{μ} normalized as $|v(\mu)| = 1$.

Proof by an induction on $\sharp I$. When $\sharp I=0$, our assertion is obvious. Assume that the identity is true for all L in Π and $\xi,\eta\in \Sigma_n$ satisfying $\sharp L<\sharp I$ and $\xi+\eta=\langle L\rangle$. We have $\alpha\star L=I$ for $\alpha\in P_K$ and $L\in \Pi$. Bearing in mind $-\langle L\rangle+\gamma+\delta+\mu>\mu$ and μ is the highest weight of $M(\mu)$ we have $P_\mu(X_\gamma\otimes X_\delta\otimes Q(L)v(\mu))=0$. Since $Q(I)=X_{-\alpha}Q(L)$, we have

$$\begin{split} P_{\mu}(X_{\gamma} \otimes X_{\delta} \otimes Q(I)v(\mu)) &= P_{\mu}(X_{\gamma} \otimes X_{-\alpha}(X_{\delta} \otimes Q(L)v(\mu))) \\ &\quad - P_{\mu}(X_{\gamma} \otimes ad(X_{-\alpha})X_{\delta} \otimes Q(L)v(\mu)) \\ &= -P_{\mu}(ad(X_{-\alpha})X_{\gamma} \otimes X_{\delta} \otimes Q(L)v(\mu)) \\ &\quad - P_{\mu}(X_{\gamma} \otimes ad(X_{-\alpha})X_{\delta} \otimes Q(L)v(\mu)) \;. \end{split}$$

Applying the inductive hypothesis to $L \in \Pi$ and $\gamma, \delta - \alpha$ (resp. $\gamma - \alpha, \delta$) we have

$$P_{\mu}(X_{\nu} \otimes X_{\delta} \otimes Q(I)v(\mu))$$

$$(3.10) \qquad = (-1)^{\sharp I} \sum_{J \preccurlyeq L} \{ P_{\mu}(Q(\psi(\alpha \star J)) X_{\gamma} \otimes Q(\psi(L \backslash J)) X_{\delta} \otimes v(\mu)) \}$$

+
$$P_{\mu}(Q(\psi(J))X_{\nu} \otimes Q(\psi(\alpha \star (L \setminus J)))X_{\delta} \otimes v(\mu))$$
 .

Here we used (3.9). Since $\alpha \star (L \setminus J) = I \setminus J$, $L \setminus J = I \setminus \alpha \star J$ for $J \leq L$ and

$$\{J: J \preccurlyeq I, J \in \Pi\} = \{J: J \preccurlyeq L, J \in \Pi\} \cup \{\alpha \star J: J \preccurlyeq L, J \in \Pi\}\,,$$

(3.10) implies the identity of this lemma.

LEMMA 3.6. Let S be the set of all vectors $P_{\mu}(X_{-\gamma} \otimes X_{\gamma} \otimes v(\mu)), \gamma \in \Sigma_n$. Then we have $W(\mu) = [S]$, where [S] is the linear span of the set S.

PROOF. Since V_{μ} is a simple K-module, V_{μ} is generated by the set $\{Q(I)v(\mu): I \in \Pi\}$. By (3.5) we have $HP_{\mu} = P_{\mu}H$, $H \in \mathfrak{b}$. This implies that $W(\mu)$ is generated by the set

$$S' \equiv \{ P_{\mu}(X_{\gamma} \otimes X_{\delta} \otimes Q(I)v(\mu)) : \gamma, \delta \in \Sigma_n, I \in \Pi, \gamma + \delta = \langle I \rangle \}.$$

Let us prove that $S' \subset [S]$. Let $Z = P_{\mu}(X_{\gamma} \otimes X_{\delta} \otimes Q(I)v(\mu))$ be each element in S'. By Lemma 3.5 we have

$$\begin{split} Z &= (-1)^{\sharp I} \sum_{J \preccurlyeq I} P_{\mu}(Q(\psi(J)) X_{\gamma} \otimes Q(\psi(I \backslash J)) X_{\delta} \otimes v(\mu)) \\ &= (-1)^{\sharp I} \sum_{J \preccurlyeq I} c_{\gamma,J} c_{\delta,I \backslash J} P_{\mu}(X_{\gamma - \langle J \rangle} \otimes X_{\delta - \langle I \backslash J \rangle} \otimes v(\mu)) \,, \end{split}$$

where $c_{\gamma,J} = \phi(Q(\psi(J))X_{\gamma}, X_{-\gamma+\langle J\rangle})$. Since $\langle J \rangle + \langle I \backslash J \rangle = \langle I \rangle$ and $\gamma + \delta = \langle I \rangle$, we have $S' \subset [S]$. Moreover since $W(\mu) = [S'] \subset [S] \subset W(\mu)$, we have $W(\mu) = [S]$.

4. Weight subspace $W(\mu)$ of $M(\mu)$

First we restate the following three lemmas in [3].

LEMMA 4.1. Let (π_{μ}, V_{μ}) be a simple K-module with highest weight μ . Then we have

$$\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu} = \bigoplus_{\omega \in \Sigma_{n}, \mu + \omega \in \Gamma_{K}} P_{\mu + \omega}(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}),$$

where $P_{\mu+\omega}(\mathfrak{p}_{\mathbb{C}}\otimes V_{\mu})=\{0\}$ or is a simple K-module.

For a proof cf. Lemma 3.4 in [3].

The following two lemmas are also proved respectively by Corollary 3.5 and Lemma 3.6 in [3].

LEMMA 4.2. Let ω be a noncompact root in Σ . Assume that $\mu \in \Gamma_K$ and $P_{\mu+\omega}(\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu}) \neq \{0\}$. Then we have $|P_{\mu+\omega}(X_{\omega} \otimes v(\mu))| \neq 0$, where $v(\mu)$ is the highest weight vector in V_{μ} .

LEMMA 4.3. Let $\mu \in \Gamma_K$, $\omega \in \Sigma_n$, and assume that $\mu + \omega \in \Gamma_K$, $P_{\mu+\omega}(\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu}) \neq \{0\}$. Then, for each $\gamma \in \Sigma_n$, we have

$$(|\lambda+\omega|^2-|\lambda+\gamma|^2)|P_{\mu+\omega}(X_{\gamma}\otimes v(\mu))|^2=\sum_{\alpha\in P_K}2|\langle\alpha,\gamma\rangle|^2|P_{\mu+\omega}(X_{\gamma+\alpha}\otimes v(\mu))|^2\,,$$

where $\lambda = \mu + \rho_K$ and ρ_K is one half the sum of all roots in P_K .

LEMMA 4.4. Let $\mu \in \Gamma_K$ and $\gamma, \omega \in \Sigma_n$. Assume that $\mu + \omega \in \Gamma_K$ and $P_{\mu+\omega}(\mathfrak{p}_{\mathbb{C}} \otimes V_u) \neq \{0\}$. Then we have

$$(P_{\mu}(X_{-\gamma} \otimes P_{\mu+\omega}(X_{\gamma} \otimes v(\mu))), P_{\mu}(X_{-\omega} \otimes P_{\mu+\omega}(X_{\omega} \otimes v(\mu))))$$

$$= c(\mu; \omega)^{2} |P_{\mu+\omega}(X_{\gamma} \otimes v(\mu))|^{2} |P_{\mu+\omega}(X_{\omega} \otimes v(\mu))|^{2},$$

where
$$c(\mu; \omega) = \sqrt{\frac{\deg \pi_{\mu}}{\deg \pi_{\mu+\omega}}}$$
.

PROOF. We note that $(kX_{-\omega}, X_{-\omega}) = \overline{(kX_{\omega}, X_{\omega})}$. By (3.6) and (3.7) we have

$$(4.1) \qquad (P_{\mu}(X \otimes Y \otimes v), P_{\mu}(X' \otimes Y' \otimes v')) = \int_{K} (kX, X')(kY, Y')(kv, v') \overline{\chi_{\mu}(k)} dk.$$

Let $\{v_i\}$ $(1 \le i \le \deg \pi_\mu, v_1 = v(\mu))$ be an orthonormal basis of V_μ . Since $\chi_\mu(k) = \deg \pi_\mu \sum_i (kv_i, v_i)$, we have

$$\begin{split} &(P_{\mu}(X_{-\gamma}\otimes P_{\mu+\omega}(X_{\gamma}\otimes v(\mu)))\,,\,P_{\mu}(X_{-\omega}\otimes P_{\mu+\omega}(X_{\omega}\otimes v(\mu))))\\ &=\deg\pi_{\mu}\sum_{i}\int_{K}\overline{(k(X_{\gamma}\otimes v_{i})\,,X_{\omega}\otimes v_{i})}(kP_{\mu+\omega}(X_{\gamma}\otimes v(\mu)),\,P_{\mu+\omega}(X_{\omega}\otimes v(\mu)))dk\\ &=\deg\pi_{\mu}\sum_{i}\int_{K}\overline{(kP_{\mu+\omega}(X_{\gamma}\otimes v_{i})\,,\,P_{\mu+\omega}(X_{\omega}\otimes v_{i}))}\\ &\qquad \times(kP_{\mu+\omega}(X_{\gamma}\otimes v(\mu)),\,P_{\mu+\omega}(X_{\omega}\otimes v(\mu)))dk\\ &=\deg\pi_{\mu}(\deg\pi_{\mu+\omega})^{-1}\sum_{i}(P_{\mu+\omega}(X_{\gamma}\otimes v(\mu))\,,\,P_{\mu+\omega}(X_{\gamma}\otimes v_{i}))\\ &\qquad \times\overline{(P_{\mu+\omega}(X_{\omega}\otimes v(\mu)),\,P_{\mu+\omega}(X_{\omega}\otimes v_{i}))}\\ &=c(\mu;\omega)^{2}|P_{\mu+\omega}(X_{\gamma}\otimes v(\mu))|^{2}|P_{\mu+\omega}(X_{\omega}\otimes v(\mu))|^{2}\,. \end{split}$$

Here we used the orthogonality relation on K. Hence the lemma follows.

COROLLARY 4.5. Assume that $\mu, \mu + \omega \in \Gamma_K$ and $P_{\mu+\omega}(\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu}) \neq \{0\}$. Then $P_{\mu}(\mathfrak{p}_{\mathbb{C}} \otimes P_{\mu+\omega}(\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu}))$ is a simple K-module with highest weight μ . Let $v_{\omega}(\mu)$ be the highest weight vector of the simple K-module $P_{\mu}(\mathfrak{p}_{\mathbb{C}} \otimes P_{\mu+\omega}(\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu}))$ determined by

$$P_{\mu}(X_{-\omega} \otimes P_{\mu+\omega}(X_{\omega} \otimes v(\mu))) = c(\mu; \omega) |P_{\mu+\omega}(X_{\omega} \otimes v(\mu))|^2 v_{\omega}(\mu).$$

Then we have $|v_{\omega}(\mu)| = 1$ and

$$P_{\mu}(X_{-\gamma} \otimes P_{\mu+\omega}(X_{\gamma} \otimes v(\mu))) = c(\mu; \omega) |P_{\mu+\omega}(X_{\gamma} \otimes v(\mu))|^{2} v_{\omega}(\mu) \quad \text{for all } \gamma \in \Sigma_{n} \,,$$

$$\text{where } c(\mu; \omega) = \sqrt{\frac{\deg \pi_{\mu}}{\deg \pi_{\mu+\omega}}}.$$

PROOF. By Lemma 4.2 and Lemma 4.4, we have

$$|P_{\mu}(X_{-\omega} \otimes P_{\mu+\omega}(X_{\omega} \otimes v_{\mu}))| = c(\mu; \omega)|P_{\mu+\omega}(X_{\omega} \otimes v(\mu))|^2 \neq 0.$$

Therefore $P_{\mu}(\mathfrak{p}_{\mathbb{C}} \otimes P_{\mu+\omega}(\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu})) \neq \{0\}$ and $|v_{\omega}(\mu)| = 1$. Replacing V_{μ} with the simple K-module $P_{\mu+\omega}(\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu})$ in Lemma 4.1, we have $P_{\mu}(\mathfrak{p}_{\mathbb{C}} \otimes P_{\mu+\omega}(\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu}))$ is simple. We put

$$P_{\mu}(X_{-\gamma} \otimes P_{\mu+\omega}(X_{\gamma} \otimes v(\mu))) = c(\gamma)c(\mu;\omega)|P_{\mu+\omega}(X_{\gamma} \otimes v(\mu))|^{2}v_{\omega}(\mu),$$

where $c(\gamma)$ is a complex number. By Lemma 4.4 we have

$$\begin{split} c(\gamma)c(\mu;\omega)^2|P_{\mu+\omega}(X_{\gamma}\otimes v(\mu))|^2|P_{\mu+\omega}(X_{\omega}\otimes v(\mu))|^2\\ &=(P_{\mu}(X_{-\gamma}\otimes P_{\mu+\omega}(X_{\gamma}\otimes v(\mu))),\,P_{\mu}(X_{-\omega}\otimes P_{\mu+\omega}(X_{\omega}\otimes v(\mu))))\\ &=c(\mu;\omega)^2|P_{\mu+\omega}(X_{\gamma}\otimes v(\mu))|^2|P_{\mu+\omega}(X_{\omega}\otimes v(\mu))|^2\,. \end{split}$$

This implies that $c(\gamma) = 1$, and hence we have the formula.

THEOREM 4.6. Let $\mu \in \Gamma_K$ and $W(\mu)$ the weight subspace of the K-module $M(\mu)$. Then we have

(4.2)
$$\dim W(\mu) = \sharp \Sigma_{W(\mu)},$$

where $\Sigma_{W(\mu)} = \{ \omega \in \Sigma_n : \mu + \omega \in \Gamma_K, P_{\mu+\omega}(\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu}) \neq \{0\} \}.$

PROOF. We put $A=\{P_{\mu}(X_{-\gamma}\otimes P_{\mu+\omega}(X_{\gamma}\otimes v(\mu))): \gamma, \omega\in\Sigma_n, \mu+\omega\in\Gamma_K\}$. First we shall prove that $W(\mu)=[A]$. Let $Z=P_{\mu}(X_{-\gamma}\otimes P_{\mu+\omega}(X_{\gamma}\otimes v(\mu)))$ be an element in A. Since the action of K commutes with P_{μ} and $P_{\mu+\omega}$ (see (3.5)), we have $HZ=\mu(H)Z$ for all H in $\mathfrak{b}_{\mathbb{C}}$. This implies that $A\subset W(\mu)$. Conversely let Z be an element in $W(\mu)$. By Lemma 3.6 we have

$$Z = \sum_{\gamma \in \Sigma_n} c_{\gamma} P_{\mu}(X_{-\gamma} \otimes X_{\gamma} \otimes v(\mu)),$$

where c_{γ} is a complex constant. Then by Lemma 4.1 we have

$$Z = \sum_{\gamma \in \Sigma_n} \sum_{\omega \in \Sigma_n, \mu + \omega \in \Gamma_K} c_{\gamma} P_{\mu}(X_{-\gamma} \otimes P_{\mu + \omega}(X_{\gamma} \otimes v(\mu))).$$

Thus $W(\mu) = [A]$ as claimed. Let us now prove this theorem. By Corollary 4.5 we have

(4.3)
$$W(\mu) = [A] = [\{|P_{\mu+\omega}(X_{\omega} \otimes v(\mu))|^2 v_{\omega}(\mu) : \omega \in \Sigma_n, \mu + \omega \in \Gamma_K\}].$$

Let $\omega, \gamma \in \Sigma_n, \omega \neq \gamma$. Assume that $P_{\mu+\omega}(\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu})$ and $P_{\mu+\gamma}(\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu})$ are nontrivial. Since these spaces are orthogonal, $P_{\mu}(\mathfrak{p}_{\mathbb{C}} \otimes P_{\mu+\omega}(\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu}))$ and $P_{\mu}(\mathfrak{p}_{\mathbb{C}} \otimes P_{\mu+\gamma}(\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu}))$ are also orthogonal (see (4.1)). Hence (4.3) and Lemma 4.2 imply (4.2).

In view the proof of the above theorem we have the following.

COROLLARY 4.7. Let $\omega, \gamma \in \Sigma_n, \omega \neq \gamma$. Consider two highest weight vectors $v_{\omega}(\mu)$ and $v_{\gamma}(\mu)$ as in Corollary 4.5. Then $v_{\omega}(\mu)$ and $v_{\gamma}(\mu)$ are orthogonal. Moreover, we have

$$P_{\mu}(X_{-\gamma} \otimes X_{\gamma} \otimes v(\mu)) = \sum_{\omega \in \Sigma_{W(\mu)}} c(\mu; \omega) |P_{\mu+\omega}(X_{\gamma} \otimes v(\mu))|^2 v_{\omega}(\mu) \,.$$

5. Admissible dominant integral form

In this section we shall determine the multiplicity $m(\mu)$ of V_{μ} in the K-module $M(\mu)$ for an admissible integral form μ in Γ_K (for the definition, see below). Let $\mathfrak{z}(H_{\mu})$ be the

centralizer of H_{μ} in $\mathfrak{g}_{\mathbb{C}}$. Since one dimensional algebra $\mathbb{C}H_{\mu}$ is σ and τ invariant, $\mathfrak{z}(H_{\mu})$ is also invariant under these anti-automorphisms of $\mathfrak{g}_{\mathbb{C}}$. We now put $\mathfrak{l}(\mu) = \mathfrak{z}(H_{\mu}) \cap \mathfrak{g}$. Since $\theta = \sigma \tau$, $\mathfrak{l}(\mu)$ is a θ -stable reductive algebra with Cartan subalgebra \mathfrak{b} . Therefore $\mathfrak{l}(\mu)$ has the following Cartan decomposition.

(5.1)
$$l(\mu) = \mathfrak{k}(\mu) \oplus \mathfrak{p}(\mu)$$
, where $\mathfrak{k}(\mu) = \mathfrak{k} \cap l(\mu)$ and $\mathfrak{p}(\mu) = \mathfrak{p} \cap l(\mu)$.

Let $L(\mu)$ be the centralizer of H_{μ} in G. We put $K(\mu) = K \cap L(\mu)$. Then $K(\mu)$ is a maximal compact subgroup of $L(\mu)$. Furthermore, since $H_{\mu} \in \mathfrak{b}_{\mathbb{C}}$, B is a Cartan subgroup of $K(\mu)$ (resp. $L(\mu)$).

DEFINITION 5.1. Let $\mu \in \Gamma_K$ and $K(\mu)$ the centralizer of H_μ in K. For the root system $\Sigma_{K(\mu)}$ of the pair $(\mathfrak{k}(\mu)_{\mathbf{C}}, \mathfrak{b}_{\mathbf{C}})$ we put $P_{K(\mu)} = P_K \cap \Sigma_{K(\mu)}$.

DEFINITION 5.2. An element $\mu \in \Gamma_K$ is admissible if μ has the following properties. For $Sp(n, \mathbf{R})$ and SO(2m, 2n + 1), $(\mu, \alpha) \ge 2$ for all short roots $\alpha \in P_K \setminus P_{K(\mu)}$.

For the the type of G_2 , $2(\mu, \alpha)|\alpha|^{-2} \geq 3$ for all short roots $\alpha \in P_K \setminus P_{K(\mu)}$.

If G satisfies that all noncompact roots have the same length, then μ is always admissible.

REMARK. The inner type noncompact real simple Lie groups are classified by $Sp(n, \mathbf{R})$, SO(2m, 2n + 1), the type G_2 and the groups which satisfy all noncompact roots have the same length (cf. Table II, p. 354 in [2]). When G is of the type G_2 then P_K has exactly one simple short (resp. long) root.

DEFINITION 5.3. A noncompact root ω in Σ is $P_{K(\mu)}$ -highest if $\omega + \alpha \notin \Sigma$ for all $\alpha \in P_{K(\mu)}$.

Let ω be a noncompact root and m a nonnegative integer. We define five sets $\Delta(\omega)$, $\Delta_{\pm}(\omega)$, $\Delta_m(\omega)$ and $\Delta_m(\omega)^*$ by

(5.2)
$$\Delta(\omega) = \{ \alpha \in P_K : \omega + \alpha \in \Sigma \},$$

$$\Delta_{\pm}(\omega) = \{ \alpha \in P_K : \pm(\alpha, \omega) > 0 \},$$

$$\Delta_m(\omega) = \{ \alpha \in \Delta(\omega) : 2(\omega, \alpha) |\alpha|^{-2} = m \},$$

$$\Delta_m(\omega)^* = \{ \alpha \in \Delta_m(\omega) : \omega - \alpha \in \Sigma \}.$$

We have the following lemma (see Lemma 6.1 in [3]).

LEMMA 5.4. Let G be an inner type noncompact real simple Lie group and ω a non-compact root. Then we have the followings.

- $(1) \quad \Delta(\omega) = \Delta_{-}(\omega) \cup \Delta_{0}(\omega) \cup \Delta_{1}(\omega), \ \Delta_{0}(\omega) = \Delta_{0}(\omega)^{*} \ \ \text{and} \quad \Delta_{1}(\omega) = \Delta_{1}(\omega)^{*}.$
- (2) If $\Delta_0(\omega) \neq \phi$, then G is either $Sp(n, \mathbf{R})$ or SO(2m, 2n + 1), and $\Delta(\omega) = \Delta_0(\omega)^* \cup \Delta_{-1}(\omega)$.
- (3) If $\Delta_{-1}(\omega)^* \cup \Delta_1(\omega)^* \neq \phi$, then G is of the type G_2 .

Let $\mu \in \Gamma_K$ and $\omega \in \Sigma_n$. Assume that $P_{\mu+\omega}(\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu}) \neq \{0\}$. Then there exists a rational function $f(\eta; \omega)$ in $\eta \in (\sqrt{-1}\mathfrak{b})^*$ (cf. Theorem 5.5 in [3]) such that

$$(5.3) |P_{\mu+\omega}(X_{\omega} \otimes v(\mu))|^2 = f(\lambda + \omega; \omega),$$

where $\lambda = \mu + \rho_K$. The function $f(\eta; \omega)$ has the following product formula (cf. Theorem 6.5 in [3]).

THEOREM 5.5. Let ω be a noncompact root in Σ . Then $f(\eta + \omega; \omega)$ is given by the followings.

(1) If $\Delta_0(\omega)^* \cup \Delta_{-1}(\omega)^* \cup \Delta_1(\omega)^* = \phi$, then we have

$$f(\eta + \omega; \omega) = \prod_{\alpha \in \Delta_{-}(\omega)} (\eta + \omega, \alpha)(\eta, \alpha)^{-1}$$
.

(2) If $\Delta_0(\omega)^* \neq \phi$, then G is either $Sp(n, \mathbf{R})$ or SO(2m, 2n + 1) and

$$f(\eta + \omega; \omega) = \prod_{\alpha \in \Delta_{-1}(\omega)} (\eta + \omega, \alpha)(\eta, \alpha)^{-1}$$

$$\times \prod_{\alpha \in \Delta_{0}(\omega)^{*}} (2(\eta, \alpha) - |\alpha|^{2})(2(\eta, \alpha) + |\alpha|^{2})^{-1}.$$

(3) If $\Delta_1(\omega)^* \cup \Delta_{-1}(\omega)^* \neq \phi$, then G is of the type G_2 and

$$\begin{split} f(\eta+\omega;\omega) &= \prod_{\alpha\in\Delta_{-}(\omega)} (\eta+\omega,\alpha)(\eta,\alpha)^{-1} \\ &\times \prod_{\alpha\in\Delta_{1}(\omega)^{*}} (2(\eta,\alpha)-|\alpha|^{2})(2((\eta,\alpha)+|\alpha|^{2}))^{-1} \\ &\times \prod_{\alpha\in\Delta_{-1}(\omega)^{*}} 2((\eta,\alpha)-|\alpha|^{2})(2(\eta,\alpha)+|\alpha|^{2})^{-1} \,. \end{split}$$

We also restate the following theorem (see Theorem 7.6 in [3]).

THEOREM 5.6. Let $\mu \in \Gamma_K$ and $\omega \in \Sigma_n$. Assume that $\mu + \omega \in \Gamma_K$. Then the K-module $P_{\mu+\omega}(\mathfrak{p}_C \otimes V_\mu) \neq \{0\}$ if and only if $f(\lambda + \omega; \omega) > 0$.

LEMMA 5.7. Let $\mu \in \Gamma_K$ and $\omega \in \Sigma_n$. Assume that $\mu + \omega \in \Gamma_K$ and $\Delta_0(\omega)^* \cap P_{K(\mu)} \neq \{\phi\}$. Then there exists a simple root $\alpha \in P_K$ such that $\alpha \in \Delta_0(\omega)^* \cap P_{K(\mu)}$.

PROOF. Let α be the lowest root in $\Delta_0(\omega)^* \cap P_{K(\mu)}$. Assume that α is not simple in P_K . Then we can choose $\beta, \gamma \in P_K$ satisfying $\alpha = \beta + \gamma$. From $(\mu, \alpha) = 0$ and $\mu \in \Gamma_K$, it follows that $(\mu, \beta) = (\mu, \gamma) = 0$. Moreover, since $(\omega, \alpha) = 0$, we have either $(\omega, \beta) = (\omega, \gamma) = 0$ or $(\omega, \beta)(\omega, \gamma) < 0$. Consider the first case. Since $[X_\omega, [X_\beta, X_\gamma]] \neq 0$, Jacobi's identity implies $\omega + \beta \in \Sigma$ or $\omega + \gamma \in \Sigma$. There is no loss of generality assuming that $\omega + \beta \in \Sigma$. Since $\beta \in \Delta_0(\omega)^* \cap P_{K(\mu)}$ and $\alpha > \beta$, we have a contradiction to the choice of α . For the latter case we can assume $(\omega, \beta) < 0$. Therefore $(\mu + \omega, \beta) < 0$, $\beta \in P_K$. This is a contradiction to the assumption $\mu + \omega \in \Gamma_K$. Thus α is simple in P_K .

LEMMA 5.8. Let $\mu \in \Gamma_K$ and $\omega \in \Sigma_n$. Assume that μ is admissible. Then we have that $\mu + \omega \in \Gamma_K$ and $P_{\mu+\omega}(\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu}) \neq \{0\}$ if and only if ω is $P_{K(\mu)}$ -highest.

PROOF. Bearing in mind ω is $P_{K(\mu)}$ -highest iff $\Delta(\omega) \cap P_{K(\mu)} = \phi$, it is sufficient to prove that $\mu + \omega \in \Gamma_K$ and $f(\lambda + \omega; \omega) > 0$ iff $\Delta(\omega) \cap P_{K(\mu)} = \phi$ (see Theorem 5.6). First we assume that $\Delta(\omega) \cap P_{K(\mu)} = \phi$. We note that $(\mu, \alpha) > 0$ for $\alpha \in \Delta(\omega)$. Let us prove that $\mu + \omega \in \Gamma_K$ and $f(\lambda + \omega; \omega) > 0$. If $\Delta_0(\omega)^* \cup \Delta_{-1}(\omega)^* \cup \Delta_1(\omega)^* = \phi$, then by (1) in Lemma 5.4 we have $\Delta(\omega) = \Delta_{-}(\omega)$. By (2.3) we have $\Delta(\omega) = \Delta_{-1}(\omega) \cup \Delta_{-2}(\omega) \cup \Delta_{-3}(\omega)$. Let α be an element in $\Delta_{-1}(\omega)$. Since $(\mu, \alpha) > 0$, we have $2(\lambda + \omega, \alpha)|\alpha|^{-2} > 0$. If $\alpha \in \Delta_{-2}(\omega)$, then $\alpha \in \Delta_0(\omega + \alpha)^*$. By (2) in Lemma 5.4 we have G is one of $Sp(n, \mathbf{R})$ and SO(2m, 2n+1). Since α is a short root, the admissibility of μ implies $2(\lambda + \omega, \alpha)|\alpha|^{-2} > 0$. If $\alpha \in \Delta_{-3}(\omega)$, then $\alpha \in \Delta_{-1}(\omega + \alpha)^*$. By (3) in Lemma 5.4 G is of the type G_2 , and α is a short root. By the admissibility of μ we have also $(\lambda + \omega, \alpha) > 0$. Thus $(\lambda + \omega, \alpha) > 0$ for all $\alpha \in P_K$, and especially $\mu + \omega \in \Gamma_K$. Moreover, by (1) in Theorem 5.5 we have $f(\lambda + \omega; \omega) > 0$. Consider the case $\Delta_0(\omega)^* \neq \phi$. By (2) in Lemma 5.4 we have $\Delta(\omega) = \Delta_0(\omega)^* \cup \Delta_{-1}(\omega)$. By using the same arguments as above we can prove that $\mu + \omega \in \Gamma_K$ and $(\lambda + \omega, \alpha) > 0$ for $\alpha \in P_K$. Moreover, since $(\mu, \alpha) > 0$ for $\alpha \in \Delta_0(\omega)^*$, we have $2(\lambda, \alpha)|\alpha|^{-2} > 1$. Hence by (2) in Theorem 5.5 we have $f(\lambda + \omega; \omega) > 0$ for this case. Assume that $\Delta_{-1}(\omega)^* \cup \Delta_1(\omega)^* \neq \phi$. Then G is of the type G_2 . From Lemma 5.4 and (2.3) it follows that $\Delta(\omega) = \Delta_{-3}(\omega) \cup$ $\Delta_{-1}(\omega) \cup \Delta_1(\omega)^*$. For $\alpha \in \Delta_{-3}(\omega)$ the admissibility of μ implies $(\mu + \omega, \alpha) \geq 0$. If $\alpha \in \Delta_{-1}(\omega)$, then by $(\mu, \alpha) > 0$ we have $(\mu + \omega, \alpha) \geq 0$. Let $\alpha \in \Delta_1(\omega)^* \cup \Delta_{-1}(\omega)^*$. Since α is a short root, the admissibility implies $2(\mu, \alpha)|\alpha|^2 \geq 3$. Therefore $\mu + \omega \in \Gamma_K$ and $2(\lambda,\alpha)|\alpha|^{-2} > 1$ (resp. $(\lambda,\alpha)|\alpha|^{-2} > 1$) for $\alpha \in \Delta_1(\omega)^*$ (resp. $\alpha \in \Delta_{-1}(\omega)^*$). By (3) in Theorem 5.5 we have $f(\lambda + \omega; \omega) > 0$. Conversely assume that $\mu + \omega \in \Gamma_K$ and $f(\lambda + \omega; \omega) > 0$. Since $\Delta(\omega) = \Delta_{-}(\omega)$, for the case $\Delta_{0}(\omega)^{*} \cup \Delta_{-1}(\omega)^{*} \cup \Delta_{1}(\omega) = \phi$, the assumption $\mu + \omega \in \Gamma_K$ implies that $\Delta(\omega) \cap P_{K(\mu)} = \phi$. Suppose that $\Delta_0(\omega)^* \neq \phi$. Then we have $(\mu, \alpha) > 0$ for $\alpha \in \Delta_{-1}(\omega)$. Let $\alpha \in \Delta_0(\omega)^*$. We shall prove that $(\mu, \alpha) > 0$. Suppose that $(\mu, \alpha) = 0$. Since $\Delta_0(\omega)^* \cap P_{K(\mu)} \neq \phi$, Lemma 5.7 implies that there is a simple root β in P_K such that $\beta \in \Delta_0(\omega)^* \cap P_{K(u)}$. We have $2(\lambda, \beta)|\beta|^{-2} = 1$, $\beta \in \Delta_0(\omega)^*$, and hence by (2) in Theorem 5.5 we have $f(\lambda + \omega, \omega) = 0$. This is a contradiction to the assumption $f(\lambda + \omega; \omega) > 0$. Thus $(\mu, \alpha) > 0$ for $\alpha \in \Delta(\omega)$, and hence $\Delta(\omega) \cap P_{K(\mu)} = \phi$ for the case $\Delta_0(\omega)^* \neq \phi$. Finally assume that $\alpha \in \Delta_{-1}(\omega)^* \cup \Delta_1(\omega)^*$. We note that α is a simple short root in P_K . Since $\mu + \omega \in \Gamma_K$ and $f(\lambda + \omega; \omega) > 0$, (3) in Theorem 5.5 implies $(\mu, \alpha) > 0$. Thus we can prove that if $\mu + \omega \in \Gamma_K$ and $f(\lambda + \omega; \omega) > 0$, then $\Delta(\omega) \cap P_{K(\mu)} = \phi$.

THEOREM 5.9. Let $\mu \in \Gamma_K$ and V_μ a simple K-module with the highest weight μ . Consider the K-module $M(\mu) = P_\mu(\mathfrak{p}_\mathbb{C} \otimes \mathfrak{p}_\mathbb{C} \otimes V_\mu)$, and assume that μ is admissible. Then the multiplicity $m(\mu)$ of V_μ in $M(\mu)$ is given by

$$m(\mu) = \sharp \{ \omega \in \Sigma_n : \omega \text{ is } P_{K(\mu)}\text{-highest} \}.$$

PROOF. Let $\omega \in \Sigma_n$. Then by Lemma 5.8 $\mu + \omega \in \Gamma_K$ and $P_{\mu+\omega}(\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu}) \neq \{0\}$ if and only if ω is $P_{K(\mu)}$ -highest. Consequently by Theorem 4.6 we have our assertion.

6. Positive root system associated with a P_K -dominant integral form

In this section we shall give a good positive root system associated with $\mu \in \Gamma_K$ (see Lemma 6.5 below). An element H in $\sqrt{-1}\mathfrak{b}$ is said to be regular if $\alpha(H) \neq 0$ for all α in Σ . An element H in $\sqrt{-1}\mathfrak{b}$ is said to be singular unless H is regular. Let $(\sqrt{-1}\mathfrak{b})'$ denote the set of all regular elements in $\sqrt{-1}\mathfrak{b}$ and P a positive root system satisfying $P_K \subset P$. We define a subset C in $(\sqrt{-1}\mathfrak{b})'$ by

$$C = \{H \in \sqrt{-1}\mathfrak{b} : \alpha(H) > 0 \text{ for all } \alpha \in P\}.$$

Each topological connected component of $(\sqrt{-1}\mathfrak{b})'$ is said to be a Weyl chamber. Especially C is the positive Weyl chamber corresponding to P. Let W be the Weyl group of the pair $(\mathfrak{g}_{\mathbf{C}}, \mathfrak{b}_{\mathbf{C}})$. W acts simply transitively on the set of all Weyl chambers (cf. Theorem 4.3.18 in [4]). Moreover we have

$$(\sqrt{-1}\mathfrak{b})' = \bigcup_{s \in W} sC \text{ (disjoint union)}.$$

Let s be an element in W. Then sC is the positive Weyl chamber corresponding to the positive root system sP.

LEMMA 6.1. The number of positive root systems containing P_K is $(W:W_K)$, where (*:*) is the group index and W_K is the Weyl group of $(\mathfrak{k}_{\mathbb{C}},\mathfrak{b}_{\mathbb{C}})$.

PROOF. We denote the set of all positive root systems containing P_K by $\{s_i P : 1 \le i \le p, s_i \in W, s_1 = 1\}$. It is enough to prove that

(6.1)
$$W = \bigcup_{i=1}^{p} W_K s_i \text{ (disjoint union)}.$$

Let C_K be the positive Weyl chamber corresponding to P_K . First we shall prove $W=\bigcup_{i=1}^p W_K s_i$. Let s be an element in W. Since $sC\subset\bigcup_{t\in W_K}tC_K$, there is t in W_K such that $tC_K\cap sC\neq \phi$. We can choose $H\in C$ satisfying $t^{-1}sH\in C_K$. Since $\alpha(t^{-1}sH)>0$ for all $\alpha\in P_K$, we have $P_K\subset t^{-1}sP$. We let $t^{-1}s=s_i$ for $i,1\leq i\leq p$. Then $s\in W_K s_i$, and hence the identity in (6.1) follows. Next we shall prove that if $W_K s_i\cap W_K s_j\neq \phi$, then i=j. There is $t\in W_K$ such that $ts_i=s_j$. If $t\neq 1$, then we have $t\alpha<0$ for $\alpha\in P_K$. Since $\alpha\in s_iP$, we have $\alpha=s_i\beta$ for $\beta\in P$. This implies that $ts_i\beta\in s_jP\cap (-P_K)$. Since s_jP is a positive root system and $P_K\subset s_jP$, we have a contradiction. Thus t=1 and t=j.

LEMMA 6.2. Assume that the pair (G, K) is hermitian symmetric. Then for the positive root system P_K of Σ_K we can choose a positive root system P' satisfying the following properties:

$$P_K \subset P'$$
, $\mathfrak{p}_{\mathbb{C}} = \mathfrak{p}^+ \oplus \mathfrak{p}^-$ and $ad(\mathfrak{k}_{\mathbb{C}})\mathfrak{p}^{\pm} \subset \mathfrak{p}^{\pm}$,

where \mathfrak{p}^{\pm} is the subspace of $\mathfrak{p}_{\mathbb{C}}$ generated by the set of all root vectors corresponding to the noncompact roots in P' (resp. -P').

PROOF. Let H_0 be a nonzero element in the center of $\mathfrak{k}_{\mathbb{C}}$. We note that $\gamma(H_0) \neq 0$ for all $\gamma \in \Sigma_n$ (cf. Corollary 7.3 in [2]). We can assume that $H_0 \in \sqrt{-1}\mathfrak{b}$. Let \mathfrak{b}_1 be the orthogonal complement of H_0 in \mathfrak{b} . Then \mathfrak{b}_1 is a Cartan subalgebra of the semisimple Lie algebra $\mathfrak{k}_1 = [\mathfrak{k}, \mathfrak{k}]$. Let K_1 be the analytic subgroup of G corresponding to \mathfrak{k}_1 . Then $P_{K_1} = P_K$ is a positive root system of $((\mathfrak{k}_1)_{\mathbb{C}}, (\mathfrak{b}_1)_{\mathbb{C}})$. Let C_{K_1} be the positive Weyl chamber in $\sqrt{-1}\mathfrak{b}_1$ corresponding to P_{K_1} . We choose $H \in C_{K_1}$, and put $H_n = \frac{1}{n}H + H_0$ for all positive integers n. Since $\lim_{n \to +\infty} \gamma(H_n) = \gamma(H_0)$, there exists a sufficiently large number N such that $\gamma(H_N)$ and $\gamma(H_0)$ have the same signature for all $\gamma \in \Sigma_n$. We put

$$P' = \{ \alpha \in \Sigma : \alpha(H_N) > 0 \}.$$

Since H_N is regular, P' is a positive root system of Σ containing P_K . Then \mathfrak{p}^{\pm} are $\mathfrak{k}_{\mathbb{C}}$ -invariant and $\mathfrak{p}_{\mathbb{C}} = \mathfrak{p}^+ \oplus \mathfrak{p}^-$.

LEMMA 6.3. Let $\mu \in \Gamma_K$ and $\mathfrak{l}(\mu)$ the centralizer of H_μ in \mathfrak{g} . Then the inner type reductive Lie algebra $\mathfrak{l}(\mu)$ has the following decomposition by the ideals.

$$\mathfrak{l}(\mu) = \mathfrak{l}_0 \oplus \mathfrak{l}_1 \oplus \mathfrak{l}_2$$

where all l_i 's are inner and θ -invariant, $l_0 \subset \mathfrak{k}$, and each simple ideal of l_1 (resp. l_2) is noncompact nonhermitian (resp. hermitian).

PROOF. Let $\mathfrak{l}(\mu)=\bigoplus_{i=0}^p\mathfrak{q}_i$ be the decompostion by ideals of $\mathfrak{l}(\mu)$, where \mathfrak{q}_0 is the center of $\mathfrak{l}(\mu)$ and the other $\mathfrak{q}_i's$ are all simple. Since $\mathfrak{q}_0\subset\mathfrak{b}$, it is enough to prove that \mathfrak{q}_i ($1\leq i\leq p$) is an inner type θ -invariant simple Lie algebra. Let p_i be the projection of $\mathfrak{l}(\mu)$ to \mathfrak{q}_i . Then we have $[p_i(\mathfrak{b}),p_j(\mathfrak{b})]=\{0\}$ for $i,j,i\neq j$. This implies that $\{0\}=[\mathfrak{b},\mathfrak{b}]=\bigoplus_{i=1}^q[p_i(\mathfrak{b}),p_i(\mathfrak{b})]$, and hence $p_i(\mathfrak{b})$ is an abelian subalgebra of \mathfrak{q}_i . Since $[\mathfrak{b},p_i(\mathfrak{b})]=\{0\}$ and \mathfrak{b} is a maximal abelian subalgebra of $\mathfrak{l}(\mu)$, we have $p_i(\mathfrak{b})\subset\mathfrak{b}$ and $p_i(\mathfrak{b})$ is maximal abelian in \mathfrak{q}_i . Thus \mathfrak{q}_i is an inner type simple Lie algebra. Moreover since $p_i(\mathfrak{b})\subset\mathfrak{q}_i\cap\theta(\mathfrak{q}_i)\subset\mathfrak{l}(\mu)$, we have $\mathfrak{q}_i=\theta(\mathfrak{q}_i)$.

DEFINITION 6.4. Let P be a positive root system of Σ containing P_K . We put $\mathfrak{p}^+ = \bigoplus_{\alpha \in \Sigma_n \cap P} \mathfrak{g}_{\alpha}$ and $\mathfrak{p}^- = \bigoplus_{\alpha \in \Sigma_n \cap P} \mathfrak{g}_{-\alpha}$. Let \mathfrak{q} be a simple $K(\mu)$ -submodule of $\mathfrak{p}_{\mathbb{C}}$. Then \mathfrak{q} is said to be the first (resp. the second) kind with respect to P if $\tau(\mathfrak{q}) = \mathfrak{q}$ (resp. $\mathfrak{q} \subset \mathfrak{p}^+$ or $\mathfrak{q} \subset \mathfrak{p}^-$).

LEMMA 6.5. Let $\mu \in \Gamma_K$. Then we can choose a positive root system P^* of Σ satisfying the following properties: $P_K \subset P^*$, and each $K(\mu)$ -simple submodule \mathfrak{q} of $\mathfrak{p}_{\mathbb{C}}$ is either the first kind or the second kind with respect to P^* .

PROOF. Consider the decomposition of $\mathfrak{l}(\mu)$ as in Lemma 6.3. Let Σ_i ($0 \le i \le 2$) be the root system of the pair $((\mathfrak{l}_i)_{\mathbf{C}}, (\mathfrak{l}_i \cap \mathfrak{b})_{\mathbf{C}})$. Since each $\alpha \in \Sigma_i$ can be extended to \mathfrak{b} , we have $\Sigma_i \subset \Sigma$. Furthermore since \mathfrak{l}_i is θ -invariant, we have $P_{K(\mu)} = \bigcup_{i=0}^2 (P_{K(\mu)} \cap \Sigma_i)$ and

 $P_{K(\mu)} \cap \Sigma_i$ is a positive root system of $((\mathfrak{l}_i \cap \mathfrak{k})_{\mathbb{C}}, (\mathfrak{l}_i \cap \mathfrak{b})_{\mathbb{C}})$. We put $P_0 = P_{K(\mu)} \cap \Sigma_0$. For the algebra \mathfrak{l}_1 we choose a positive root system P_1 of Σ_1 satisfying $P_{K(\mu)} \cap \Sigma_1 \subset P_1$. For the hermitian case \mathfrak{l}_2 , we choose a positive root system P_2 of Σ_2 satisfying $P_{K(\mu)} \cap \Sigma_2 \subset P_2$ as in Lemma 6.2. We now put

(6.2)
$$P(\mu) = \bigcup_{i=0}^{2} P_i.$$

Then $P(\mu)$ is a positive root system of $(\mathfrak{l}(\mu)_{\mathbf{C}},\mathfrak{b}_{\mathbf{C}})$, and $P_{K(\mu)}\subset P(\mu)$. Let us now choose a positive root system P^{\star} of Σ as follows. Let $\mathfrak{l}_{*}=[\mathfrak{l}(\mu),\mathfrak{l}(\mu)]$ be the drived algebra of $\mathfrak{l}(\mu)$. We put $\mathfrak{b}_{*}=\mathfrak{b}\cap\mathfrak{l}_{*}$. Then \mathfrak{b}_{*} is a Cartan subalgebra of the real semisimple Lie algebra \mathfrak{l}_{*} . Let $C_{*}(\mu)$ be the positive Weyl chamber of $\sqrt{-1}\mathfrak{b}_{*}$ corresponding to $P(\mu)$. We choose an element H_{0} in $C_{*}(\mu)$ and put $H_{n}=\frac{1}{n}H_{0}+H_{\mu}$ for all positive integers n. Then for a sufficiently large number N, $\alpha(H_{\mu})$ and $\alpha(H_{N})$ have the same signature for all $\alpha\in\Sigma\setminus(P(\mu)\cup-P(\mu))$. We now put

$$(6.3) P^* = \{ \alpha \in \Sigma : \alpha(H_N) > 0 \}.$$

Immediately we have $P(\mu) \subset P^*$. Moreover by the choice of H_N we have $\alpha(H_N) > 0$ for $\alpha \in P_K \backslash P_{K(\mu)}$. This implies that $P_K \subset P^*$. Finally we shall prove that each simple $K(\mu)$ -submodule \mathfrak{q} of $\mathfrak{p}_{\mathbb{C}}$ is the first kind or the second kind with respect to P^* . Let $\mathfrak{l}(\mu) = \mathfrak{k}(\mu) \oplus \mathfrak{p}(\mu)$ be the Cartan decomposition of $\mathfrak{l}(\mu)$ as in (5.1) and \mathfrak{r} the orthogonal complement of $\mathfrak{p}(\mu)$ in \mathfrak{p} . Then \mathfrak{r} is $K(\mu)$ -invariant and $\mathfrak{p}_{\mathbb{C}} = \mathfrak{p}(\mu)_{\mathbb{C}} \oplus \mathfrak{r}_{\mathbb{C}}$. Since \mathfrak{q} is a simple $K(\mu)$ -module, we have

(6.4)
$$\mathfrak{q} \subset \mathfrak{p}(\mu)_{\mathbb{C}}$$
 or $\mathfrak{q} \subset \mathfrak{r}_{\mathbb{C}}$.

In the first case in (6.4), we have (1) $\mathfrak{q} \subset (\mathfrak{l}_1)_{\mathbb{C}}$ or (2) $\mathfrak{q} \subset (\mathfrak{l}_2)_{\mathbb{C}}$. Since each simple ideal of \mathfrak{l}_1 is nonhermitian, \mathfrak{q} is the first kind for the case (1). For the case (2) the choice of the positive root system P_2 implies that \mathfrak{q} is the second kind. Let us consider the latter case in (6.4). Let X_{ω} be the $K(\mu)$ -highest weight vector in \mathfrak{q} . Since $\omega \notin P(\mu)$, we have that $\omega(H_{\mu}) \neq 0$. Since each weight (noncompact root) δ of \mathfrak{q} is of the form $\delta = \omega - \sum_{\alpha \in P_{K(\mu)}} m_{\alpha}\alpha$, m_{α} is an integer, we have $\delta(H_{\mu}) = \omega(H_{\mu})$. This implies that $\delta(H_N)$ and $\omega(H_N)$ have the same signature. Hence \mathfrak{q} is the second kind for this case. Thus each $K(\mu)$ -simple submodule \mathfrak{q} of $\mathfrak{p}_{\mathbb{C}}$ is the first kind or the second kind.

COROLLARY 6.6. Let $P(\mu)$ be the positive root system of $\Sigma(\mathfrak{l}(\mu)_{\mathbb{C}}, \mathfrak{b}_{\mathbb{C}})$ as in (6.2) and $\mathfrak{p}(\mu) = \mathfrak{p} \cap \mathfrak{l}(\mu)$. Then each simple $K(\mu)$ -submodule of $\mathfrak{p}(\mu)_{\mathbb{C}}$ is the first kind or the second kind with respect to $P(\mu)$. Moreover each simple root in $P(\mu)$ is also simple in P^* .

PROOF. It is sufficient to prove that if α is simple in $P(\mu)$, then α is simple in P^* . Suppose that α is not simple in P^* . Then there exist β and γ in P^* such that $\alpha = \beta + \gamma$. Therefore $0 = \alpha(H_{\mu}) = \beta(H_{\mu}) + \gamma(H_{\mu})$. By the choice of P^* in (6.3) we have $\beta(H_{\mu}) = 0$ and $\gamma(H_{\mu}) = 0$, and hence $\alpha = \beta + \gamma$, β , $\gamma \in P_{K(\mu)}$. This is a contradiction to α is simple in $P_{K(\mu)}$.

7. Standard triple of the positive root systems

Our purpose of this section is to prove Theorem 7.5.

LEMMA 7.1. Let P be a positive root system of Σ containing P_K and Ψ the simple root system of P. For a subset Θ of Ψ we denote by $P(\Theta)$ the set of all roots in P generated by the set Θ over the ring of integers. Then there exists a reductive subalgebra $\mathfrak{l}(\Theta)$ of \mathfrak{g} containing \mathfrak{b} such that $P(\Theta)$ is a positive root system of the pair $(\mathfrak{l}(\Theta)_{\mathbb{C}}, \mathfrak{b}_{\mathbb{C}})$.

PROOF. Let C be the positive Weyl chamber of $\sqrt{-1}\mathfrak{b}$ corresponding to P. We put

(7.1)
$$C(\Theta) = \{ H \in cl(C) : \alpha(H) = 0 \text{ for } \alpha \text{ in } \Theta \text{ and } \alpha(H) > 0 \text{ for } \alpha \text{ in } \Psi \setminus \Theta \},$$

where cl(C) is the topological closure of C in $\sqrt{-1}\mathfrak{b}$. It is sufficient to prove this lemma for the case $P(\Theta) \neq P$. Since $\Theta \neq \Psi$, we can choose $H \in C(\Theta) \setminus \{0\}$. The centralizer $\mathfrak{l}(H)$ of H in \mathfrak{g} is reductive, and contains \mathfrak{b} . Let Σ_H be the root system of $(\mathfrak{l}(H)_{\mathbb{C}}, \mathfrak{b}_{\mathbb{C}})$. Then we have $P(\Theta) = \Sigma_H \cap P$. Hence $P(\Theta)$ is a positive root system of the pair $(\mathfrak{l}(\Theta)_{\mathbb{C}}, \mathfrak{b}_{\mathbb{C}})$, where $\mathfrak{l}(\Theta) = \mathfrak{l}(H)$.

LEMMA 7.2. Let Θ be a subset of Ψ , and define $C(\Theta)$ by (7.1). Let H be an element in $C(\Theta)$ and $K(\Theta)$ the centralizer of H in K. Then the group $K(\Theta)$ is determined independently by the choice of H in $C(\Theta)$.

PROOF. Let $K(\Theta)^0$ be the analytic subgroup of G corresponding to $I(\Theta) \cap \mathfrak{k}$. In view of the proof of Lemma 7.1 $K(\Theta)^0$ is uniquely determined by Θ . Let k be an element in $K(\Theta)$. Then there exists k_0 in $K(\Theta)^0$ such that $Ad(k) = Ad(k_0)$. We put $z = k^{-1}k_0$. Since z belongs to the center Z of K, we have $K(\Theta) \subset ZK(\Theta)^0$. On the other hand, since K is connected, E is a maximal abelian subgroup of E (cf. Corollary 2.7 in [2]). This implies that E is connected, E is a maximal abelian subgroup of E (cf. Corollary 2.7 in [2]). This implies that E is connected, E is determined independently by the choice of E.

DEFINITION 7.3. Let P be a positive root system of Σ containing P_K . For a subset Θ in the simple root system Ψ of P, we consider the positive root system $P(\Theta)$ as in Lemma 7.1. Then the triple $(P_K, P(\Theta), P)$ is standard if each simple $K(\Theta)$ -submodule of $\mathfrak{p}_{\mathbb{C}}$ is either the first kind or the second kind with respect to P.

DEFINITION 7.4. Let $(P_K, P(\Theta), P)$ be a standard triple. A root γ in Σ_n is said to be the first (resp. the second) kind if the simple $K(\Theta)$ -module \mathfrak{q}_{γ} generated by X_{γ} is the first (resp. the second) kind.

REMARK. Let P be a positive root system containing P_K . For $\Theta = \phi$, we have $P(\Theta) = \phi$ and $K(\Theta) = B$. Moreover, (P_K, ϕ, P) is standard, and $C(\Theta)$ is the positive Weyl chamber.

THEOREM 7.5. For $\mu \in \Gamma_K$, there exists a standard triple $(P_K, P(\Theta), P)$ such that $H_{\mu} \in C(\Theta)$. Moreover we have $K(\Theta) = K(\mu)$.

PROOF. We first assume that H_{μ} is regular. Then we have $\mathfrak{k}(\mu) = \mathfrak{b}$. In this case we put $P = \{\alpha \in \Sigma : \alpha(H_{\mu}) > 0\}$. Then (P_K, ϕ, P) is standard, $H_{\mu} \in C(\phi)$, $K(\Theta) = K(\mu)$ and $\mathfrak{l}(\Theta) = \mathfrak{b}$. Let us now assume that H_{μ} is singular. Let $\mathfrak{l}(\mu)$ be the centralizer of H_{μ} in \mathfrak{g} . We choose the positive root systems P^* and $P(\mu)$ the same as in Lemma 6.5 and Corollary 6.6 respectively. Let Ψ^* be the simple root system of P^* . By Corollary 6.6 the simple root system Θ of $P(\mu)$ is a subset of Ψ^* . We put $P = P^*$. Since $P(\Theta) = P(\mu)$, the triple $(P_K, P(\Theta), P)$ is standard, $H_{\mu} \in C(\Theta)$ and $K(\Theta) = K(\mu)$.

8. Principal weight space $PW(\mu)$

In this section we shall fix a standard triple $(P_K, P(\Theta), P)$, and consider the convex cone $C(\Theta)$ corresponding to this triple. We now put $C(\Theta)^* = \{\eta \in (\sqrt{-1}\mathfrak{b})^* : H_{\eta} \in C(\Theta)\}$. Let $\mu \in C(\Theta)^* \cap \Gamma_K$ and V_{μ} a unitary simple K-module with highest weight μ . We shall fix the highest weight vector $v(\mu)$ normalized as $|v(\mu)| = 1$.

DEFINITION 8.1. Let P_n be the set of all noncompact roots in P. We define a projection operator P_+ on the K-module $\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu}$ by $P_+ = \sum_{\omega \in P_n, \mu + \omega \in \Gamma_K} P_{\mu + \omega}$.

DEFINITION 8.2. Let $W(\mu)$ be the weight subspace of $M(\mu)$ as in Lemma 3.1. We define a subspace $PW(\mu)$ of $W(\mu)$ by

$$PW(\mu) = [\{P_{\mu}(X_{-\nu} \otimes P_{+}(X_{\nu} \otimes v(\mu)) - X_{\nu} \otimes P_{+}(X_{-\nu} \otimes v(\mu))) : \gamma \in P_{n}\}].$$

LEMMA 8.3. Let $N(\mu)$ be the K-submodule of $M(\mu)$ generated by the set

$$\{P_{\mu}(X \otimes P_{+}(Y \otimes v) - Y \otimes P_{+}(X \otimes v)) : X, Y \in \mathfrak{p}_{\mathbb{C}}, v \in V_{\mu}\}.$$

Then we have $N(\mu) \cap W(\mu) = PW(\mu)$. Especially dim $PW(\mu)$ is the multiplicity of V_{μ} in $N(\mu)$.

PROOF. It is enough to prove that $N(\mu) \cap W(\mu) \subset PW(\mu)$. Let Z be an element in $N(\mu) \cap W(\mu)$. We can assume that

$$Z = P_{\mu}(X_{\gamma} \otimes P_{+}(X_{\delta} \otimes Q(I)v(\mu)) - X_{\delta} \otimes P_{+}(X_{\gamma} \otimes Q(I)v(\mu))),$$

where $\gamma, \delta \in \Sigma_n, I \in \Pi, \gamma + \delta = \langle I \rangle$. By Lemma 3.5 we have

$$Z = \sum_{J \leq I} (-1)^{\sharp I} \{ P_{\mu}(Q(\psi(J)) X_{\gamma} \otimes P_{+}(Q(\psi(I \setminus J)) X_{\delta} \otimes v(\mu)) \}$$

$$-P_{\mu}(Q(\psi(J))X_{\delta}\otimes P_{+}(Q(\psi(I\backslash J))X_{\gamma}\otimes v(\mu)))\}.$$

Since $(I \setminus J) \leq I$ and $I \setminus (I \setminus J) = J$, we have

$$Z = (-1)^{\sharp} \bigg\{ \sum_{J \preceq I} P_{\mu}(Q(\psi(J)) X_{\gamma} \otimes P_{+}(Q(\psi(I \backslash J)) X_{\delta} \otimes v(\mu)))$$

$$-\sum_{J \leq I} P_{\mu}(Q(\psi(I \setminus J)) X_{\delta} \otimes P_{+}(Q(\psi(J)) X_{\gamma} \otimes v(\mu))) \right\}.$$

Since $\gamma + \delta = \langle J \rangle + \langle I \backslash J \rangle$, we have $Z \in PW(\mu)$.

LEMMA 8.4. Let μ be an element in $C(\Theta)^* \cap \Gamma_K$ and V_{μ} the simple K-module with highest weight μ . Suppose that $U(\mathfrak{k}(\Theta)_{\mathbb{C}})X_{\gamma} \ni X_{\delta}$ for two noncompact roots γ , δ in Σ . Then, for each noncompact root ω satisfying $\mu + \omega \in \Gamma_K$, we have

$$|P_{\mu+\omega}(X_{\gamma} \otimes v(\mu))|^2 = |P_{\mu+\omega}(X_{\delta} \otimes v(\mu))|^2.$$

PROOF. We first prove that $X_{\alpha}v(\mu)=0$ for all $\alpha\in \Sigma_{K(\Theta)}$. Since $v(\mu)$ is the highest weight vector of V_{μ} , it is sufficient to prove that $X_{-\alpha}v(\mu)=0$ for all $\alpha\in P_{K(\Theta)}$. Since $ad(X_{\alpha})X_{-\alpha}v(\mu)=\alpha(H_{\mu})v(\mu)=0$, we have $X_{\alpha}X_{-\alpha}v(\mu)=0$. By the choice of X_{α} in (2.1), we have $0=(X_{\alpha}X_{-\alpha}v(\mu),v(\mu))=|X_{-\alpha}v(\mu)|^2$. This implies that $X_{-\alpha}v(\mu)=0$. Let us now prove this lemma. By the asummption for γ and δ , there exist a nonzero complex number c and a finite number of roots $\alpha_1,\alpha_2,\cdots,\alpha_q\in \Sigma_{K(\Theta)}$ such that

$$ad(X_{\alpha_1}X_{\alpha_2}\cdots X_{\alpha_n})X_{\gamma}=cX_{\delta}$$
.

Then we have

$$\begin{split} c|P_{\mu+\omega}(X_\delta\otimes v(\mu))|^2 &= (P_{\mu+\omega}(ad(X_{\alpha_1}X_{\alpha_2}\cdots X_{\alpha_q})X_{\gamma}\otimes v(\mu)),\, P_{\mu+\omega}(X_\delta\otimes v(\mu)))\\ &= (X_{\alpha_1}P_{\mu+\omega}(ad(X_{\alpha_2}\cdots X_{\alpha_q})X_{\gamma}\otimes v(\mu)),\, P_{\mu+\omega}(X_\delta\otimes v(\mu)))\\ &- (P_{\mu+\omega}(ad(X_{\alpha_2}\cdots X_{\alpha_q})X_{\gamma}\otimes X_{\alpha_1}v(\mu)),\, P_{\mu+\omega}(X_\delta\otimes v(\mu)))\,,\\ &= (P_{\mu+\omega}(ad(X_{\alpha_2}\cdots X_{\alpha_q})X_{\gamma}\otimes v(\mu)),\, P_{\mu+\omega}(ad(X_{-\alpha_1})X_\delta\otimes v(\mu)))\\ &\cdots\\ &= (P_{\mu}(X_{\gamma}\otimes v(\mu)),\, P_{\mu}(ad(X_{-\alpha_q}\cdots X_{-\alpha_1})X_\delta\otimes v(\mu)))\\ &= c'|P_{\mu+\omega}(X_{\gamma}\otimes v(\mu))^2\,, \end{split}$$

where $c' = \phi(ad(X_{-\alpha_q} \cdots X_{-\alpha_1})X_{\delta}, X_{-\gamma})$. Since the Killing form ϕ is τ invariant, (2.6) implies that

$$c' = (-1)^q \phi(ad(X_{\alpha_q} \cdots X_{\alpha_1}) X_{-\delta}, X_{\gamma}) = \phi(X_{-\delta}, ad(X_{\alpha_1} X_{\alpha_2} \cdots X_{\alpha_q}) X_{\gamma}) = c.$$

Thus we have $|P_{\mu+\omega}(X_{\nu}\otimes v(\mu))| = |P_{\mu+\omega}(X_{\delta}\otimes v(\mu))|$.

THEOREM 8.5. Let $(P_K, P(\Theta), P)$ be a standard triple and $\mu \in C(\Theta)^* \cap \Gamma_K$. Assume that μ is admissible. Then we have

$$PW(\mu) = [\{Z(\gamma) : \gamma \text{ is a } P_{K(\Theta)}\text{-highest root in } P_n \text{ and of the second kind }\}],$$

where
$$Z(\gamma) = P_{\mu}(X_{-\gamma} \otimes P_{+}(X_{\gamma} \otimes v(\mu)) - X_{\gamma} \otimes P_{+}(X_{-\gamma} \otimes v(\mu))).$$

PROOF. Let γ be a noncompact root in Σ . By using Corollary 4.7 we have

$$(8.1) \quad Z(\gamma) = \sum_{\omega \in P_n \cap \Sigma_{W(\mu)}} c(\mu; \omega) (|P_{\mu+\omega}(X_{\gamma} \otimes v(\mu))|^2 - |P_{\mu+\omega}(X_{-\gamma} \otimes v(\mu))|^2) v_{\omega}(\mu).$$

By Lemma 8.4 if two vectors X_{γ} and X_{δ} belong to the same simple $K(\Theta)$ -submodule in $\mathfrak{p}_{\mathbb{C}}$, then we have

$$(8.2) Z(\gamma) = Z(\delta).$$

Especially if γ is of the first kind, then we have

$$(8.3) Z(\gamma) = 0.$$

Hence by (8.1), (8.2) and (8.3) we have our assertion of this theorem.

DEFINITION 8.6. Let $(P_K, P(\Theta), P)$ be a standard triple and $\mu \in C(\Theta)^* \cap \Gamma_K$. We define $|\mu|_{\Theta}$ by

(8.4)
$$|\mu|_{\Theta} = \min \left\{ \frac{2(\mu, \alpha)}{|\alpha|^2} : \alpha \in P_K \backslash P_{K(\Theta)} \right\}.$$

We note that if $|\mu|_{\Theta} \ge 3$, then μ is admissible. Hence by Lemma 5.8 we have $P_{\mu+\omega}(\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu}) \ne \{0\}$ for μ satisfying $|\mu|_{\Theta} \ge 3$ and a $P_{K(\Theta)}$ -highest root $\omega \in P_n$.

LEMMA 8.7. Let ω be a $P_{K(\Theta)}$ -highest noncompact root in P and γ a noncompact root. Then there exists a positive integer N (\geq 3) such that

$$|P_{\mu+\omega}(X_{\gamma}\otimes v(\mu))|^2 \le |P_{\mu+\omega}(X_{\omega}\otimes v(\mu))|^2$$

for all $\mu \in C(\Theta)^* \cap \Gamma_K$ satisfying $|\mu|_{\Theta} \geq N$.

PROOF. Let \mathfrak{q}_{ω} be the simple $K(\Theta)$ -module generated by X_{ω} . Suppose that $X_{\gamma} \in \mathfrak{q}_{\omega}$. By Lemma 8.4 we have the inequality in this lemma for all $\mu \in C(\Theta)^* \cap \Gamma_K$ satisfying $|\mu|_{\Theta} \geq 3$. Let us consider the case $X_{\gamma} \notin \mathfrak{q}_{\omega}$. By Lemma 4.3 we have

$$(8.5) \qquad |P_{\mu+\omega}(X_{\gamma}\otimes v(\mu))|^2 = \sum_{\alpha\in P_K} \frac{2|\langle\alpha,\gamma\rangle|^2}{|\lambda+\omega|^2 - |\lambda+\gamma|^2} |P_{\mu+\omega}(X_{\gamma+\alpha}\otimes v(\mu))|^2.$$

By (2.4) we have

$$(8.6) 2|\langle \alpha, \gamma \rangle| < 3|\alpha|^2.$$

By Lemma 3.8 in [3] if $P_{\mu+\omega}(X_{\gamma}\otimes v(\mu))\neq 0$, then there exists $I=(\alpha_1,\alpha_2,\cdots,\alpha_q)\in \Pi$ such that $\omega-\gamma=\langle I\rangle$. Moreover, since $X_{\gamma}\notin\mathfrak{q}_{\omega}$, we have $\alpha_p\notin P_{K(\Theta)}$ for a root α_p in $\{\alpha_1,\alpha_2,\cdots,\alpha_q\}$. This implies that

(8.7)
$$|\lambda + \omega|^{2} - |\lambda + \gamma|^{2} = \sum_{i=1}^{q} 2(\mu, \alpha_{i}) + |\omega|^{2} - |\gamma|^{2}$$

$$\geq 2(\mu, \alpha_{p}) + |\omega|^{2} - |\gamma|^{2}$$

$$\geq |\mu|_{\Theta}|\alpha_{p}|^{2} + |\omega|^{2} - |\gamma|^{2}.$$

Hence by (8.5), (8.6) and (8.7) there exists a positive integer N_1 such that

$$|P_{\mu+\omega}(X_{\gamma}\otimes v(\mu))|^2 \leq \max_{\alpha\in P_K} |P_{\mu+\omega}(X_{\gamma+\alpha}\otimes v(\mu))|^2$$

for all $\mu \in C(\Theta)^* \cap \Gamma_K$ satisfying $|\mu|_{\Theta} \geq N_1$. By using this argument successively we can prove this lemma.

COROLLARY 8.8. Let $\omega, \gamma \in \Sigma_n$. Suppose that ω and γ are $P_{K(\Theta)}$ -highest. Then we have

$$\lim_{|\mu|_{\Theta} \to +\infty} |P_{\mu+\omega}(X_{\gamma} \otimes v(\mu))|^2 = \delta_{\omega,\gamma} ,$$

where $\delta_{\omega,\gamma}$ is Kronecker's delta.

PROOF. Assume that $X_{\gamma} \notin \mathfrak{q}_{\omega}$. By Lemma 8.7 and (8.5), there exists a number N' such that

$$|P_{\mu+\omega}(X_{\gamma}\otimes v(\mu))|^{2} \leq \sum_{\alpha\in P_{\nu}} \frac{2|\langle \alpha,\gamma\rangle|^{2}}{|\lambda+\omega|^{2}-|\lambda+\gamma|^{2}} |P_{\mu+\omega}(X_{\omega}\otimes v(\mu))|^{2}$$

for all $\mu \in C(\Theta)^* \cap \Gamma_K$ satisfying $|\mu|_{\Theta} \geq N'$. This inequality and (8.7) imply

$$\lim_{|\mu|_{\Theta} \to +\infty} |P_{\mu+\omega}(X_{\gamma} \otimes v(\mu))|^2 = 0.$$

Consider the case $\gamma = \omega$. We can assume that $|\mu|_{\Theta}$ of $\mu \in C(\Theta)^* \cap \Gamma_K$ is sufficiently large. Then $\mu + \omega \in \Gamma_K$ and $P_{\mu + \omega}(\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu}) \neq \{0\}$. Since $|P_{\mu + \omega}(X_{\omega} \otimes v(\mu))|^2 = f(\lambda + \omega : \omega)$, Theorem 5.5 implies that

$$\lim_{|\mu|_{\omega} \to +\infty} |P_{\mu+\omega}(X_{\omega} \otimes v(\mu))|^2 = 1.$$

THEOREM 8.9. Let $(P_K, P(\Theta), P)$ be a standard triple, and $C(\Theta)^* = \{\eta \in (\sqrt{-1}\mathfrak{b})^* : H_{\eta} \in C(\Theta)\}$. Then there exists a sufficiently large number N such that

$$\dim PW(\mu) = \sharp \{\omega \in P_n : \omega \text{ is } P_{K(\Theta)}\text{-highest and of the second kind}\}$$

for all $\mu \in C(\Theta)^* \cap \Gamma_K$ satisfying $|\mu|_{\Theta} \geq N$.

PROOF. Let ω and γ be two $P_{K(\Theta)}$ -highest roots in P_n . We put

$$a_{\omega,\gamma}(\mu) = c(\mu;\omega)(|P_{\mu+\omega}(X_{\gamma} \otimes v(\mu))|^2 - |P_{\mu+\omega}(X_{-\gamma} \otimes v(\mu))|^2).$$

By Corollary 4.5 we have

(8.8)
$$P_{\mu}(X_{-\gamma} \otimes P_{+}(X_{\gamma} \otimes v(\mu)) - X_{\gamma} \otimes P_{+}(X_{-\gamma} \otimes v(\mu)))$$
$$= \sum_{\omega \in P_{n} \cap \Sigma_{W(\mu)}} a_{\omega,\gamma}(\mu) v_{\omega}(\mu) .$$

Since $\deg \pi_{\mu} = \prod_{\alpha \in P_K} (\lambda, \alpha) (\rho_K, \alpha)^{-1}$, we have $\lim_{|\mu|_{\Theta} \to +\infty} c(\mu; \omega) = d(\omega)$, where $d(\omega)$ is a positive constant. Hence by Corollary 8.8 we have

$$\lim_{|\mu|_{\Theta} \to +\infty} a_{\omega,\gamma}(\mu) = d(\omega) \delta_{\omega,\gamma} \quad \text{for } \omega, \gamma \in P_{\Theta} ,$$

where

$$P_{\Theta} = \{ \gamma \in P_n : \gamma \text{ is } P_{K(\Theta)} \text{-highest and of the second kind} \}.$$

In view of Theorem 8.5 and (8.8) we can prove there exists a number N such that $\dim PW(\mu) = \sharp P_{\Theta}$ for all $\mu \in C(\Theta)^* \cap \Gamma_K$ satisfying $|\mu|_{\Theta} \geq N$.

References

- [1] J. DEXIMIER, Reprèsentation intègrables du groupe De Sitter, Bull. Soc. Math. 89 (1961), 9–41.
- [2] S. HELGASON, Differential geometry and symmetric space, Academic Press (1962).
- [3] H. MIDORIKAWA, On chracteristic function of a tensor module for the maximal compact subgroup of inner type real simple groups, preprint (2002).
- [4] V. S. VARADARAJAN, Lie groups, Lie algebras and their representations, Springer.

Present Address:

DEPARTMENT OF MATHEMATICS, TSUDA COLLEGE,

KODAIRA, TOKYO, 187–8577 JAPAN.