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1. Introduction

Let C C P? be an irreducible plane curve of degree d over the complex number field
C. We denote by C(C) the field of rational functions on C. Let C be the non-singular model
of C. Since C(C) = C(C), a non-constant rational function ¢ on C induces a non-constant
morphism ¢ : C — P Let deg ¢ denote the degree of this morphism ¢. We remark that
deg ¢ = [C(C) : C(p)] = deg (¢)o = deg (¢)oo. The gonality of C, denoted by Gon(C), is
defined to be min{deg ¢ | ¢ € C(C)\ C}. So by definition, the gonality of C is nothing but the
gonality of C. Let v denote the maximal multiplicity of C. We easily see that Gon(C) < d—v.
We know that the genus of C is equal to (d — 1)(d —2)/2 — § with § > 0.

THEOREM 1. Let C be an irreducible plane curve of degree d with § > v. Letting
d =i (mod v), define

V=i [5-v v =240y
R, 8,) = -1 u—1+<2(v—1>>'

Ifd/v > R(v,4,i), then Gon(C) =d — v.

REMARK 1. Theorem 1 is a generalization of Theorem 2.1 in Coppens and Kato [1]
where they considered the case in which C has only nodes and ordinary cusps. Note that
R(2,8,0) = 1 4++/8 —2, R(2,8,1) = 1 + /5 — 7/4. In general, we have the estimation:
R(,8,i) < 1+ /3/(v—1).

We have § < v if either (i) C is a smooth curve (§ = 0, v = 1 and Gon(C) = d — 1 for
all d > 2), or (ii) C has one node or one ordinary cusp (6 = 1 and v = 2 and Gon(C) =d —2
forall d > 3). Cf. [1], [3], [5].

DEFINITION. Let my, --- , m;, denote the multiplicities of all singular points (we in-
clude infinitely near singular points) of C. Set n = 3 (m;/v)>. Clearly, we have n > 1 > 1.
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THEOREM 2. Let C be an irreducible plane curve of degree d with v > 3. We have
Gon(C)=d —vif

>+ 1D/2, for n <a(w), n=5
d/v {>2/n—A+1/v), for av)<n<4,
> 3, for 4 <n<35,

where a(v) = (2 — /T —=2/v)2
REMARK 2. Notethata(3) =2.023--- and 1 <a(v) <1.671.-- forv > 4.

We shall show that if n > 2v + 5, then the criterion in Theorem 1 is more effective than
that in Theorem 2. We also prove some subtle criterions.

THEOREM 3. Let C be an irreducible plane curve of degree d with n singular points
(infinitely near singular points are also counted). We renumber the multiplicities m;’s as
v=mi >my>m3>--->my Wehave Gon(C) = d — v if either

i) n<2 or
(i) n=3andd/v > 2, or
(iil) n>4,d > my+ m3+ my and

n+1)/2 if v=3,4,
d/v > if v>5and n <bW), n>cW),
A/2Byn—A+1/v)} if v=5and b(v) =n<c(),

where b(v) = (3/2 — JT/&—1/v)? and c(v) = (3/2 + J1/4 —1/v)>.
REMARK 3. Inview of Theorem 2, the condition (iii) is meaningful only ifa(v) < n <

5. We remark that a(v) < b(v) < c(v)and 1 < b(v) <1.629... and2.970--- < c(v) < 4
forv > 5.

2. Rational functions on C and on P2

Let ¢ be a rational function on C. Set r = deg ¢. We know that a rational function ¢ of
a plane curve C is a restriction of a rational function @ = g(x, y, z)/h(x, y, z) on PZ, where
g and h are relatively prime homogeneous polynomials of the same degree, say k. We call
k the degree of the rational function @. A rational function @ is called a linear function if

k = 1. Classically, one says that ¢ is cut out by the pencil A : tpg — r1h = 0 on P2. Let us
consider the rational map

@ : P23 P> (h(P), g(P)) €P'.

By a sequence of blowing-ups 7 : X — P2, one can resolve the base points of @ and the

singularities of C, so that @ o 7 : X — P! becomes a morphism and the strict transform C
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of C is non-singular. Write 7 = mj o - - - o 7wy, where ; : X; — X;_ is the blowing-up at a
point P; € X;_1 and Xg = P2, Xy = X. Let E; be the total transform on X of the exceptional

curve of the blowing-up ;. We have a relation of divisors: C =n*C— > " m; E;, where m;
is the multiplicity of the strict transform of C on X;_ at P;. Set H = n*L, where L is a
line on P2. Then, we have the linear equivalence: C ~dH — > m; E;. Tt follows from this
and the adjunction formula that § = ) m; (m; — 1)/2. Any fibre D of the morphism & o 7
is linearly equivalent to a divisor kH — Y a; E; with some integers a;. Since DE; > 0 and
D? = 0, we must have the relation:

e=ya

and also we must have q; > 0 for all ;. We then obtain the formula:

r=dk—2aimi.

If k = 1, then we must have r = d — m; for some i. In particular, there is a rational function
@ with r = d — v. Note that a rational function ¢*/h* € C(P?) also induces ¢ if and only if
gh* — hg* is divisible by the defining polynomial of C. So many different rational functions
on P? can induce the same rational function ¢ on C.

LEMMA 1. We have the inequality: r + 8 > dk — k>.
PROOE. It suffices to show that k2 + § > > aim;. We see that

K465 — Zaimi = Z Qa; —m;)?/4 + Z mi(m; —2)/4+ Z aj(a; —1).

m;#1 m;#1 mi=1
If m; > 2 orm; = 0, then m;(m; —2) > 0. Since a; is an integer, we have a;(a; — 1) > 0.
Thus we get the desired inequality. |
Let b denote the number of a; with a; # 0.
LEMMA 2. Ifr <d —v, thenk >2andd/v < (kv/bD — 1)/(k — 1).

PROOF. Ifk = 1, then we have r > d — v. So assume k > 2. By Schwarz’ inequality,
we have Y a; < /bk. We obtain

r>dk — (Zai)v > k(d —vVb)=d —v+ (k- Dvld/v— (kvVb-1)/k -1},

which implies the assertion. O

LEMMA 3. Ifr <d —v, thenk >2andk > d/v — 1. Furthermore, ifr =d —v +s
withs > Qandk > 2, thenk > d/v —s — 1.



140 MASAHITO OHKOUCHI AND FUMIO SAKAI

PROOF. In view of the inequality in Lemma 2, it suffices to note that b < k2. Suppose
r=d—v+swiths > 0. If kK > 2, then we obtain

k+s>k+s/k—1)>d/v—1.

We renumber a;’s sothata; > ar» > --->ap > 1,a; =0 fori > b.

LEMMA 4. We haver > d — v either if b <2, orifb =3 andd/v > 2.

PROOF. (i) b =1. Wehaver = k(d —my1) > k(d —v) >d—v. (i) b = 2. By
Bezout’s theorem applied to the curve C and the line passing through P; and P, we have the

inequality: d > m + m>. On the other hand, since k2= a% + a%, we must have a; < k for
i = 1,2. Thus we obtain

r=d—v+Ww—m)+ (k—1d— (ar — )m; —aymy
>d—v+(k—a)m +k—a—1Dmy>d—v.
(i) b = 3. Incase k > 4, by Lemma 2, we have r > d — v, since (4\/5— 1)/3 =
1.976--- < 2. In case k < 3, the equation: k2= al2 +a§ +a_%, B3 <ay+ax+az <5)has

only one integer solution: k = 3, a; = ap = 2, a3 = 1. Under the assumption: d > 2v, we
obtainr =d — v+ (v —mqy) +2d — (my +2mr +m3) >d — v. O

LEMMA 5. Ifr <d —vandk =2,thenb =4 andd < my +my + m3 + ma — v.

PROOF. Wehaveb =1lorb=4.Incaseb =4, wemusthavea; = ar» = a3 = a4 =
1. Sowe obtaind — v > r = 2d — m| — my — m3 — m4, which gives the assertion. O

LEMMA 6. We have the inequality: r > k(d — Zmlz)

PROOF. By Schwarz’ inequality, we have

Sami < \[S e[ Somt =k,

which gives the assertion. a

3. Proof of Theorem 1

Let C be an irreducible plane curve of degree d.

LEMMA 7 (Cf. Coppens and Kato[1, 2]). Let ¢ be a rational function on C with r =
deg ¢. Let [ be a positive integer with |l < d. Supposer +38 < (I + 1)(d —1 — 1). Then there
exists a rational function on P’ of degree k < [ which induces ¢ on C.

PROOF. Assume to the contrary that there are no rational functions of degree < [/ on
P? which induces ¢ on C. Following the arguments in [1, 2], one can prove that there exists
a rational function of degree k on P? which induces ¢ on C with [ < k < d — 3 — 1. Using
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Lemma 1, we have dk — k2 < r +68 < (I + 1)(d — | — 1), from which we infer that
(l+1—k)(d—k—1—1)> 0. Thisis absurd, because/ +1—k <Qandd —k—[1—1> 2.
O

PROPOSITION 1. Assume there is a positive integer | such that | < (d/v) — 1 and
§—v<lI(d—1-2). Then we have Gon(C) =d — v.

PROOF. Suppose there exists a rational function ¢ on C withr = deg ¢ <d —v. In
this case, we have the inequality:

Fds<d—v—1+48<ld—I1-24+d—1=(+1)d—1-1).

So by Lemma 7, there exists a rational function @ of degree k <[ on P2 which induces @ on
C. But, since k <[ < (d/v) — 1, by Lemma 3, there cannot exist such a rational function
D. a

PROPOSITION 2. [If[d/v] > 2and ([d/v]— 1)(d — [d/v]—1) > § — v, then we have
Gon(C) =d —v.

REMARK 4. In case v = 2, this criterion is best possible. See [1], Examples 4,1
and 4,2. We see that the assertion of Proposition 1 is equivalent to that of Proposition 2.
Take a positive integer / which satisfies the two assumptions in Proposition 1. We find that
1 <1 <[d/vl]—-1 < (d/v) — 1. The quadratic function Q(x) = x(d —x —2) is a
monotone increasing function for the interval 0 < x < (d/2) — 1. Hence we infer that
0() < Q(ld/v] — 1). Thus the integer [d/v] — 1 also satisfies the two assumptions in
Proposition 1.

Using the latter assertion in Lemma 3, we obtain the following

PROPOSITION 3. Let s be a non-negative integer. Setl = d/v —s — 2 (ifd = 0
(mod v)), [d/v] —s — 1 (otherwise). Ifl > 1 and 5 —v +s+1 < I(d —1 — 2), then
Gon(C) = d — v and any rational function ¢ withd — v < deg ¢ < d — v + s is induced by
a linear function on P2

PROOF OF THEOREM 1. We reformulate Proposition 2. Letting d = [d/v]v + i with
0 <i < v, the inequality § — v < ([d/v] — 1)(d — [d/v] — 1) can be written as:

§—v <v—2+i)2<{d 1)2+(v—2)i}2

v—1 20— 1) v 2uw—1)

If § — v > 0, then the above inequality is equivalent to the inequality d/v > R(8,v,i).
Furthermore, we easily see that R(6,v,i) > 1 4 i/v. So it follows from the inequality
d/v > R(8,v,i) that d > v + i, which gives d > 2v + i if d = i (mod v) and hence
d/v=>2.

REMARK 5. If§—v < 0, then the left hand side of the above inequality is negative. It
follows that the above inequality always holds. Incase § = 1, v = 2, we have Gon(C) = d—2
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for d > 4. It is well known that Gon(C) = 1ifd = 3. Incase § = 0,v = 1, we have
Gon(C) =d — 1 ford > 2.
LEMMA 8. We have the estimation:
R(v,68,i) < l—i—m.
PROOF. Sincei < v — 1, we have
V+w=2i<vV+0-2v—-D=2vv—1)—(—2)

andv —2+1i < 2(v — 1). Thus, we obtain

2 Y . .\ 2
Ve + (v 2)l§1 and v (v 2+1i -0,
2v(v—1) v—1 2w —1)
which gives the desired inequality. a

4. Proof of Theorems 2 and 3

Let C be an irreducible plane curve of degree d. Now let 7 : X — P? be the minimal
resolution of the singularities of C. We do not require that the inverse image 7 ~!(C) has
normal crossings. In this case, m; > 2 for all i.

LEMMA 9. Assume d/v > (n + 1)/2. Let ¢ be a rational function on C with r =
deg ¢ < d — v. Then we can find a rational function @ on P2 which induces ¢ on C such
that ® ot : X — P! becomes a morphism. Furthermore, the degree k of ® satisfies the
inequality:

J1— A +1/v)
div—yn

PROOF. According to Theorem 3.1 in Serrano [5](See also [4]), such a rational function

k<1+

exists if (~?2 > (r+ 1)2. On X, we have
o+ 1P =d =Y mE—(d =)’
= 2dv — Zm? — vV =22d/v—(+1)/2}>0.
By Lemma 6, we haved — v — 1 > r > kv(d/v — /7). Thus we obtain

AR U ViO BN B (R V0D
NG ENER

k

O
REMARK 6. Under the hypothesis d/v > (7 + 1)/2, we see thatd/v — /n =d /v —

m+D/2+(/n— 1)2/2 > 0. Since k > 1, we must have /7 — (1 +1/v) > 0.

In a similar manner to that in the proof of Lemma 9, we can show the following
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LEMMA 10. Let s be a non-negative integer with s < v — 1. Let ¢ be a rational
SJunctionon C withr =deg ¢ =d —v +s. If

s+1 s+1
d/V>(n+1)/2+m{7]—l+ v },

then we can find a rational function @ on P2 which induces ¢ on C such that ® o : X — P!
becomes a morphism. Furthermore, the degree k of @ satisfies the inequality:

Jn—1+s/v
djv—yi

PROPOSITION 4. Supposed/v > (n+ 1)/2. We get Gon(C) = d — v if either
i d/v>2/n—-0+1/v),or
i) n=5,o0r
(iii) d/v=3andn <5, or
(v) d/v > 1/D{3/1— 1+ 1/v)}andd > my +m3 +my (if n > 4), where the
multiplicities m;’s are renumbered as my > my > m3 > - --.

k<1+

PROOF. Assume there is a rational function ¢ on C with r = deg ¢ < d —v. By
Lemma 9, we can find a rational function @ on P? which induces ¢ on C such that = has
already resolved the base points of @. The degree k of @ must satisfy the inequality in
Lemma 9.

() Ifd/v>2/n—(1+1/v), then we infer that k < 2. So we get k = 1, which is
impossible by Lemma 3.

(i) Ifn > 5, then we have d/v > 3. We obtain

Ji—1 2 2
k<14 —N1 1 = (3++5)/2 <3.
= +(n+1)/2—\/ﬁ +ﬁ—1§ +J§—1 G+v3/2=<

So k < 2, which contradicts Lemma 3.
(iii)) We have

f:/éz(3+«/§)/2<3.

So k < 2, which again contradicts Lemma 3.
(iv) In a similar manner to that in the proof of (i), under the assumption on d/v, we
obtain k < 3. In case k = 2, by Lemma 5, we get a contradiction. O

k<1+

PROOF OF THEOREM 2. By Proposition 4, (i), we get Gon(C) = d — v ifd/v >
max{2,/n — (1 + 1/v), (n + 1)/2}. We easily see that 2,/n — (1 + 1/v) > (n + 1)/2 if
and only if 2 — /T =2/v < /7 < 2+ /T—2/v. Incase v > 3, we have the relation:
aw) = 2 —JT=2/v)? <5 < 2+ /T=2/v)%. Using also Proposition 4, (ii), we get
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Gon(C) =d —vif

n+1/2, for n <a(w),n>5
>

d/v
2/n—A+1/v), fora(w) <n<S5.

On the other hand, by Proposition 4, (iii), for n < 5, we get Gon(C) = d — v ifd/v > 3.
Obviously, 2,/7 — (1 +1/v) > 3if and only if ,/7 > 2+ 1/(2v). Thus, for (2 + 1/2v))? <
n < 5, the condition d/v > 3 is sharper than the condition d/v > 2,/ — (1 + 1/v). Finally,
for the interval 4 < n < 2 + 1/(211))2, we find that 3 > 2,/n — (1 + 1/v) > 3 —1/v.
The inequality d/v > 3 — 1/v implies d > 3v — 1, hence d > 3v. As a consequence, the
conditions d/v > 3 and d/v > 2,/ — (1 + 1/v) have the same effect.

REMARK 7. Incase v = 2, we infer from Proposition 4, (i) that if d/2 > (n + 1)/2,
then Gon(C) = d — 2. In this case, § = n. But the criterion in Theorem 1 is sharper than this
one.

PROPOSITION 5. Suppose v > 3. If n = 2v + 5, then the criterion in Theorem 1 is
sharper than that in Theorem 2.

PROOF. It suffices to prove the inequality: (n + 1)/2 > R(v, §,i). By definition, we
have § < > mi2/2 = v25)/2. Using Lemma 8, we obtain

R(v,8,i) < Rw,v*n/2,i) < 14+ vy/n/2(v —1).

By an easy manipulation, the inequality: (n + 1)/2 > 1 4+ v{/n/2(v — 1) can be reduced to
the inequality: n > #(v), where

2
1 1
tw)=v+2+4+—+ v+2+ —1.
v—1 v—1

Clearly, we have 1 (v) <2v + 5. Thus, if n > 2v 4+ 5, then (n + 1)/2 > R(v, $, i). O

PROPOSITION 6. Assume
d/v > ( +1)/2+—1 1+1
VvV > — — 5.
g 20—1n|" v

If either
@ d/v>2/n-1,o0r
(i) n >S5, o0r
(i) d/v>3,n<S5,
then we have Gon(C) = d — v and any rational function ¢ with deg ¢ = d — v is induced by
a linear function on P?.

PROOF OF THEOREM 3. Suppose d/v > (n + 1)/2. Assume there is a rational func-
tion ¢ on C with r = deg ¢ < d — v. We infer from Lemma 9 that there is a rational function
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@ on P? which induces ¢ on C such that 7 resolves the base points of @. It follows that
b <n.

(i), (i) We first show that d/v > (n + 1)/2 for the case (i). If n = 1, then we have
n=1andsod/v > 1= (n+1)/2. If n = 2, then, as we have noticed, we have d > m+m;.
It follows that d /v > 1+ (m2/v) > 1+ (1/2)(m2/v)? = (n+1)/2. (i) Since n < n = 3, we
have d/v > 2 > (n + 1)/2. Thus, we obtain b < n. By Lemma 4, we derive a contradiction.

(iii) We easily see that (1/2){3,/n — (1 +1/v)} > (n+1)/2if v <4, orif v > 5 and
b(v) < n < c(v). Thus, under the assumptions in (iii), we have

d/v > max{(1/2){3/n — (1 + 1/v)}, (n+ 1)/2}.

By Proposition 4, (iv), we arrive at a contradiction.

5. Examples

EXAMPLE 1. Let C be anirreducible plane curve of degree d = km + 1 defined by the
equation:

k k
y[[e=ay"—c] ] —bpm =0,
i=1 j=1

where the a;’s and the b;’s are mutually distinct, respectively, b; # 0 for all j and c is a
general constant. We have Gon(C) = k.

PROOF. By Eisenstein’s criterion applied to the homegenization of the above polyno-
mial, we easily see that the curve C is irreducible. If m = 1, then C is a smooth curve with
Gon(C) = d — 1 = k. In what follows, we assume that m > 2. Under the assumption that
the constant ¢ is general, the curve C has k2 ordinary m-fold singular points P;; = (a;, b;)
forl <i,j <k.Thusv=mandn = k2. In this case, Gon(C) < d — v. Indeed, the rational
function @ = [[(y — bj)/ [1(x — a;) of degree k on P2 induces a rational function ponC.
The function @ has k? base points P;j on C. This proves that deg ¢ = (km + 1)k — k*m = k.
Note thatk > d/v — 1.

We now prove that Gon(C) = k. We first see that C(C) = C(g, x). For simplicity’s
sake, we also denote by x, y the rational functions on C induced by x, y. Clearly, we have
C(p,x) C C(C). Since ¢ = y/c, we obtain y € C(gp, x), which implies C(¢, x) = C(C).
Now C(g, x) is the rational function field of the curve C” : ¢ [[(x —a;) —c[[(c¢™ —b;) = 0.
The curve C' is of degree d’ = mk and has one singular point with multiplicity sequence
((m — Dk, kjy—2, k — 1) on the line at infinity, where by k,,—_> we mean k’s repeated m — 2
times. For C’, we use the notation d’, v" and ’. We have

n =14 @m—2)/(m—1)*+{k—1)/k(m — D} <m/(m—1).

We obtain 2./7" — (1 4+ 1/v') < 23/m/(m — 1) — 1 — 1/(m — 1)k. Hence, we have d’/v" —
20 — A +1/V)} > (Vm/m — 1) —1)>+1/(m — Dk > 0. We can show that n’ > a(v').
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We therefore conclude from Theorem 2 that Gon(C’) =d’' —v' =k if v/ > 3. Incase v’ < 2,
by Theorem 3, we can easily check that Gon(C’) = k. Since C and C’ are birational, we get
Gon(C) = k. O

EXAMPLE 2. Let C be an irreducible plane curve of degree d. Suppose C has 9 ordi-
nary triple points. By Theorem 1, we get Gon(C) = d — 3 ifd > 14. Let C be the curve of
degree 11 defined by the equation:

3 3
[ —a)*c—as) —c [ v = b)* (v — ba) =0,

i=1 j=1

where the a;’s and the b;’s are mutually distinct, respectively, b; # 0 for all j and c is a
general constant. This curve C has 9 ordinary triple points. But we see that Gon(C) < 6 <
11-3.

PROOF. We consider the rational function @ = ]_[3:1 (y—b))/ ]_[?zl(x — a;) on P%.
Let ¢ be the rational function on C induced by @. It turns out that deg ¢ = 6. a

EXAMPLE 3. Let C be an irreducible plane curve of degree d = em defined by the
equation: y™ = ]_[f’znl(x — aj), where the a;’s are mutually distinct. We have Gon(C) = m if
e>2or=m—1ife=1.

PROOF. Ife =1orife =2 and m = 1, then C is smooth. Otherwise, the curve C
has one singular point with multiplicity sequence ((e — 1)m, m.—1) on the line at infinity.
We havev = (e — I)m, n =e/(e — 1) andsod/v =e/(e — 1) = n. Incase v > 3, we can
apply Theorem 2 and we conclude that Gon(C) = d — v = m. In case v = 2, we see that
the genus of C isequalto 1 (if m = e = 2)or 0 (if m = 1 and e = 3). Thus we also get
Gon(C) = m. O

EXAMPLE 4. Let C be the transform of an irreducible plane curve I' of degree m by
a general quadratic transformation. Then C is of degree 2m and has three ordinary m-fold
singular points other than the singular points of I'. Since a general line is transformed into a
conic, we have a rational function @ on P’ of degree two which induces a rational function ¢
on C withdeg ¢ < m — 1. In this case, we have d /v = 2, but Gon(C) = Gon(I") < d — v.
Cf. Lemma 5. As a consequence, we conclude that the condition in Theorem 3, (ii) is sharp.

EXAMPLE 5. Let C be the plane curve of degree 2m + 1 with m > 2 defined by the
equation: y"™+t1 — (x™ + x2"*+1) = 0. We have Gon(C) = m + 1.

PROOF. The point (0, 0) is a singular point with mutiplicity sequence (m) and C also
has a singular point with multiplicity sequence (1, m) on the line at infinity. We have d =
2m+1,v=m,n =3 and n = 3. Thusd/v = 2+ 1/m > 2. By Theorem 3, (ii), we infer
that Gon(C) =d — v =m + 1. O

EXAMPLE 6. Let C be the Fermat curve: x™ + y™ — 1 = 0. Take a rational function
D =y/(x—1)on P2 Let @ be the rational function on C induced by ®@. We know that
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Gon(C) = m — 1 = deg ¢. By the way, we have C(C) = C(x, ¢) = C(C’), where the curve
C' is defined by the equation:

P =D " = 1)/ (x = 1) =0.

In this case, the curve C' has two singular points with multiplicity sequences (m) and (m —
1,m—1).

EXAMPLE 7. Let C be the curve of degree 9 defined by the equation:

y(x —a)’(x —a)® —c(y —b1)>(y — b))’ =0,

where the a;’s and the b;’s are mutually distinct, respectively and the constant c is generally
chosen. Then we have Gon(C) = 4.

PROOF. The curve C has two ordinary singular points of multiplicities 5 and 3, two
singular points with multiplicity sequence (3,2). We have v = 5 and n = 12/5. By The-
orem 3, (iii), we conclude that Gon(C) = 9 — 5 = 4. In this example, we cannot apply
Theorem 2. O
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