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Abstract. We are studying the action of Galois groups on the pro-/ completion of the fundamental group of

P:)(T\ {0, un, oo}. If n = 2p, where p is an odd prime number then the Lie algebra of derivations associated to
n

the image of Gal(Q/Q (5 p-12)) has prl generators in each even degree and prl generators in each odd degree

greater than 1. We shall show that generators in even degrees generate a free Lie algebra.

1. Introduction

In this note we are studying the action of Galois groups on the pro-/ completion of the
\ {0, w,, oo}. We give an example for n = 7 that the associated

fundamental group of Pé o

graded Lie algebra of the image of the Galois group Gal(Q(u,)/Q(w,)) in the automorphism
group of the pro-/ completion of the fundamental group is not free. We consider generators in
degree 1 of this Lie algebra and we show that there are non-trivial relations between commu-
tators of these generators. P. Deligne mentioned to the second author that this situation will
happen forn > 7.

The Galois action on 711 (Pla\ {0, 1, o0}, 0_1)) was studied by A. Grothendieck, P. Deligne,

Y. Thara (see [1] and [3]). On the conference in Schloss Ringberg P.Deligne gave a sketch of
a proof of a striking result that the Lie algebra of derivations associated to mixed Hodge
structure of the fundamental group of P! \ {0, 1, —1, oo} contains a free Lie algebra on one
generator in degree 1 (corresponding to log2) and on generators in degrees 3,5, ---,2n +
1,--- (see [2)).

The Galois action on the fundamental group of Pi)(u 5
P

number p was studied by the second author in [6]. Motivated by the result of P. Deligne we

\ {0, pp, 0o} for an odd prime

\ {0, u2p, 00}. Observe that the number of

were hoping to get stronger results for P.
Q(MZp)

generators in degrees greater than 1 is the same in both cases. There are pT_l generators in

each even degree and pT_l generators in each odd degree greater than 1. We shall show that
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generators in even degrees generate a free Lie algebra. Unfortunately we are not able to say
anything interesting about generators in odd degrees even for n = 6.

NOTATIONS
Q/{{X1, -, X,}}—Qy-algebra of formal power series in non-commuting variables
X1,y Xn:
Lie(X1, - - - , X,,)—free Lie algebra over Q; on X1, ---, Xy;
L(X,---, Xp) = l(iLn,,Lie(Xl, -, X))/ ILie(Xy, - -+, X;)—completed free Lie algebra
over Q; on Xy,---, X,. If g € Qi{{X1y,---, X,}} then L, is a multiplication on the left
by g.
For a pro-unipotent group G we denote by G®Q a Malcev rational completion of G.

We view Lie(Xy, -+, X,) and L(Xy,---, X,) as Lie algebras of Lie elements in

Q{{X1, -, Xu}}.

2. The Galois actions on the fundamental group of a projective line minus a finite
number of points

Let K be a number field. Let ay, - - -, a,+1 be K-points of P}(. Let us set

X =Pk \{ar, -, ant1}.

Let v and z be K-points of X or tangential base points defined over K. We denote by
71 (X%; v) the [-completion of the étale fundamental group of X% with a based point v and
by 7 (X% z,v) the 71 (X%; v)-torsor of (/-adic) paths from v to z. Let v; be a tangential
base point defined over K at a; fori = 1,---,n+1. Let s; € m(X%, v;) be a genera-
tor of the inertia group of a place over a; fori = 1,--- ,n+ 1. Let y; € n(X; v;, v) for
i=1,---,n+1. We set

xi=y sy

fori = 1,---,n 4+ 1( the composition of paths is from right to left). We can assume that

X o Xy * Xptl = 1 .
Leto € Gk := Gal(K/K) and let p be a path from v to z. We set

fr@):=p~ " a(p).
Then

o) = (@)™ fy(0)

fori =1,---,n+ 1 (see [6] Proposition 2.2.1). Let

k:m(Xg:v) = Qif{Xy, -, Xul}
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be a continous, multiplicative embedding given by k(x;) = eXi fori = 1, ---, n. The action
of Gk on 71 (X%; v) defines a continous action of Gg on Q;{{X1, ---, X,}},
Gk — Aut(Qi{{X1, -, Xu}})
given by o (X;) :=logk(o(x;)) fori =1, ---, n. We set
Fp(o) :=k(fp(o)).

If 0 € Gk (), then o induces a pro-unipotent automorphism of a Q;-algebra Q;{{X1, - -,
X, }}. Hence the logarithm of o is defined. We have a commutative diagram

Gi1/Goo — Aut(Qi{{X1, -+, Xn}})
logl logl
Lie(G1/Goo ® Q) —— Der(Qi{{X1, -, Xal}}),

where G := Gk (u) and G is a kernel of the homomorphism Gx — Aut(Q;{{X1, - -,
X,}}) and log on the right hand side is defined only for pro-unipotent automorphisms. The
image of the morphism of Lie algebras

Lie(G1/Goo ® Q) — Der(Qi{{X1,---, Xu}})
is contained in

Der*(L(X1, -+, X)) :=

{D € Der(L(X1,---, Xy)) | Vk € n 3A; € L(Xy, - -+, X;p) such that D(Xy) = [Xi, Acl},

where n := {1, 2, - - -, n} (see [6] Proposition 5.1.3 and Lemma 5.1.1).
Let o € G1. Then we have

(logo)(Xk) = [Xk, Ax(0)]

for k = 1, ---,n and the element A (o) can be calculated in the following way. Let p be a
path from v to z. Then we set
0p = LF,) 00 € AutQ_1in (Qi{{X1, -+, Xa}}).

One can show that

(2.1) logop = Logo,)(1) + logo
(see [6] Lemma 5.1.7). Using this formula we get

(2.2) (logo)(Xk) = [Xk, (log oy, )(1)]

fork =1,---,n (see [6] Lemma 5.1.8).
Let us define a filtration of G ¢ setting

G; =ker(Gg — Aut(Q;{{X1y, -, Xﬂ}}/li-i-l)) i
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where [ is the augmentation ideal. The filtration {G;};eN of G induces a filtration
{Lie(Gi/Goo®Q)}ien of Lie(G1/Goo®Q). The Lie algebra of derivations Der*(L(X7y, - - -,
Xn)) is equipped with the filtration {Der7L(X1, - - -, X;)}ieN Where

DerfL(X1, -+, X,) :=

{D € Der*(L(X1, -+, X)) | Vk € n3A; € I''L(X1, -+, X,) such that D(Xx) = [X, Ak} .

Passing to associated graded Lie algebras we get a morphism

@ : grLie(G1/Goo®Q) — Der*(Lie(Xy, -+, Xp))
(Der*(Lie(X1, - -+ , X,)) is defined in the same way as Der*(L(X1, - - - , X,))).
We shall denote by 7, (X) the image of @. It is a graded Lie algebra with generators in
degrees 1,2, ---,n,--- . First we shall study its generators in degree 1.

LEMMA 2.1. Leto € Gy.Then
(log oy, )(1) =logF), (c) mod FZL(Xl, e X))
PROOF. We have
logoy, = L]Ongk (o) Ologo,

where O is given by the Baker-Campbell-Hausdorff formula. Hence

1
log oy, = LiogF, (o) + 1080 + - L_logo(loghy, (o) + -+ -

2
Observe that the image of log o is contained in FZL(X 1,---, X;). Hence the lemma follows
from (2.1). O
Let (Xx) be a one dimensional subspace of L(X1, --- , X,,) generated by X;. If z € K

then we denote by « (z) the Kummer character associated to z.

LEMMA 2.2. Letv be a K-point. Then we have

n

ai — a;

logFy (@) =} K(v"_a,’)w)xi mod (Xg) + P2L(X1, -+, X,).
i=1,i#k !

Letv = m be a tangential base point defined over K at ay. Then we have

ap — aj " ar — a;
10gF”k(G)EK<x—a1>(G)X‘+_ Z K( '>(U)Xi

mod  (Xg) 4+ IL(X1, -, X») .
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PROOF. We shall calculate a coefficient at X for v a tangential base point at a;. Let ¢
be a local parameter (depending linearly on the standard coordinate z on P!) at a; such that

t(a;) =0and 7(x) = 1. Then yk_l - o (yx) acts on tl% in the following way:

1 1
L 1 1 ap —ap \" z—ag \"
ol s it (—— ) 1+
X —aj ap —ai

1 1 1 1
ax —ap \" z—ar \" ax —ay \ " z—ag \"
o 1+ — 0 1+ .
X —dj ap —daj X —dj] ap —daj
(=)o) o

Applying ykfl we get &, . g
It follows from (2.2) and Lemmas 2.1 and 2.2 that

and

(logcr)(Xk)=|:Xk, 3 K(u>(o)x,} mod I?L(Xy, - . X,)

; - vV—a
i=1,i#k

for v a K-point and

(logo)(Xy) = [xk, K(‘”‘ s >(0)X1 + D K<u>(o>x,}
X —a . ap —ag

mod TI’L(Xy, -, X»n)
for v = a1x a tangential base point over K.

PROPOSITION 2.3. Let v be a K-point of X. The number of generators in degree 1 of

the Lie algebra mw,(X) is equal to a dimension of a vector subspace of K* ® Q generated by
—a; . . _ —_— . .
% ®1, i,k e{l,---,n}i # k. Let v=aix be a tangential base point defined over K
at ay. Then the number of generators of the Lie algebra m,(X) is equal to a dimension of a
ar—a; ap—a . .

vector subspace of K* ® Q generated by a’l‘Ta’ ® 1 and x’:—al‘ Ql,i,kef2,---,n}, i #k.

PROOF. Let us assume that v is a K-point. Let {x1,---, x4} be a maximal linearly
independent subset of {”L"T_a“i"@l | i,k € {1,2,---,n},i # k}. Then the Kummer charac-
ters iy, - - -, kx, are linearly independent. Hence there are elements o1, - - -, 04 in G (y00)
such that ky;(0;) = 0if i # j and ky(0;) # 0. It follows from the definition of

@ : grLie(G1/Goo®Q) — Der*(Lie(Xq,---, X,)) and from (2.2) and Lemmas 2.1 and
2.2 that the derivations @ (o1), - - -, @ (0y) are linearly independent. O

Lemma 2.1 has the following generalization.
LEMMA 2.4. Leto € G,,. Then

log oy, (1) = logFy, (0) mod I'TL(Xy, -, X,).
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PROOF. We have
logoy, = LiogF, (s) Ologo,

where () is the Baker-Campbell-Hausdorff product. Therefore we get

1
logoy, = LiogF,, (o) +1ogo + EL—loga(longk )+

Let 0 € G,. It follows from the definition of the filtration {G;}neN that logFy, (o) €
I'L(Xy, -, Xn). Hence logo(logh,, (o)) € ' +L(Xy,---, X,). This implies the
lemma because other terms are also of the form logo evaluated on elements of
I'"L(X1, -+, Xa).

O

3. The Galois action on the fundamental group of Pé (i) \ {0, wn, oo}

LetV := P(ll(un) \ {0, wy,, 00}. Let O_l) be a base point. First we recall some elementary
results from [6].

Let us fix an embedding Q C C. Let &, = e%. At each point 5,’1‘ of P1(C) we choose
—
a tangential base point vy = é,’fO. We choose a family of paths I = {yx}k=0,....n~—1 as on the

picture. The path yy is a path from 01 to Vi

V2 g}f
Y1
%_n
Y0
0 > 1
PICTURE 1.
é
With the family I” we associate a sequence x, yo, - - -, y,—1 of generators of 7} (Vm, 01),

where x is a loop around 0 and yy is a loop around £,
PROPOSITION 3.1 (see [6] Proposition 15.1.7). The action of G,y = Gal(Q(w,)/
AU
Q(un)) on my (Vm, 01) is given by

o(x) =xX@)

K —1

o (k) =x " XD Gy e x T yo e xy e x T s ) -yzf(d)'
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—1 —1 k
T, Yy o Y1, X7 Y0 - X, o, X7 s Y - X)X

fork=0,1,---,n—1.

(x(@)=1)

y2
£
Y1
&n
0 > 1
Yo
X
PICTURE 2.
PROOEF. It follows from section 2 that
3.1) o) = fr @) fy ).

Let ry : Pé)(lil.)\ {0, wp, 00} —> P \ {0, 11, 00} be given by r4(z) = &F - z. Then y =

L
Q(pen)

. = .
7 (Y0) - Sk, where sy is a path from 01 to 0, as on the picture.

gk

Sk

v

PICTURE 3.
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Hence f,,(0) = fros(©@) = S0 fron(©@) sk - fu (@) = 57t - )« f (0)) -
sk - [y (0). Observe that s; '+ ()« (x) - sk = x, s - 0)w(y)) - sk = yjuu if j+k <
n and s,:] )« (y)) s = x L. Yjt+k—n - X if j +k > n. It follows from the equality

r,?fl (Sg) -vv- e (sg) - s = x* that [ (o) = xr&z(X(”)’l). Hence the proposition follows from
the above observations and from (3.1). O

We define a continous multiplicative embedding
k71 (Vg 01) = Qi{{X. Yo. - Yar1))
setting k(x) = X, k(y;) = e¥iforj =0,---,n— 1.
LEMMA 3.2 (see [6] Lemma 15.2.2). Leto € G,. Then
(log oy, ) (1) = log(Fy,(0)(X., Yi, -+, Yy 1. Yo, -+, ¥z—1)) mod I'"H'L(X, Yo, -+, Yu1).

PROOF. In the proof of Proposition 3.1 we have shown that y; = r¢(yp) - sx. Hence for
o € G,, we have

log(Fy, (0)(X, Yo, -+, Yy—1)) = log(Fyy (o)X, Y, -+, Y1, Y0, -+, Yi—1))

mod I™HL(X, Yo, -, Yuo1).
Now the lemma follows from Lemma 2.4. a
It rests to calculate coefficients of log(F, (o)(X, Yo, -+, Yp—1)).
DEFINITION 3.3. We denote by I a Lie ideal of Lie(X, Yy, - - - , ¥,—1) generated by
Lie brackets which contain at least k elements (with repetitions) among Yy, - - -, ¥;,—1.

In the next lemma we shall use /-adic polylogarithms /,,(z) and an /-adic logarithm /(z)
(see [6] Definition 11.0.1.).

LEMMA 3.4 (see [6] Lemma 15.3.1). Leto € Gy,. I[f m > 1 then

n—1
10g(Fyy (@) (X, Yo, -, Yau)) = D Ln &) (@) - [Yi, X1X™ 2]
k=o
mod (L + I"MT'L(X, Yo, -+, Yoo1)).

If m =1 then

n—1
10g(Fyy (@) (X, Yo, -+ Yau1) = Y11 = &) (@)Y, mod IL(X. Yo, Yu1).
k=0

PROOF. It follows from the definition of /-adic polylogarithms in [6] section 11 that the
coefficient of log(F), (o) (X, Yo, -+, Y,—1)) at [- - - [Yo, X1X" 2 is I, (5,],()(0)
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For o € G,,;, we have

log(Fy, (0)(X, Yo, -+, Yy—1)) = log(Fyy (o)X, Y, -+, Yn1, Y0, -, Yi—1))

mod I'TL(X, Yo, -, Yu_1).

Hence the coefficient of log(Fy,(c)(X, Yo, -+, Yy—1)) at [- - - [V, X1X" 2] is 1, (é,’f’k)(cr).
It follows from the definition of /-adic logarithms in [6] section 11 that the coefficient of
log(Fy, (o)(X, Yo, -+, Yy—1)) at Yy is I(1 — S,’f)(a). Hence the coefficient of log(Fy, (o)
(X, Yo, -+, Yuo1)) at Yy is I(1 — E17%) (o). O

The coefficients [, (é,’f’k ) (o) satisfy the following functional equations
(3.2) ln(§)(@) + (=Dl (51 ) (@) = 0
for o € G, (see [6] Corollary 11.2.6). If m = 1 then we have
5 (=& =1-§).
Hence for o € G| we get
(1= &) =11~ §)(0).

because [-adic logarithm /(z) is a Kummer character associated to z (see [6] Proposition
14.1.0). Therefore we have the following result.

LEMMA 3.5. Leto € Gy,. If m > 1 then

l0g(Fy, (0)(X, Yo, -+, Y1) = Ln(1)(0)[- - - [Yo, X1X" 2]

+ Y EDO (D" [, XIXT

0<k<%
+ [ Wi, XIX" 72D + Ly (=10 -+ [Yy, XX 2]
mod (I + I"MYL(X, Yo, -, Yuo1)).
Ifm =1 then

10g(Fyy () (X, Yo, -+ Y1) = Y 11 =£) (@) Yk + Yui) +1(2)(0) Y2

O<k<%

mod TI°L(X, Yo, -, Yu_1).

(The terms L, (—1)(o)[- - - [Y%, X1X™m2) andl(2)(cr)Y% appear only if n is even.)

Lemma 3.2 suggests to consider the following Lie algebras of derivations.
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DEFINITION 3.6. We set
Der;/n(Lie(X, Yo, -+, Yy_1)) = {D € Der*(Lie(X, Yo, - -+ , Yu—1)) | AB(X, Yo, - -+, Y1)
e Lie(X, Yo, ---,Y,—1) suchthat D(X) =0 and
D(Yi) = [Yi, B(X, Yk, -+, Y1, Yo, - -+, YD1}
LEMMA 3.7. The image of the homomorphism

D51 (V) : gr(Lie(G1/Goo®Q)) — Der*(Lie(X, Yo, -+, Yp—1))

is contained in Der*i/n(Lie(X, Yo, -, Yuo1)).
PROOF. The lemma follows from 2.2 and Lemma 3.2. O
The derivation D € Der;/n (Lie(X, Yo, - -+, Yy—1)) such that D(Yy) = [Yo, B] we shall
denote by Dg. Observe that Der;/n(Lie(X, Yo, -+, Yn—1)) = Lie(X, Yo, - -+, Yu—1)/(Yo) as
a vector space. We equip the vector space Lie(X, Yo, -- -, ¥,—1) with a new bracket { , }
setting

{8, :3/} =8, :3/] + Dﬁ(lg/) - Dﬁ/(ﬁ) .

The vector space Lie(X, Yo, - -+, Y;,—1)/(Yo) equipped with the bracket { , } is a Lie algebra
which we denote by (Lie(X, Yo, ---, Y,—1)/(Yo), {, }).

LEMMA 3.8. The Lie algebras Der;/n(Lie(X, Yo, -+, Y,_1)) and (Lie(X, Yy, - -,
Yo—1)/(Yo),{, }) are isomorphic.

PROOF. The isomorphism associates to Dg the class of 8 in Lie(X, Yy, -+, Y1)/
(Yo). O

4. Py \ {0, p7, 00)

We shall give here an example that the image of the homomorphism &, (V) is not free.
In fact P. Deligne mentioned to the second author that this happens for Pb(un) \ {0, wyn, 0o}

andn > 6.
LetV = Pb(m) \ {0, w7, oo}. Then it follows from Lemma 3.4 that

6
4.1 1og(FV0(a)(X,YO,---,Y6))521(1—&7—")(0)& mod I'’L(X, Yy, --,Ys).
k=1

Observe that
&t - =1-¢"".

Hence for 0 € G| we have
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10g(Fyy (0)(X, Yo, -+, Ye)) = [(1 — E9)(0) (Y1 + Yo) +1(1 — &) (0) (Y2 + Ys)
+1(1 =D (@) (Y3 +Yy) mod I'’L(X, Yo, -, Y).

The 7-units 1 — 576, 1-— 575 and 1 — 5;‘ are linearly independent in Q(u7)*®Q. Hence the
Kummer characters /(1 — 576), (1 - 575) and [(1 — 574 ) are linearly independent. Therefore
there are 06, 05, 04 € G such that /(1 — &¥)(0;) = 0 for k # j and [(1 — &X)(ay) # O for
k,jef{6,5,4}.

THEOREM 4.1. The Lie algebra ng; (V) in degree 1 is generated by derivations
11, T2, T3 such that

71(Yo) = [Yo, Y1 + Y6l, w2(Yo) =[Yo, Y2+ Y5] and 13(¥o) = [Yo, Y3 + Y4].

The derivations t1, 12, 13 are linearly independent. There are the following relations between
them

[t1, 2]+ 13, 21 =0 and [12, T1]+[13, T1] =0.

PROOF. The first two statements follow from (2.2), Lemmas 3.2 and 3.7 and the consid-
erations in the section 4 before the theorem. To show the last statement we shall use Lemma
3.8. Observe that

6 6

{Yk+Y7k, ZYZ} = {Yk+Y7k, ZYZ} =0

i=1 i=0

for k = 1, 2, 3. Hence we get that [t, 71 + t2 + ©3] = 0 for k = 1, 2, 3. This implies the last
statement of the theorem. O

5. P})(Mp) \ {0, u2p, oo} for p an odd prime

In [6] section 15 the second author studied the associated graded Lie algebra of the

image of the Galois action on 71 (P \ {0, wn, 0o}, O_1>) for n a prime number. Now we

1
Q)
shall assume that n = 2 p, where p is an odd prime.

We have functional equations

2" 1) (0) + L EP T (0) = 1 (2 (o)

foro € G, andk = 1,---, p — 1 (see [6] Corollary 11.2.2 or [7] section 2). Using the
equation 3.2 we get

(5.1) 2" 1 (0) + (=1 UG 0)) = 1, () (0)
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foro € Gpandk = 1,---, pr1. From the system of equations (5.1) we can calculate
In(E25) (o). We get
(5.2) (£ D)l () (0) =2

where r is the smallest positive integer satisfying 2" = +1 mod p and d,, is a linear combi-
nation with integer coefficients of /,, (E,{ )(o) for0 < j < p and j odd.

CONJECTURE 5.1. The functions [, (g{;) forj=1,---, prl are linearly independent
over Q; on G,,.

The second author shows that the Q;-vector space generated by the functions /,, (& lj,')
forj=1,---, pT_l coincides with the Q;-vector space generated by the cyclotomic Soulé
classes. The conjecture is equivalent to the following one.

CONJECTURE 5.2. The cyclotomic Soulé elements in K-theory generate
Kom-1(ZI11l1p]) ® Qi

In literature we found only that it is proved for K3 ( [5] p.246).
Observe that £2 is a primitive p-th root of 1. Hence it follows from Conjecture 5.1 that

the functions [, (5,12 J yforj=1,---, pT_l are linearly independent over Q;. It follows from

(5.2) that the functions /,, (Snzj) (j=1,---, pr1) can be expressed by functions /,, (g,{) with
0 < j < p and j odd. Therefore assuming Conjecture 5.1 or an equivalent Conjecture 5.2 in
the next two lemmas we have the following results.

LEMMA 5.3. The functions I, (é,{)for 0 < j < pand j odd are linearly independent
on Gy,.

LEMMA 5.4. In the Lie algebra 5t (P&T\ {0, wpn, 00}) there are derivations Dﬂ;
for m even and for 0 < j < p and j odd such that D/;, is homogenous of degree m and
Dj,(Yo) = [Yo: =+ [¥}, XIX" 214 [+ [Yaj, XIX" 2]+ 2+ Ep] mod Is,

where E,, is a linear combination with integer coefficients of [o~[Yj,X]X’"_2] with
0<j<n.
PROOF. Letm be even and let o € G,,,. We have
(log o) (Yo) = [Yo, log(Fy,(0)(X, Yo, -+, ¥,—))] mod I'"™*'L(X, Yo, -, ¥y—1).
In Lemma 3.5 we replace [, (5,%")(0) by the right hand side of the equality 5.2 divided by
(1£@"=17). It follows from Lemma 5.3 that there exist oj € Gy for0 < j < pand

j odd such that 1,,(§7)(0;) # 0 and L, (§))(0;) = Oif i # j. Then Dj, is the derivation
corresponding to

log(FVU(U/)(X7 YOa"'aYﬂ—l)) mod F’n+lL(Xa YOa"'aYI‘l—l)
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after multiplication by 14(2”~1)" and after division by I,, (E,{ )(0}). O

We shall show now that derivations D,ﬁ; form evenand 0 < j < p and j odd generate a
free Lie subalgebra of Gt (Pé(uizp) \ {0, pu2p, 00}).

THEOREM 5.5. Let us assume Conjecture 5.1. Then the derivations D,{l for m even
and0 < j < p and j odd generate a free Lie subalgebra of g3 (PW \ {0, u2p, 00}).
2p

PROOEF. It follows from Lemma 5.4 that D,g1 (Yo) = [Yo, z,ﬁ;], where
J _ ) m—2 ) m—2 J J
Zm = = [Y;, XIX" 771+ [ [Ya—j, XIX" 771+ 2y + Xin

where x,{, e I and y,{, is a linear combination with integer coefficients of [- - - [Yk, XX m=2]
forO0 <k < 2p.

It follows from Lemma 3.8 that it is sufficient to show that elements z,],', for m even,
0 < j < p and j odd generate a free Lie subalgebra of (Lie(X, Yo, ---, Y,—1),{, }).

Letz := {---{z} . z/2}- -,z } be a Lie bracket in (Lie(X, Yo, -+, Y1), { , }) of
length r. Then

z={{om, + 2y ity +2ynhY e, 4+ 2y} mod L4,

where (p,{1 =—[--[Y], X)X - [Yi—j, X1X™~1]. Let us denote by z’ the right hand
side of the last congruence. The coefficients of go,‘fl + 2y,{1 are integers, hence 7’ belongs
to a free Lie algebra over Z generated freely by X, Yo, - - -, ¥Y,—1 which we denote also by
Lie(X, Yo, ---, Y,—1). Observe that

j2

{Aom omt - om}t mod 2.

’
Z

Now we shall work in the free Lie algebra over Z/2, i.e., in the Lie algebra

Lie(X, Yo, -+, Yyu—1)®Z/2. Let J be a Lie ideal of this Lie algebra generated by Lie brackets
which contain at least one Y; with i odd and at least one Y with k even. By the definition of
the Lie bracket { , } we have

(m> @} = [in, 0,1+ Dy (9,) = Dy (9m) -

m

Observe that D, (¢)) € J.Let A, B e J. Then [A, Bl € J, DA(B) € J, [}, Al € J and

Dy ((p,{;) € J. Observe that J is also a Lie ideal with respect to the Lie bracket { , }. Hence
(Lie(X, Yo, - -+, Ya—1) ® Z/2)/J has a structure of a Lie algebra induced from { , }. This
implies that

{{(p/]nll’(p/]ni ’QDIJJ,}E[[QDIJnIp(prjnzz 7(plj‘nrr] mod J.



34

JEAN-CLAUDE DOUAI AND ZDZISLAW WOJTKOWIAK

The elements (p,],.l for m even, 0 < j < p and j odd generate a free Lie subalgebra over Z/2

of Lie(X, Yo, -+, Yu—1) ® Z/2. Hence the elements z,{, form even, 0 < j < p and j odd
generate a free Lie subalgebra of (Lie(X, Yo, ---, Yu—1),{, }- O
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