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1. Introduction

A finite Galois extension L/K over a number field K has a relative normal integral basis
(NIB for short) when OL is free over the group ring OK [Gal(L/K)]. Here, OL (resp. OK )
is the ring of integers of L (resp. K). It is well known by Noether that if L/K has a NIB,
then L/K is tame (i.e., at most tamely ramified at all finite prime divisors). It is also well
known by Hilbert and Speiser that when the base field K equals the rationals Q, all tame
abelian extensions L/Q have a NIB. Recently, Greither et al. [3] proved that there exists no
Hilbert-Speiser number field other than Q. Namely, they proved that when K �= Q, there
exist a prime number p and a tame cyclic extension L/K of degree p having no NIB.

On the other hand, Kawamoto [7, 8] obtained the following result. For a prime number
p, let ζp be a fixed primitive p-th root of unity.

THEOREM 1 (Kawamoto). For a prime number p and a rational number a ∈ Q×, the

cyclic extension Q(ζp, a1/p)/Q(ζp) has a NIB if it is tame.

In [2, Theorem 2.1], Gómez Ayala gave a necessary and sufficient condition for a tame
Kummer extension of prime degree to have a NIB, and deduced Theorem 1 from this criterion.
For a prime number p, we say that a number field F enjoys the property (Hp) when for any

element a ∈ F×, the cyclic extension F(ζp, a1/p)/F (ζp) has a NIB if it is tame. Theorem
1 says that the rationals Q satisfies the property (Hp) for all p. Analogous to the result of
Greither et al., it is shown in [5, IV] that when F �= Q, there exists a prime number p for
which F does not satisfy (Hp). For a prime number p and a number field F with ζp ∈ F×, we
gave, in [5, V, Propositions 1, 2], a necessary and sufficient condition for (Hp) to be satisfied.
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In this paper, we fix a prime number p ≥ 3, and give some sufficient (resp. necessary)
conditions for a number field F to satisfy (Hp) in the general case where F does not nec-
essarily contain ζp. The conditions are obtained by using [2, Theorem 2.1], and similarly to
[5, V, Propositions 1, 2], they are given in terms of the class number, the ideal class group of
F and the group of units of K = F(ζp). Using these, we prove the following results when
p = 3 and F is a quadratic field.

THEOREM 2. Let p = 3 and F = Q(
√

d) be an imaginary quadratic field with d a
square free negative integer. Then, F enjoys the property (H3) if and only if d = −1, −2, −3,
or −11.

Let F = Q(
√

d) be a real quadratic field with d a square free positive integer, and let hF

be the class number of F and ε = (t + u
√

d)/2 a fundamental unit of F . We write t = tF

and u = uF . We denote by λ (resp. µ) a prime number ≥ 5 with λ ≡ 1 mod 4 (resp.
µ ≡ 3 mod 4). When we write µ1 and µ2 (for example), we mean that µ1, µ2 are different
prime numbers ≥ 5 with µ1 ≡ µ2 ≡ 3 mod 4.

THEOREM 3. Let p = 3 and F = Q(
√

d) be a real quadratic field with d a square
free positive integer. Then, F enjoys the property (H3) if and only if F satisfies the following
three conditions;

i) d is of the form; d = 2, 3, 6, λ, µ, 2µ, 3µ, or µ1µ2.
ii) hF = 1,

iii) 3 � uF , and further 3 � tF when d ≡ −1 mod 3.

QUESTION. By Theorems 2 and 3, we have hF = 1 for any quadratic field F satisfying
(H3). Does there exist a number field F with hF > 1 satisfying (Hp) for some prime number
p ≥ 3 ?

This paper is organized as follows. In Section 2, we give a sufficient condition (resp. two
necessary conditions) for a number field to satisfy (Hp). In Section 3, we show the results in
Section 2. We prove Theorems 2 and 3 in Section 5 after preparing many lemmas in Section
4.

2. Conditions for (Hp)

For a number field K , let EK (resp. hK ) be the group of units (resp. class number)
of K . For an integral ideal A of K , let [EK ]� be the subgroup of the multiplicative group
(OK/A)× consisting of classes containing units of K . For an integer a ∈ OK , we simply
write OK/a = OK/aOK and [EK ]a = [EK ]aOK

. Let p ≥ 3 be a fixed prime number, F

a number field, and K = F(ζp). Then, we can naturally regard (OF /p)× as a subgroup of

(OK/p)×. The following sufficient condition for (Hp) is an immediate consequence of [2,
Theorem 2.1].
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PROPOSITION 1. Let p ≥ 3 be a prime number, F a number field, and K = F(ζp).

Assume that (i) hF = 1 and that (ii) (OF /p)× ⊆ [EK ]p. Then, F satisfies the condition
(Hp).

We give a criterion which assures the condition (OF /p)× ⊆ [EK ]p. For a prime number

p, let πp = ζp − 1. When p is unramified in F , we can naturally regard (OF /p)× as a

subgroup of (OK/πp)×.

PROPOSITION 2. Let p, F, K be as in Proposition 1. Assume that (a) p is unramified
in F and that (b) (OF /p)× ⊆ [EK ]πp . Then, we have (OF /p)× ⊆ [EK ]p.

COROLLARY 1. Let p, F, K be as in Proposition 1. Assume that hF = 1 and that the
conditions of Proposition 2 are satisfied. Then, F satisfies the condition (Hp).

Let us give necessary conditions for (Hp). For a number field F , let ClF be the ideal
class group in the usual sense.

PROPOSITION 3. Let p, F, K be as in Proposition 1, and let � = [K : F ]. Assume
that F satisfies (Hp). Then, all ideal classes of F capitulate in K . In particular, the exponent
of ClF divides �.

PROPOSITION 4. Let p, F, K be as in Proposition 1. Assume that F satisfies (Hp).
Then, for any integer u of F relatively prime to p, we have u ≡ ε mod πp for some unit
ε ∈ EK .

The following is immediate from Corollary 1 and Proposition 4.

COROLLARY 2. Let p, F, K be as in Proposition 1. Assume that hF = 1 and that p

is unramified in F . Then, F satisfies (Hp) if and only if (OF /p)× ⊆ [EK ]πp .

REMARK 1. Let p ≥ 3 be a prime number, F = Q, and K = Q(ζp). Then, the
conditions of Proposition 2 are satisfied. Actually, for a rational integer a ∈ Z relatively prime
to p, the cyclotomic unit ca = (ζ a

p − 1)/(ζp − 1) satisfies the congruence ca ≡ a mod πp.

Hence, Theorem 1 of Kawamoto follows form Corollary 1. Further, by Proposition 2, we
have F×

p = (Z/p)× ⊆ [EK ]p, which we use in an argument in Section 4.

REMARK 2. Let F be a totally real number field and K = F(
√−1). In [6, Corollary

4], a result corresponding to Proposition 1 is given for cyclic quartic extensions K(a1/4)/K

with a ∈ F×.

3. Proofs of Propositions

3.1. A theorem of Gómez Ayala. Let us first recall a theorem of Gómez Ayala [2,
Theorem 2.1] mentioned in Sections 1 and 2. Let p be a prime number, and K a number field.
Let A be an integral ideal of K which is p-th power free in the semi-group of integral ideals
of K . Then, we can uniquely write
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A =
p−1∏
i=1

Ai
i(1)

for some square free integral ideals Ai of K relatively prime to each other. The associated
ideals Bj of A are defined by

Bj =
p−1∏
i=1

Ai
[ij/p] (0 ≤ j ≤ p − 1) .(2)

Here, for a real number x, [x] denotes the largest integer with [x] ≤ x. By the definition, we
have B0 = B1 = OK .

THEOREM 4 (Gómez Ayala). Let p be a prime number and K a number field with
ζp ∈ K×. Then, a cyclic extension L/K of degree p is tame and has a NIB if and only if there
exists an integer a of K relatively prime to p satisfying the following four conditions;

i) L = K(a1/p),
ii) the integral ideal aOK is p-th power free,

iii) the associated ideals Bj of aOK defined by (1) and (2) are principal, and finally,

iv) letting α = a1/p, the congruence

A =
p−1∑
j=0

αj

xj

≡ 0 mod p

holds for some generators xj of the principal ideals Bj .
Further, when this is the case, the integer ω = A/p is a generator of a NIB of L/K;

namely, OL = OK [Gal(L/K)] · ω.

The following assertion is a special case of this theorem. (For this, see [5, I, Theorem
2].)

LEMMA 1. Let p, K be as in Theorem 4. Let a be an integer of K relatively prime
to p such that the integral principal ideal aOK is square free. Then, the cyclic extension

K(a1/p)/K has a NIB if and only if a satisfies the congruence a ≡ εp mod π
p
p for some unit

ε ∈ EK .

The following lemma is well known (cf. Washington [14, Exercises 9.2, 9.3]).

LEMMA 2. Let p, K be as in Theorem 4. For an element a ∈ K× relatively prime

to p, the cyclic extension K(a1/p)/K is tame if and only if the congruence a ≡ up mod π
p
p

holds for some integer u ∈ OK .

3.2. Proofs of Propositions 1 and 2
PROOF OF PROPOSITION 1. Let a be an element of F× such that K(a1/p)/K is tame.

Then, as hF = 1, we may as well assume that a is an integer of F relatively prime to p and
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that the integral ideal aOF is p-th power free. Let Bj be the ideals of F associated to aOF

by (1) and (2). Since K/F is unramified outside p, the integral ideal aOK of K is also p-th
power free and the ideals B′

j = BjOK are associated to aOK .

As K(a1/p)/K is tame, we have a ≡ up mod π
p
p for some u ∈ OK by Lemma 2. Taking

the norm from K to F , we see that a ≡ vp mod π
p
p for some v ∈ OF . By the condition (ii)

of Proposition 1, v ≡ ε mod p for some unit ε ∈ EK . Hence, we obtain

a ≡ εp mod π
p
p with ε ∈ EK .(3)

As hF = 1, we have Bj = xjOF for some xj ∈ OF . By (ii), xj ≡ ηj mod p for some unit

ηj ∈ EK . Letting yj = xjη
−1
j ∈ OK , we have B′

j = yjOK and yj ≡ 1 mod p. Now, letting

α = a1/p, we see that

p−1∑
j=0

αj

yj εj
≡

∑
j

(α

ε

)j ≡ 0 mod p .

Here, the second congruence holds by (3). Therefore, K(a1/p)/K has a NIB by Theorem
4. �

PROOF OF PROPOSITION 2. Let ℘1, · · · , ℘r be the prime ideals of F over p, and fi

the degree of ℘i . Let f be the least common multiple of f1, · · · , fr , and q = pf . Then,
for any x ∈ OF , we have xq ≡ x mod ℘i . This implies xq ≡ x mod p as p is unramified
in F (the condition (a)). Let x ∈ OF be an integer relatively prime to p. By (b), we have
x ≡ ε mod πp for some unit ε ∈ EK . Then, it follows that xp ≡ εp mod p. Raising to the
q/p-th power, we obtain x ≡ xq ≡ εq mod p. �

3.3. Proofs of Propositions 3 and 4
PROOF OF PROPOSITION 3. Let ℘ be a prime ideal of F with ℘ � p, and e the order of

the ideal class of F containing ℘. Then, ℘e = b1OF for some b1 ∈ OF . By the Chebotarev
density theorem, there exists a principal prime ideal L = b2OF such that b = b1b2 ≡
1 mod π

p
p . As K(b1/p)/K is tame, it has a NIB by the assumption of Proposition 3. Hence,

there exists an integer a of K relatively prime to p such that K(a1/p) = K(b1/p) and the
principal ideal aOK satisfies the conditions (ii) and (iii) of Theorem 4. Let Bj be the ideals
of K associated to aOK by (1) and (2). By the condition (iii), they are principal ideals. As

K(a1/p) = K(b1/p), we have a = bsxp for some 1 ≤ s ≤ p − 1 and x ∈ K×. Writing
es = pf + t with 0 ≤ t ≤ p − 1, we obtain

aOK = (℘OK)t (LOK)s(x℘fOK)p .

By (ii), the integral ideal aOK is p-th power free. Then, we must have x℘fOK = OK in the
above equality. Hence, we obtain

aOK = (℘OK)t (b2OK)s .(4)
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From x℘fOK = OK , it follows that ℘�f = (NK/Fx−1)OF where � = [K : F ]. Hence, we
obtain e|�f . The condition t = 0 (namely, es = pf and f �= 0) contradicts this divisibility as
p � �s. Thus, we obtain 1 ≤ t ≤ p−1. When t = 1, it is clear from (4) that ℘OK is principal.
When 2 ≤ t ≤ p − 1, we can choose an integer j with 2 ≤ j ≤ p − 1 so that [j t/p] = 1.
Then, from (2) and (4), we see that Bj equals ℘OK times a principal ideal. Therefore, ℘OK

is a principal ideal as so is Bj . �
PROOF OF PROPOSITION 4. Let u be an integer of F relatively prime to p. By the

Chebotarev density theorem, there exists a principal prime ideal L = aOF of F such that

a ≡ up mod π
p
p . By the assumption, K(a1/p)/K has a NIB as it is tame. Then, by Lemma

1, we have a ≡ εp mod π
p
p for some unit ε ∈ EK . Hence, we obtain u ≡ ε mod πp. �

4. Lemmas

In this section, we prepare many lemmas which are necessary for proving Theorems
2 and 3. For a finite abelian group A and integers ni ∈ Z (1 ≤ i ≤ r), we write A =
(n1, · · · , nr ) when A is isomorphic to the additive group Z/n1⊕· · ·⊕Z/nr . For a number field
F and an integer a ∈ OF , we denote by 〈a1, · · · , as〉a the subgroup of (OF /a)× generated
by the classes containing integers a1, · · · , as ∈ OF relatively prime to a. For an element α of
a quadratic field, let Nα denote the norm of α to Q. First, we show the following:

LEMMA 3. Let p ≥ 3 be a prime number. Let F = Q(
√

d) be a real quadratic field

with a square free positive integer d , and ε = (t + u
√

d)/2 a fundamental unit of F . If p|d
and p � u, then we have (OF /p)× ⊆ [EK ]p. Here, K = F(ζp).

PROOF. We have (OF /p)× = (p − 1, p) as p|d . We naturally have F×
p = (Z/p)× ⊆

(OF /p)×. We have seen in Remark 1 that F×
p is contained in [EK ]p. As p � u, we see that

ε4 �≡ 1 mod p. On the other hand, we see that

ε4p ≡ (t/2)4 ≡ 1 mod p

since p|d and 1 = Nε2 ≡ (t/2)4 mod p. Hence, the order of the class containing ε4 is of
order p. Therefore, we obtain (OF /p)× ⊆ [EK ]p. �

Secondly, we recall a result of Hasse [4, Section 26] on unit index of imaginary abelian
fields. Let K/Q be an imaginary (2, 2)-extension with ζ3 ∈ K×, and QK the unit index of K .
Let K+ = Q(

√
d0) be the maximal real subfield of K , and Q(

√−d1) the imaginary quadratic

subfield different from Q(
√−3). Here, d0, d1 are square free positive integers. Let ε0 be the

fundamental unit of K+ with ε0 > 1. The following lemma is an immediate consequence of
the formulas (assertions) (8), (10), (11) and (12) in [4, Section 26].

LEMMA 4. Under the above setting, the following assertions on QK hold.

(I) When d1 = 1, we have QK = 2, and a fundamental unit ε of K satisfies ε2 =√−1 · ε0.
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(II) When 3|d1, we have QK = 1.
(III) When d1 > 1 and 3 � d1, we have QK = 2 if and only if there exists an integer

γ0 of K+ such that Nγ0 = ±3. Further, when this is the case, we can choose a fundamental

unit ε of K so that ε2 = −ε0.

In the following, we let p = 3 and let F = Q(
√

d) be a quadratic field (real or imaginary)

with F �= Q(
√−3), and K = F(

√−3). Here, d is a square free integer. Let F ∗ = Q(
√−3d)

be the quadratic field associated to F .

LEMMA 5. Let F = Q(
√

d) be an imaginary quadratic field with d �= −1, −3. If the
prime number 3 is unramified in F and QK = 1, then F does not satisfy (H3).

PROOF. Let ε be a fundamental unit of the real quadratic field F ∗. We have ε ≡
±1 mod π3 as 3 is ramified in F ∗. Then, as QK = 1, it follows that [EK ]π3 = 〈−1〉π3

.

Therefore, we obtain (OF /3)× �⊆ [EK ]π3 , and hence F does not satisfy (H3) by Proposition
4. �

LEMMA 6. Let F = Q(
√

d) be a real quadratic field with a fundamental unit ε =
(t + u

√
d)/2. Assume that 3 is unramified in F and QK = 1. Then, the following assertions

hold :
(I) When d ≡ 1 mod 3, we have (OF /3)× ⊆ [EK ]π3 if and only if 3 � u.

(II) When d ≡ −1 mod 3, we have (OF /3)× ⊆ [EK ]π3 if and only if 3 � tu.

Namely, the inclusion (OF /3)× ⊆ [EK ]π3 holds if and only if the condition (iii) of
Theorem 3 is satisfied.

PROOF. We have (OF /3)× = (OK/π3)
× = (2, 2) or (8) according to whether d ≡

1 mod 3 or d ≡ −1 mod 3. As QK = 1, we have [EK ]π3 = 〈−1, ε〉π3
.

First, let d ≡ 1 mod 3. If 3|u, then (OF /3)× �⊆ [EK ]π3 as ε ≡ ±1 mod 3. Assume that

3 � u. Then, as Nε = ±1, it follows that 3|t and hence ε ≡ ±√
d mod π3. However, we see

that
√

d �≡ ±1 mod π3 as 3 is unramified in F . Hence, we obtain (OF /3)× ⊆ [EK ]π3 .

Next, let d ≡ −1 mod 3. If 3|tu, we easily see that ε4 ≡ 1 mod π3, and hence
(OF /3)× �⊆ [EK ]π3 . Assume that 3 � tu. Then, we may as well assume that ε ≡ 1 +√

d mod π3. We see that ε4 ≡ d ≡ −1 mod π3, and hence (OF /3)× ⊆ [EK ]π3 . �
We recall some lemmas from Kubota [9]. An ideal A of F is called an ambiguous ideal

when As = A, s being the nontrivial automorphism of F .
LEMMA 7 ([9, Hilfsatz 15]). Let c ∈ ClF be an ideal class of F . If c capitulates in K,

then c2 = 1 and c contains an ambiguous ideal of F .

Let AF be the group of ambiguous ideals of F , and ÃF its lift to K . Let k = Q(
√−3) (⊆

K). Let AF ∗, ÃF ∗ and Ak, Ãk be the corresponding objects for F ∗ and k, respectively. In

the group of ideals of K , let A be the subgroup generated by ÃF , ÃF ∗ and Ãk. Let B be the

group of principal ideals xOK of K such that (xOK)2 = yOK for some y ∈ Q×. Clearly,
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we have B ⊆ A. Let t be the number of prime numbers which ramify in K . Let E∗
K be the

subgroup of EK generated by all units of the intermediate fields F , F ∗ and k whose norm to
Q are 1.

LEMMA 8 ([9, Hilfsatz 16]). Under the above setting, we have [A : B] = 2t−3[EK :
E∗

K ].
We easily see that ÃF Ãk = ÃF ∗Ãk = A and Ãk ⊆ B. Therefore, from the above

lemma, we obtain the following assertion.

LEMMA 9. (I) If all ideal classes of F capitulate in K , then we have 2t−3[EK :
E∗

K ] = 1.
(II) Assume that the exponent of ClF divides 2 and that each ideal class of F contains

an ambiguous ideal. Then, all ideal classes of F capitulate in K if and only if 2t−3[EK :
E∗

K ] = 1.

REMARK 3. It is known that any ideal class of F of order 2 contains an ambiguous
ideal when F is imaginary or when F is real and Nε = −1, ε being a fundamental unit of F .

Finally, we prepare some lemmas to deal with the case where d = 3� is a square free
integer divisible by 3 and � �= 1. Let d = 3� be such an integer. Then, (OF /3)× = (2, 3).
Further, (OK/3)× = (3, 3, 8) when � ≡ 1 mod 3, and (OK/3)× = (6, 6) when � ≡
−1 mod 3. Let ε be a fundamental unit of K . Note that

√−1 �∈ K× as � �= 1. Then, we have
EK = 〈−1, ζ3, ε〉, and we may as well assume that ε2 is a real unit by Lemma 4.

LEMMA 10. Under the above setting, assume that the order of the class ε̄ ∈ (OK/3)×
is a power of 2. Let x be an integer of F with (x, 3) = 1 such that the class x̄ in (OF /3)× is
of order 3. Then, there exist no units δ, η ∈ EK such that

x ≡ δ + η mod 3 and δ ≡ η mod π3 .

PROOF. We may as well assume that ε �≡ 1 mod 3 replacing ε with −ε if necessary.
Then, as the order of ε̄ is a power of 2, we see that [EK ]3 = 〈ε, ζ3〉3 = (2α, 3) for some α ≥ 1
or [EK ]3 = 〈−1, ε, ζ3〉3 = (2, 2, 3). The second case can occur only when � ≡ −1 mod 3.
To show the assertion, let us assume, to the contrary, that x satisfies the above congruence.
Then, we see from the above that

x ≡ ±(ζ a
3 + ζ b

3 )εc mod 3

for some a, b, c ∈ Z. Here, the − sign is necessary only when [EK ]3 = (2, 2, 3). Note

that ζ a
3 + ζ b

3 ≡ −1, −ζ3, −ζ 2
3 mod 3. Then, it follows from the above congruence that

x ≡ ζ r
3 mod 3 for some r because of the assumptions on the orders of ε̄ and x̄. As (OF /3)× =

(2, 3), we may as well assume that x = 1 + √
3�. Then, from x ≡ ζ r

3 mod 3, we obtain√
3� ≡ 0 mod 3 or

√−� ≡ ±1 mod π3. However, we easily see that this is impossible. �
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REMARK 4. Let K+ = Q(
√

d0) be the maximal real subfield of K , and ε0 = (t +
u
√

d0)/2 a fundamental unit of K+. When the prime 3 is unramified in K+, the assumption

on ε in Lemma 10 is satisfied. This is because of ε8
0 ≡ 1 mod 3 and Lemma 4. When 3 is

ramified in K+ and 3|u, the assumption is satisfied by Lemma 4 since ε0 ≡ ±1 mod 3.

LEMMA 11. Under the setting and the assumption of Lemma 10, let a ∈ OK be an

integer of K with a �∈ (K×)3 and a ≡ 1 mod π3
3 . Let α = a1/3 (≡ 1 mod π3). Then, for an

integer x ∈ OF with (x, 3) = 1, the congruence

δ0 + δ1α + δ2α
2

x
≡ 0 mod 3(5)

holds for some units δ0, δ1, δ2 ∈ EK if and only if x ≡ ±1 mod 3.

PROOF. As α ≡ 1 mod π3, we have 1 + α + α2 ≡ 0 mod 3. Hence, the“if" part holds
with δ0 = δ1 = 1 and δ2 = ±1. Let us show the “only if" part. Let x ∈ OF be an integer
with (x, 3) = 1 satisfying the congruence (5). To show x ≡ ±1 mod 3, let us assume, to
the contrary, that x �≡ ±1 mod 3. As (OF /3)× = (2, 3), we may as well assume that the
class x̄ ∈ (OF /3)× is of order 3 replacing x with −x if necessary. It follows from (5) and

1 + α + α2 ≡ 0 mod 3 that

(δ0 − δ2/x) + (δ1 − δ2/x)α ≡ 0 mod 3 .

Replacing α with ζ3α, we have

(δ0 − δ2/x) + (δ1 − δ2/x)ζ3α ≡ 0 mod 3 .

Subtracting the second congruence from the first one, we obtain

δ0/δ2 ≡ δ1/δ2 ≡ 1/x mod π3 .(6)

Then, it also follows that

δ0 − δ2/x

π3
+ δ1 − δ2/x

π3
α ≡ 0 mod π3 .

As α ≡ 1 mod π3, it follows from the last congruence that

1/x ≡ (−δ0/δ2) + (−δ1/δ2) mod 3 .(7)

However, the congruences (6) and (7) can not simultaneously hold by Lemma 10. �
LEMMA 12. Under the setting and the assumption of Lemma 10, there exist infinitely

many classes ā ∈ F×/(F×)3 for which the cyclic extension K(a1/3)/K is tame but has no
NIB. Namely, F does not satisfy (H3).

PROOF. By the Chebotarev density theorem, there exist infinitely many couples
(L1, L2) of principal prime ideals L1 = b1OF and L2 = b2OF of F such that b1 ≡ b2 ≡
1 + √

3� mod π3
3 . Put b = b1b

2
2 and b′ = b2b

2
1. Then, b ≡ b′ ≡ 1 mod π3

3 and the cyclic

cubic extension K(b1/3) = K(b′1/3) over K is tame. Assume that this extension has a NIB.
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Then, there exists an integer a ∈ OK with K(a1/3) = K(b1/3) satisfying the conditions of

Theorem 4. We have a = bsy3 for s ∈ {1, 2} and some y ∈ K×. When s = 1, η = y is a unit
of K as the ideal aOK is cubic power free, and a = bη3. When s = 2, η = b2y is a unit of K ,

and a = b′η3. Therefore, replacing a with aη−3, we may as well assume that a ≡ 1 mod π3
3

(as in Lemma 11). Let Bj be the ideals of K associated to aOK by (1) and (2). By the
definition, B0 = B1 = OK , and B2 = L2OK = b2OK or B2 = L1OK = b1OK according
to whether s = 1 or 2. Therefore, by the condition (iv) of Theorem 4, letting α = a1/3 and
x = b1 or b2, the congruence (5) holds for some units δ0, δ1, δ2 ∈ EK . However, this is
impossible by Lemma 11 since the class x̄ ∈ (OF /3)× is of order 3. �

LEMMA 13. Let d = 3� > 0 be a square free positive integer divisible by 3 with

� �= 1, F = Q(
√

d), and ε0 = (t + u
√

d)/2 a fundamental unit of F . Under the above
setting, assume that hF = 2, 3 � u and QK = 1. Then, there exist infinitely many classes

ā ∈ F×/(F×)3 for which the cyclic extension K(a1/3)/K is tame but has no NIB. Namely, F

does not satisfy (H3).

PROOF. As QK = 1, the prime ideal ℘3 of F over 3 is not principal by Lemma 4 (III).

Let ℘� be the product of distinct prime ideals of F dividing �. As ℘3℘� = √
dOF , the ideal

class containing ℘� is of order 2. Let ClF (℘3
3) be the ray class group of F defined modulo

℘3
3 . As 3 � u and 3|d , we see that the quotient group of (OF /℘3

3)× modulo [EF ]℘3
3

is a cyclic

group of order 3. Hence, it follows that ClF (℘3
3) is a cyclic group of order 6 as hF = 2.

Let L1 and L2 be prime ideals of F contained in one class ∈ ClF (℘3
3) of order 6. Then, we

have L1L
5
2 = cOF for some integer c ∈ OF such that c ≡ 1 mod π3

3 . In the usual class
group ClF , the ideals L1, L2 and ℘� are contained in the same class as hF = 2. Then, as

℘�OK = √−�OK , we see that LiOK = xiOK for some xi ∈ OK such that

c = x1x
5
2 and

xi√−�
∈ EK · F× .

As 3 � u and 3|d , we have (OF /3)× ⊆ [EK ]3 by Lemma 3. Therefore, we can write

xi ≡ εi

√−� mod 3(8)

for some unit εi ∈ EK . Let b = c/x3
2 = x1x

2
2 . Then, as c ≡ 1 mod π3

3 , the cyclic extension

K(b1/3) = K(c1/3) over K is tame. To show that it has no NIB, we assume, to the contrary,
that it has a NIB. Then, there exists an integer a ∈ OK with K(a1/3) = K(b1/3) satisfying the

conditions of Theorem 4. We have a = bsy3 for s ∈ {1, 2} and some y ∈ K×. Similary as
in the proof of Lemma 12, the ideal B2 associated to aOK by (1) and (2) equals the principal

ideal x2OK or x1OK according to whether s = 1 or 2. Let α = a1/3. Then, by the condition
(iv) of Theorem 4 and (8), we see that the congruence

δ0 + δ1α + δ2α
2

√−�
≡ 0 mod 3
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holds for some units δ0, δ1, δ2 ∈ EK . As K(a1/3)/K is tame, we can take an integer v ∈ OK

such that α ≡ v mod π3 by Lemma 2. Then, 1+ α/v + (α/v)2 ≡ 0 mod 3. Hence, it follows
from the above congruence that

(
δ0 − δ2v

2
√−�

)
+

(
δ1 − δ2v√−�

)
α ≡ 0 mod 3 .

From this, we obtain
√−� ≡ δ2v

2/δ0 ≡ δ2v/δ1 mod π3

similarly as in the proof of Lemma 11. As QK = 1 and 3|d , we have [EK ]π3 = 〈−1〉π3
.

Therefore, it follows that
√−� ≡ ±� ≡ ±1 mod π3 from the above congruence. However,

we easily see that this is impossible. �

5. Proofs of Theorems 2 and 3

We use the same notation as in Section 4. In particular, F = Q(
√

d) is a quadratic field

with d a square free integer, and K = F(
√−3). If F satisfies (H3), then the exponent of ClF

divides 2 and 2t−3[EK : E∗
K ] = 1 by Proposition 3 and Lemma 9 (I). In particular, t ≤ 3

and hence hF |4 by genus theory. Hence, we see that hF = 1, 2 or ClF = (2, 2) if (H3) is
satisfied.

PROOF OF THEOREM 2. Let F = Q(
√

d) be an imaginary quadratic field. When

d �= −3, let ε0 be the fundamental unit of the associated real quadratic field F ∗ = Q(
√−3d)

with ε0 > 1, and let ε be a fundamental unit of K = F(
√−3). We let ε = ε0 if QK = 1, and

we may choose ε as in Lemma 4 if QK = 2.
The case hF = 1. By Stark [12], there are exactly nine imaginary quadratic fields

F = Q(
√

d) with hF = 1;

d = −1 , −2 , −3 , −7 , −11 , −19 , −43 , −67 , −163 .

When d = −3, F satisfies (OF /3)× = 〈−1, ζ3〉3, and hence it satisfies (H3) by Proposition
1. For the other eight ones, we see from Lemma 4 (III) that QK = 2 by using the fact that 3 is
ramified in F ∗ and hF ∗ is odd. Further, (H3) is satisfied if and only if (OF /3)× ⊆ [EK ]π3 by
Corollary 2. Let d = −2, −11. Then, as d ≡ 1 mod 3, we see that (OF /3)× = (OK/π3)

× =
(2, 2) and

√
d �≡ ±1 mod π3. Hence, it follows that (OK/π3)

× = 〈−1,
√

d〉π3
. Using

Lemma 4 (III), we see that

ε = √−2 + √−3 or
√−11 + 2

√−3

according to whether d = −2 or −11. Hence, (H3) is satisfied for these d . Let d be the
remaining six ones. Then, as d ≡ −1 mod 3, (OF /3)× = (OK/π3)

× = (8). When d = −1,
we see that the order of the class ε̄ ∈ (OK/π3)

× equals 8, where ε is the fundamental unit
of K given in Lemma 4 (I). Hence, (H3) is satisfied for d = −1. For the other five ones, we
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have ε0 ≡ ±1 mod π3 as 3 is ramified in F ∗. Then, it follows that ε4 = ε2
0 ≡ 1 mod π3 by

Lemma 4 (III), and hence (H3) is not satisfied for these d .
The case hF = 2. By Stark [13] and Montgomery and Weinberger [11], there are exactly

18 imaginary quadratic fields F = Q(
√

d) with hF = 2. Using Lemmas 4 and 9 (II) (and
Remark 3), we see by some hand calculation that among these, there are exactly 13 ones for
which all ideal classes capitulate in K;

d = −5 , −10 , −22 , −35 , −58 , −115 , −187 , −235

and

d = −3� with � = 2 , 5 , 17 , 41 , 89 .

For these 13 ones, we have QK = 1. Therefore, for the first 8 ones, (H3) is not satisfied by
Lemma 5. For the remaining 5 ones, (H3) is not satisfied by Lemma 12 (and Remark 4).

The case ClF = (2, 2). By Arno [1], there are exactly 54 imaginary quadratic fields

F = Q(
√

d) with hF = 4. We see from genus theory that among them, there are exactly 15
ones for which ClF = (2, 2) and t ≤ 3. For these 15 ones, we have 3|d , and hence (H3) is
not satisfied by Lemma 12 (and Remark 4). �

PROOF OF THEOREM 3. As in Section 1, let λ (resp. µ) denote a prime number ≥ 5

with λ ≡ 1 mod 4 (resp. µ ≡ 3 mod 4). Let F = Q(
√

d) be a real quadratic field, and

ε = (t + u
√

d)/2 a fundamental unit of F . We distinguish the cases according to whether
Nε = −1 or 1 and QK = 1 or 2. Let r (≤ t) be the number of prime numbers which ramify
in F . We see that r = t − 1 or t , and that r = t if and only if 3 is ramified in F . For a prime
number ν which ramify in F , let ℘ν be the prime ideal of F over ν.

(I) The case Nε = −1 and QK = 1. In this case, we have [EK : E∗
K ] = 2. Then, by

Proposition 3 and Lemma 9 (I), we have t = 2 and hence r = 1, 2 if (H3) is satisfied.

First, let r = 1. Then, F = Q(
√

2) or Q(
√

λ). For these F , we actually have Nε = −1,
and QK = 1 by Lemma 4 (II). As hF is odd, it follows from Proposition 3 and Corollary 2
that F satisfies (H3) if and only if hF = 1 and (OF /3)× ⊆ [EK ]π3 . Therefore, by Lemma 6,
(H3) is satisfied if and only if the conditions (ii) and (iii) of Theorem 3 are satisfied.

Next, let r = 2. Then, as t = 2, we have F = Q(
√

3), Q(
√

6) or Q(
√

3µ). However,
for these F , we have Nε = 1.

(II) The case Nε = −1 and QK = 2. In this case, we have [EK : E∗
K ] = 4. Then, by

Proposition 3 and Lemma 9 (I), we have t = r = 1 if (H3) is satisfied. Hence, F is unramified
outside 3. However, there does not exist such a real quadratic field.

(III) The case Nε = 1 and QK = 1. In this case, we have [EK : E∗
K ] = 1. Hence,

t = 3 and r = 2, 3 if (H3) is satisfied.
First, let r = 2. Then, as r < t , we have (A) F = Q(

√
µ), Q(

√
2µ) or Q(

√
µ1µ2), or

(B) F = Q(
√

2λ) or Q(
√

λ1λ2). For these F , we actually have QK = 1 by Lemma 4 (II). For
F of type (A), Nε = 1 and hF is odd. Hence, for F of type (A), we see that (H3) is satisfied if
and only if the conditions (ii) and (iii) of Theorem 3 are satisfied by Proposition 3, Corollary
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2 and Lemma 6. Let us deal with F of type (B). For these F , the 2-rank of ClF is one. We
see that Nε = 1 if and only if ℘2 and ℘λ (resp. ℘λ1 and ℘λ2) are principal (cf. Exercise 1.2.4
in Mollin [10, page 13]). However, when these ideals are principal, the (unique) ideal class c

of F of order 2 does not contain an ambiguous ideal. Hence, the class c does not capitulate in
K by Lemma 7. Therefore, by Proposition 3, (H3) is not satisfied for F of type (B).

Next, let r = 3. As t = r = 3, we have F = Q(
√

6µ), Q(
√

6λ), Q(
√

3λ) or Q(
√

3λµ).
For these F , Nε = 1. As the 2-rank of ClF is one, we must have hF = 2 if (H3) is satisfied.
When 3|u, (H3) is not satisfied by Lemma 12 (and Remark 4). When 3 � u (and hF = 2,
QK = 1), (H3) is not satisfied by Lemma 13.

(IV) The case Nε = 1 and QK = 2. In this case, we have [EK : E∗
K ] = 2. Hence,

t = 2 and r = 1, 2 if (H3) is satisfied. The case r = 1 can not occur as Nε = 1. Hence, we

obtain t = r = 2, and hence F = Q(
√

3), Q(
√

6) or Q(
√

3µ). For these F , Nε = 1. As hF

is odd, the prime ideal ℘3 is principal. Hence, QK = 2 by Lemma 4 (III). By Proposition 1
and Lemma 3, this type of F satisfies (H3) if hF = 1 and 3 � u. If hF > 1, it does not satisfy
(H3) by Proposition 3. If 3|u, it does not satisfy (H3) by Lemma 12 (and Remark 4).

Now, Theorem 3 follows from the above argument. �
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