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1. Introduction

A finite Galois extension L/K over a number field K has a relative normal integral basis
(NIB for short) when Oy is free over the group ring Og[Gal(L/K)]. Here, Or (resp. Ok)
is the ring of integers of L (resp. K). It is well known by Noether that if L/K has a NIB,
then L/K is tame (i.e., at most tamely ramified at all finite prime divisors). It is also well
known by Hilbert and Speiser that when the base field K equals the rationals Q, all tame
abelian extensions L/Q have a NIB. Recently, Greither et al. [3] proved that there exists no
Hilbert-Speiser number field other than Q. Namely, they proved that when K # Q, there
exist a prime number p and a tame cyclic extension L/K of degree p having no NIB.

On the other hand, Kawamoto [7, 8] obtained the following result. For a prime number
p, let £, be a fixed primitive p-th root of unity.

THEOREM 1 (Kawamoto). For a prime number p and a rational number a € Q*, the
cyclic extension Q(¢p, al/l’)/Q(g,,) has a NIB if it is tame.

In [2, Theorem 2.1], Gémez Ayala gave a necessary and sufficient condition for a tame
Kummer extension of prime degree to have a NIB, and deduced Theorem 1 from this criterion.
For a prime number p, we say that a number field F' enjoys the property (H,) when for any
element a € F*, the cyclic extension F (¢, a'/Py/F(¢ ») has a NIB if it is tame. Theorem
1 says that the rationals Q satisfies the property (H)) for all p. Analogous to the result of
Greither et al., it is shown in [5, IV] that when F # Q, there exists a prime number p for
which F does not satisty (H ). For a prime number p and a number field F with {, € F*, we
gave, in [5, V, Propositions 1, 2], a necessary and sufficient condition for (/) to be satisfied.
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In this paper, we fix a prime number p > 3, and give some sufficient (resp. necessary)
conditions for a number field F' to satisfy (H)) in the general case where F' does not nec-
essarily contain ¢,. The conditions are obtained by using [2, Theorem 2.1], and similarly to
[5, V, Propositions 1, 2], they are given in terms of the class number, the ideal class group of
F and the group of units of K = F(¢,). Using these, we prove the following results when
p = 3 and F is a quadratic field.

THEOREM 2. Let p = 3 and F = Q(~/d) be an imaginary quadratic field with d a
square free negative integer. Then, F enjoys the property (H3) ifand only ifd = —1, =2, =3,
or —11.

Let F = Q(+/d) be areal quadratic field with d a square free positive integer, and let 4
be the class number of F and ¢ = (¢ + u\/c_i)/2 a fundamental unit of F. We write t = tp
and 1 = up. We denote by A (resp. w) a prime number > 5 with A = 1 mod 4 (resp.
u = 3 mod4). When we write ;1 and up (for example), we mean that @1, uo are different
prime numbers > 5 with 41 = 2 = 3 mod 4.

THEOREM 3. Let p = 3 and F = Q(\/c_i) be a real quadratic field with d a square
free positive integer. Then, F enjoys the property (H3) if and only if F satisfies the following
three conditions;

1) disoftheform;d =2, 3, 6, A, i, 2, 31, OF L1142
i) hp =1,
iii) 31{ur,and further 3t tp whend = —1 mod 3.

QUESTION. By Theorems 2 and 3, we have 2 r = 1 for any quadratic field F satisfying
(H3). Does there exist a number field F* with Ay > 1 satisfying (H ) for some prime number
p=37?

This paper is organized as follows. In Section 2, we give a sufficient condition (resp. two
necessary conditions) for a number field to satisfy (H)). In Section 3, we show the results in
Section 2. We prove Theorems 2 and 3 in Section 5 after preparing many lemmas in Section
4.

2. Conditions for (H))

For a number field K, let Eg (resp. hg) be the group of units (resp. class number)
of K. For an integral ideal 2{ of K, let [Ex]g be the subgroup of the multiplicative group
(Ok /20 consisting of classes containing units of K. For an integer a € Ok, we simply
write Ok /a = Ok /aOk and [Exls = [Exl,0,- Let p > 3 be a fixed prime number, F
a number field, and K = F(¢,). Then, we can naturally regard (Of/p)™ as a subgroup of
(Ok/p)*. The following sufficient condition for (H),) is an immediate consequence of [2,
Theorem 2.1].
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PROPOSITION 1. Let p > 3 be a prime number, I a number field, and K = F(¢p).
Assume that (i) hrp = 1 and that (ii) (Or/p)* C [Exlp. Then, F satisfies the condition
(Hp).

We give a criterion which assures the condition (Of/p)* C [Ek],. For a prime number
p, letm, = ¢, — 1. When p is unramified in F, we can naturally regard (Of/p)™ as a
subgroup of (Ok /7).

PROPOSITION 2. Let p, F, K be as in Proposition 1. Assume that (a) p is unramified
in F and that (b) (Op/p)™ C [Ex]x,. Then, we have (Or/p)* S [Eklp.

COROLLARY 1. Let p, F, K be as in Proposition 1. Assume that hp = 1 and that the
conditions of Proposition 2 are satisfied. Then, F satisfies the condition (H)).

Let us give necessary conditions for (H,). For a number field F, let Clr be the ideal
class group in the usual sense.

PROPOSITION 3. Let p, F, K be as in Proposition 1, and let £ = [K : F). Assume
that F satisfies (H ). Then, all ideal classes of I capitulate in K. In particular, the exponent
of Clr divides {.

PROPOSITION 4. Let p, F, K be as in Proposition 1. Assume that F satisfies (Hp).
Then, for any integer u of F relatively prime to p, we have u = & mod 1), for some unit
¢ € FEg.

The following is immediate from Corollary 1 and Proposition 4.

COROLLARY 2. Let p, F, K be as in Proposition 1. Assume that hp = 1 and that p
is unramified in F. Then, F satisfies (Hp) if and only if (Of /p)* € [Ex]x,-

REMARK 1. Let p > 3 be a prime number, F = Q, and K = Q(¢p). Then, the
conditions of Proposition 2 are satisfied. Actually, for a rational integer a € Z relatively prime
to p, the cyclotomic unit ¢, = ({;f — 1)/(¢p — 1) satisfies the congruence ¢, = a mod 7.
Hence, Theorem 1 of Kawamoto follows form Corollary 1. Further, by Proposition 2, we
have F; = (Z/p)* C [Ek]p, which we use in an argument in Section 4.

REMARK 2. Let F be a totally real number field and K = F(+/—1). In [6, Corollary
4], a result corresponding to Proposition 1 is given for cyclic quartic extensions K (a'/%)/K
witha € F*.

3. Proofs of Propositions

3.1. A theorem of Gomez Ayala. Let us first recall a theorem of Gomez Ayala [2,
Theorem 2.1] mentioned in Sections 1 and 2. Let p be a prime number, and K a number field.
Let 2 be an integral ideal of K which is p-th power free in the semi-group of integral ideals
of K. Then, we can uniquely write
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p—1
(1) A= T2
i=1

for some square free integral ideals 2; of K relatively prime to each other. The associated
ideals B ; of 2 are defined by

p—1
@ B =[] ©<j<p-D.

i=1
Here, for a real number x, [x] denotes the largest integer with [x] < x. By the definition, we
have By = B = Ok.

THEOREM 4 (Gémez Ayala). Let p be a prime number and K a number field with
¢p € K*. Then, a cyclic extension L/K of degree p is tame and has a NIB if and only if there
exists an integer a of K relatively prime to p satisfying the following four conditions;

i) L=K(@aP),
il) the integral ideal aOk is p-th power free,
iii) the associated ideals B ; of aO defined by (1) and (2) are principal, and finally,

iv) letting @ = a'/P, the congruence

holds for some generators x j of the principal ideals B ;.
Further, when this is the case, the integer = A/p is a generator of a NIB of L/K;
namely, Op = Ok [Gal(L/K)] - w.

The following assertion is a special case of this theorem. (For this, see [5, I, Theorem
2])

LEMMA 1. Let p, K be as in Theorem 4. Let a be an integer of K relatively prime
to p such that the integral principal ideal aOk is square free. Then, the cyclic extension

K (a''?)/K has a NIB if and only if a satisfies the congruence a = &P mod nl’; for some unit
£ € E[(.

The following lemma is well known (cf. Washington [14, Exercises 9.2, 9.3]).

LEMMA 2. Let p, K be as in Theorem 4. For an element a € K* relatively prime
to p, the cyclic extension K (a'/?)/K is tame if and only if the congruence a = u” mod JT;;
holds for some integer u € Ok.

3.2. Proofs of Propositions 1 and 2
PROOF OF PROPOSITION 1. Leta be an element of F* such that K (a'/?)/K is tame.
Then, as hr = 1, we may as well assume that a is an integer of F' relatively prime to p and
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that the integral ideal aOF is p-th power free. Let 9B ; be the ideals of F associated to aOFf
by (1) and (2). Since K/F is unramified outside p, the integral ideal aOg of K is also p-th
power free and the ideals ‘B’j =B ;O are associated to aOg.

As K (a'/P)/K is tame, we have a = u? mod 7} for some u € O by Lemma 2. Taking
the norm from K to F, we see that a = v” mod ]Tll; for some v € OF. By the condition (ii)
of Proposition 1, v = ¢ mod p for some unit ¢ € Eg. Hence, we obtain

3) a=¢e’ modn) with ¢ € Eg.

As hp =1, we have B; = x;OF for some x; € OFf. By (ii), x; = n; mod p for some unit
nj € Eg. Letting y; = xjr)j_l € Ok, we have ‘B’j = y;jOk and y; = 1 mod p. Now, letting

a = al/P, we see that

ol oNJ
—452<—) =0mod p.
; - &

Here, the second congruence holds by (3). Therefore, K (al/P) /K has a NIB by Theorem
4, O

PROOF OF PROPOSITION 2. Let g1, ---, g be the prime ideals of F over p, and f;
the degree of g;. Let f be the least common multiple of fi,---, fr, and ¢ = pf . Then,
for any x € OF, we have x? = x mod g;. This implies x? = x mod p as p is unramified
in F (the condition (a)). Let x € OF be an integer relatively prime to p. By (b), we have
x = & mod ), for some unit ¢ € Eg. Then, it follows that x” = ¢” mod p. Raising to the
q/ p-th power, we obtain x = x? = ¢ mod p. [

3.3. Proofs of Propositions 3 and 4

PROOF OF PROPOSITION 3. Let g be a prime ideal of F with g 1 p, and e the order of
the ideal class of F containing g. Then, ¢ = b;OF for some b; € Of. By the Chebotarev
density theorem, there exists a principal prime ideal £ = b,OF such that b = bjby =
1 mod n,’,’. As K(bl/P)/K is tame, it has a NIB by the assumption of Proposition 3. Hence,
there exists an integer a of K relatively prime to p such that K (@/Py = K(b'/P) and the
principal ideal aOy satisfies the conditions (ii) and (iii) of Theorem 4. Let B ; be the ideals
of K associated to aOg by (1) and (2). By the condition (iii), they are principal ideals. As
K (a'/P)y = K('/P), we have a = b*x? forsome 1 < s < p — 1 and x € K*. Writing
es = pf +twithO <t < p— 1, we obtain

aOk = (pOk) (LOK)* (xp’ Ox)”.

By (ii), the integral ideal aOk is p-th power free. Then, we must have xp/ O = Ok in the
above equality. Hence, we obtain

@ aOk = (pOx)' (h20k)" .
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From xgofOK = Ok, it follows that pﬂf = (NK/Fx_l)OF where £ = [K : F]. Hence, we
obtain e|£f. The condition r = 0 (namely, es = pf and f # 0) contradicts this divisibility as
p 1 4&s. Thus, weobtain 1 < ¢ < p—1. Whens = 1, it is clear from (4) that o O is principal.
When 2 <t < p — 1, we can choose an integer j with 2 < j < p — 1 so that [jt/p] = 1.
Then, from (2) and (4), we see that B ; equals Ok times a principal ideal. Therefore, Ok
is a principal ideal as so is B;. [

PROOF OF PROPOSITION 4. Let u be an integer of F relatively prime to p. By the
Chebotarev density theorem, there exists a principal prime ideal £ = aOF of F such that
a = uP mod n,’,’. By the assumption, K (a'/?)/K has a NIB as it is tame. Then, by Lemma

1, we have a = ¢” mod nl’; for some unit ¢ € Ex. Hence, we obtainu = ¢ mod 7,. [

4. Lemmas

In this section, we prepare many lemmas which are necessary for proving Theorems
2 and 3. For a finite abelian group A and integers n; € Z (1 < i < r), we write A =
(ny, -+, n,) when A is isomorphic to the additive group Z/n®- - -®Z/n,. For anumber field
F and an integer a € OF, we denote by (a1, - - -, as), the subgroup of (OF/a)* generated
by the classes containing integers aj, - - -, as € OF relatively prime to a. For an element « of
a quadratic field, let No denote the norm of « to Q. First, we show the following:

LEMMA 3. Let p > 3 be a prime number. Let F = Q(~/d) be a real quadratic field
with a square free positive integer d, and ¢ = (t + u~/d) /2 a fundamental unit of F. If p|d
and p tu, then we have (Of/p)* C [Ex]p. Here, K = F({p).

PROOF. We have (Of/p)* = (p — 1, p) as p|d. We naturally have F; =(Z/p)* <
(OF/p)*. We have seen in Remark 1 that F; is contained in [Eg],. As p { u, we see that
e* % 1 mod p. On the other hand, we see that

&*? = (1/2)* = 1 mod p

since p|d and 1 = Ne? = (t/2)* mod p. Hence, the order of the class containing &* is of
order p. Therefore, we obtain (Or/p)* C [Ex],. O

Secondly, we recall a result of Hasse [4, Section 26] on unit index of imaginary abelian
fields. Let K /Q be an imaginary (2, 2)-extension with {3 € K*, and Q g the unit index of K.
Let KT = Q(+/dp) be the maximal real subfield of K, and Q(+/—d) the imaginary quadratic
subfield different from Q(+/—3). Here, dy, d are square free positive integers. Let gg be the
fundamental unit of K+ with &g > 1. The following lemma is an immediate consequence of
the formulas (assertions) (8), (10), (11) and (12) in [4, Section 26].

LEMMA 4. Under the above setting, the following assertions on Qg hold.
(I) When dy = 1, we have Qg = 2, and a fundamental unit € of K satisfies &> =

v —1-¢gp.
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(Il) When 3|dy, we have Qg = 1.

(II) When dy > 1 and 3 1 d1, we have Qkx = 2 if and only if there exists an integer
Yo of K such that Nyy = +3. Further, when this is the case, we can choose a fundamental
unit € of K so that €* = —gy.

In the following, we let p = 3 andlet F = Q(/d)bea quadratic field (real or imaginary)

with F # Q(+/—3),and K = F(+/—3). Here, d is a square free integer. Let F* = Q(+/—3d)
be the quadratic field associated to F.

LEMMA 5. Let F = Q(/d) be an imaginary quadratic field with d # —1, —=3. If the
prime number 3 is unramified in F and Qx = 1, then F does not satisfy (H3).

PROOF. Let ¢ be a fundamental unit of the real quadratic field F*. We have ¢ =
+1 mod 73 as 3 is ramified in F*. Then, as Qg = 1, it follows that [Ex ], = (= 1)y

Therefore, we obtain (Of/3)* & [Ek x5, and hence F does not satisty (H3) by Proposition
4. O

LEMMA 6. Let F = Q(v/d) be a real quadratic field with a fundamental unit ¢ =
(t + u~/d) /2. Assume that 3 is unramified in F and Qg = 1. Then, the following assertions
hold :

(I) Whend =1 mod 3, we have (Of /3)* C [Eklx, if and only if 3 fu.
(II) Whend = —1 mod 3, we have (O /3)* C [Eklx, if and only if 3 1 tu.

Namely, the inclusion (OfF/3)* C [Eklx, holds if and only if the condition (iii) of
Theorem 3 is satisfied.

PROOF. We have (Of/3)* = (O /m3)* = (2, 2) or (8) according to whether d =
I mod3ord =—1mod3. As Qx = 1, we have [Eg |, = (—1, 8)7[3.

First, let d = 1 mod 3. If 3|u, then (OF/3)* € [Eglx,; as € = £1 mod 3. Assume that
3t u. Then, as Ne = %1, it follows that 3|7 and hence ¢ = ++/d mod 3. However, we see
that /d # %1 mod 73 as 3 is unramified in F. Hence, we obtain (Of/3)* C [Ex ;.

Next, let d = —1 mod 3. If 3|ru, we easily see that &* = 1 mod 73, and hence
(OF/3)* € [Eklx;. Assume that 3 t ru. Then, we may as well assume that ¢ = 1 +
/d mod 73. We see that ¢* = d = —1 mod 73, and hence (OF/3) C[Egly. O

We recall some lemmas from Kubota [9]. An ideal 2 of F is called an ambiguous ideal
when 20° = 2, s being the nontrivial automorphism of F'.
LEMMA 7 ([9, Hilfsatz 15]). Let ¢ € Clr be an ideal class of F. If ¢ capitulates in K,

then ¢* = 1 and ¢ contains an ambiguous ideal of F.

Let A r be the group of ambiguous ideals of F', and Apitsliftto K. Letk = Q/=3) (c
K). Let Ap«, Aps and Ay, Ag be the corresponding objects for F* and k, respectively. In
the group of ideals of K, let A be the subgroup generated by A, Ap+ and Ax. Let B be the
group of principal ideals xOg of K such that (xOk)? = yOk for some y € Q*. Clearly,
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we have B C A. Let 1 be the number of prime numbers which ramify in K. Let E% be the
subgroup of Ex generated by all units of the intermediate fields F, F* and k whose norm to
Qare 1.

LEMMA 8 ([9, Hilfsatz 16]). Under the above setting, we have [A : B] = 213 [Ek -
E%].

We easily see that A FAk = A F*Ak = A and Ak C B. Therefore, from the above
lemma, we obtain the following assertion.

LEMMA 9. (I) If all ideal classes of F capitulate in K, then we have 2'3[Eg :
Ex]l=1

(Il)  Assume that the exponent of Clr divides 2 and that each ideal class of F contains
an ambiguous ideal. Then, all ideal classes of F capitulate in K if and only if 2! 3[Ex :
Exl=1

REMARK 3. It is known that any ideal class of F' of order 2 contains an ambiguous
ideal when F is imaginary or when F is real and Ne = —1, ¢ being a fundamental unit of F'.

Finally, we prepare some lemmas to deal with the case where d = 3/ is a square free
integer divisible by 3 and ¢ # 1. Let d = 3¢ be such an integer. Then, (Ofr/3)* = (2, 3).
Further, (Ok/3)* = (3, 3, 8) when £ = 1 mod 3, and (Og/3)* = (6, 6) when £ =
—1 mod 3. Let & be a fundamental unit of K. Note that «/—1 ¢ K * as £ # 1. Then, we have
Ex = (—1, &3, €), and we may as well assume that 2 is a real unit by Lemma 4.

LEMMA 10. Under the above setting, assume that the order of the class ¢ € (Og /3)*
is a power of 2. Let x be an integer of F with (x, 3) = 1 such that the class x in (O /3)* is
of order 3. Then, there exist no units §, n € Eg such that

x=46+nmod3 and & =nmodmns.

PROOF. We may as well assume that ¢ # 1 mod 3 replacing ¢ with —¢ if necessary.
Then, as the order of ¢ is a power of 2, we see that [Ex |3 = (e, ¢3)3 = (2%, 3) forsome« > 1
or [Exls = (—1, &, ¢3)3 = (2, 2, 3). The second case can occur only when £ = —1 mod 3.
To show the assertion, let us assume, to the contrary, that x satisfies the above congruence.
Then, we see from the above that

x =2+ ¢)e mod 3

for some a, b, ¢ € Z. Here, the — sign is necessary only when [Ex]3 = (2, 2, 3). Note
that ¢5' + {é’ = —1, -3, —§32 mod 3. Then, it follows from the above congruence that
x = ¢3 mod 3 for some r because of the assumptions on the orders of € and x. As (Of/3)* =
(2, 3), we may as well assume that x = 1 + V3L, Then, from x = §3r mod 3, we obtain
/3¢ = 0 mod 3 or +/—f = £1 mod 73. However, we easily see that this is impossible. [
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REMARK 4. Let K+ = Q(4/dp) be the maximal real subfield of K, and g9 = (¢ +
u+/dp)/2 a fundamental unit of K. When the prime 3 is unramified in K+, the assumption
on ¢ in Lemma 10 is satisfied. This is because of 88 = | mod 3 and Lemma 4. When 3 is
ramified in KT and 3|u, the assumption is satisfied by Lemma 4 since g9 = £1 mod 3.

LEMMA 11. Under the setting and the assumption of Lemma 10, let a € Ok be an
integer of K witha & (K*)? and a = 1 mod 7133. Leta = a'/3 (= 1 mod 73). Then, for an
integer x € OF with (x, 3) = 1, the congruence

2

8
(5) 8o + 81 + 22 = 0mod 3
X
holds for some units &g, 61, 62 € Ek if and only if x = £1 mod 3.

PROOF. As«a =1 mod 73, we have 1 + «a + @2 = 0 mod 3. Hence, the“if" part holds
with §o = §; = 1 and 8, = +1. Let us show the “only if" part. Let x € OF be an integer
with (x, 3) = 1 satisfying the congruence (5). To show x = %1 mod 3, let us assume, to
the contrary, that x % +1 mod 3. As (Ofr/3)* = (2, 3), we may as well assume that the
class x € (Of/3)* is of order 3 replacing x with —x if necessary. It follows from (5) and
1 4+« +a? = 0 mod 3 that

(8o — 82/x) + (61 — 62 /x)a =0 mod 3.
Replacing o with ¢3¢, we have
(80 — 82/x) 4+ (61 — 82/x)¢3a¢ = 0 mod 3.
Subtracting the second congruence from the first one, we obtain

(6) 80/82 = 61/82 = 1/x mod 73 .

Then, it also follows that

8o — 82 /x 81 —da2/x
+
T3 T3

o =0modms.

As o = | mod 73, it follows from the last congruence that
(7 1/x = (=680/82) + (—81/82) mod 3.
However, the congruences (6) and (7) can not simultaneously hold by Lemma 10. O

LEMMA 12. Under the setting and the assumption of Lemma 10, there exist infinitely

many classes a € F*/(F*)? for which the cyclic extension K (a'/?)/K is tame but has no
NIB. Namely, F does not satisfy (H3).

PROOF. By the Chebotarev density theorem, there exist infinitely many couples
(£1, £2) of principal prime ideals £1 = b;OFf and £, = bpOF of F such that by = by =
1+ +/3¢ mod n33. Put b = blb% and b’ = bzb%. Then, b = b’ = 1 mod 7133 and the cyclic

cubic extension K (b1/ 3) =KoY 3) over K is tame. Assume that this extension has a NIB.
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Then, there exists an integer a € O with K (a'/ 3 = K@®Y3) satisfying the conditions of
Theorem 4. We have a = b°y> for s € {1, 2} and some y € K*. Whens = 1,y = y is a unit
of K as the ideal aO is cubic power free, and a = bn>. When s = 2, = by is a unit of K,
and a = b'n3. Therefore, replacing a with an™3, we may as well assume that ¢ = 1 mod ng’
(as in Lemma 11). Let B; be the ideals of K associated to aOg by (1) and (2). By the
definition, By = B = Ok, and By = £,0k = brOk or By = £10k = b1 Ok according
to whether s = 1 or 2. Therefore, by the condition (iv) of Theorem 4, letting « = a'/? and
x = by or by, the congruence (5) holds for some units 8p, 81, 82 € Ex. However, this is
impossible by Lemma 11 since the class x € (O /3)* is of order 3. O

LEMMA 13. Letd = 3¢ > 0 be a square free positive integer divisible by 3 with
L # 1, F = Q(\/E), and g9 = (t + u\/g)/Z a fundamental unit of F. Under the above
setting, assume that hp = 2,3 + u and Qg = 1. Then, there exist infinitely many classes
a € F*/(F*)3 for which the cyclic extension K (a'/) /K is tame but has no NIB. Namely, F
does not satisfy (H3).

PROOF. As Qg = 1, the prime ideal g3 of F over 3 is not principal by Lemma 4 (III).
Let g¢ be the product of distinct prime ideals of F dividing £. As p3g¢ = VdOF, the ideal
class containing gy is of order 2. Let Clp (pg) be the ray class group of F defined modulo
g,)g As 3t u and 3|d, we see that the quotient group of ((’)1v/5o33)X modulo [Ep]pg is a cyclic

group of order 3. Hence, it follows that Clp(g,)g’) is a cyclic group of order 6 as hyp = 2.
Let £1 and £, be prime ideals of F' contained in one class € Clf (pg) of order 6. Then, we

have £1£3 = cOp for some integer ¢ € OF such that ¢ = 1 mod JT;. In the usual class
group ClF, the ideals £1, £, and g, are contained in the same class as hr = 2. Then, as
00k = ~/—LOk, we see that £;0g = x; Ok for some x; € Ok such that

"
c:xlxg and —— € Eg - F*.

V=L
As 31 u and 3|d, we have (OF/3)* C [Ek]3 by Lemma 3. Therefore, we can write
(8) Xi =&V —¢ mod 3

for some unit ¢; € Eg. Letb = c/xg’ = xlx%. Then, as ¢ = 1 mod rrg’, the cyclic extension
K (bl/ 3) =K (cl/ 3) over K is tame. To show that it has no NIB, we assume, to the contrary,
that it has a NIB. Then, there exists an integer a € Ok with K@'?) = K@®'/3) satisfying the
conditions of Theorem 4. We have a = b*y> for s € {1, 2} and some y € K*. Similary as
in the proof of Lemma 12, the ideal 98, associated to aOg by (1) and (2) equals the principal
ideal x,Ok or x; Ok according to whether s = 1 or 2. Let @ = a'/3. Then, by the condition
(iv) of Theorem 4 and (8), we see that the congruence

2

50 + 810 + 2% = 0mod 3
0 o+ —— =0mo
R,
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holds for some units &g, 81, 8 € Eg. As K(al/3)/K is tame, we can take an integer v € Og
such that « = v mod 73 by Lemma 2. Then, 14+ o/v + (oz/v)2 = 0 mod 3. Hence, it follows
from the above congruence that

821}2) ( Sov )
S0 — + |61 — oa=0mod3.
< 0T /=t U=

From this, we obtain
V= = 80?80 = 8,v/81 mod 73

similarly as in the proof of Lemma 11. As Qg = 1 and 3|d, we have [Ek], = (= 1)y

Therefore, it follows that /—¢ = +¢ = 41 mod 73 from the above congruence. However,
we easily see that this is impossible. [

5. Proofs of Theorems 2 and 3

We use the same notation as in Section 4. In particular, F' = Q(V/d)isa quadratic field
with d a square free integer, and K = F (v/=3). If F satisfies (Hz), then the exponent of Clp
divides 2 and 2/ 3[Ek : E%] = 1 by Proposition 3 and Lemma 9 (I). In particular, ¢ < 3
and hence A |4 by genus theory. Hence, we see that hr = 1, 2 or Clp = (2, 2) if (H3) is
satisfied.

PROOF OF THEOREM 2. Let F = Q(+/d) be an imaginary quadratic field. When
d # —3, let gg be the fundamental unit of the associated real quadratic field F* = QW=3d)
with g9 > 1, and let & be a fundamental unit of K = F(v/—3). We let ¢ = &g if Qg = 1, and
we may choose ¢ as in Lemma 4 if Qg = 2.

The case hr = 1. By Stark [12], there are exactly nine imaginary quadratic fields

F = Q(/d) with hp = 1;
d=-1, =2, =3, =7, —11, —19, —43, —67, —163.

When d = —3, F satisfies (O /3)* = (—1, {3)3, and hence it satisfies (H3) by Proposition
1. For the other eight ones, we see from Lemma 4 (III) that Q¢ = 2 by using the fact that 3 is
ramified in F* and & p+ is odd. Further, (H3) is satisfied if and only if (Of/3)* C [Ek]lx, by
Corollary 2. Letd = —2, —11. Then, asd = 1 mod 3, we see that (O /3)* = (O /m3)* =
(2, 2) and v/d # 41 mod m3. Hence, it follows that (Ok /m3)* = (-1, «/E)m. Using
Lemma 4 (III), we see that

e=+-24+vV=3 or V—-114+2/-3

according to whether d = —2 or —11. Hence, (H3) is satisfied for these d. Let d be the
remaining six ones. Then, as d = —1 mod 3, (Of/3)* = (Og/m3)* = (8). Whend = —1,
we see that the order of the class £ € (Ok/m3)* equals 8, where ¢ is the fundamental unit
of K given in Lemma 4 (I). Hence, (H3) is satisfied for d = —1. For the other five ones, we
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have g9 = +1 mod 73 as 3 is ramified in F*. Then, it follows that ¢* = 86 = | mod 73 by
Lemma 4 (III), and hence (H3) is not satisfied for these d.

The case hp = 2. By Stark [13] and Montgomery and Weinberger [11], there are exactly
18 imaginary quadratic fields F = Q(Vd) with hp = 2. Using Lemmas 4 and 9 (II) (and
Remark 3), we see by some hand calculation that among these, there are exactly 13 ones for
which all ideal classes capitulate in K;

d=-5, —-10, —22, —-35, —58, —115, —187, —235
and
d=-3¢ withe=2, 5, 17, 41, 89.

For these 13 ones, we have Qx = 1. Therefore, for the first 8 ones, (H3) is not satisfied by
Lemma 5. For the remaining 5 ones, (H3) is not satisfied by Lemma 12 (and Remark 4).

The case Clr = (2, 2). By Arno [1], there are exactly 54 imaginary quadratic fields
F = Q(+/d) with h = 4. We see from genus theory that among them, there are exactly 15
ones for which Clr = (2, 2) and r < 3. For these 15 ones, we have 3|d, and hence (H3) is
not satisfied by Lemma 12 (and Remark 4). [

PROOF OF THEOREM 3. Asin Section 1, let A (resp. n) denote a prime number > 5
with A = 1 mod4 (resp. 4 = 3 mod4). Let F = Q(+/d) be a real quadratic field, and
¢ = (t + u~/d)/2 a fundamental unit of F. We distinguish the cases according to whether
Ne =—1lorland Qg = 1or2. Letr (< t) be the number of prime numbers which ramify
in F'. We see that r =t — 1 or ¢, and that » = ¢ if and only if 3 is ramified in F. For a prime
number v which ramify in F, let g, be the prime ideal of F over v.

(I) The case Ne = —1 and Qg = 1. In this case, we have [ Eg : E";(] = 2. Then, by
Proposition 3 and Lemma 9 (I), we have t = 2 and hence r = 1, 2 if (H3) is satisfied.

First, let = 1. Then, F = Q(+/2) or Q(+/A). For these F, we actually have Ne = —1,
and Qg = 1 by Lemma 4 (II). As hF is odd, it follows from Proposition 3 and Corollary 2
that F satisfies (H3) if and only if hr = 1 and (OF/3)* C [Eklx,. Therefore, by Lemma 6,
(H3) is satisfied if and only if the conditions (ii) and (iii) of Theorem 3 are satisfied.

Next, let 7 = 2. Then, as t = 2, we have F = Q(+/3), Q(+/6) or Q(v/311). However,
for these F, we have Ne = 1.

(I) The case Ne = —1 and Qk = 2. In this case, we have [ Ek : E";(] = 4. Then, by
Proposition 3 and Lemma 9 (I), we have t = r = 1 if (H3) is satisfied. Hence, F is unramified
outside 3. However, there does not exist such a real quadratic field.

(II) The case Ne = 1 and Qg = 1. In this case, we have [Eg : E}‘(] = 1. Hence,
t =3 and r = 2, 3 if (H3) is satisfied.

First, let r = 2. Then, as r < , we have (A) F = Q( /i), Q(+/2u) or Q(/i112), or
(B) F = Q(+/21) or Q(v/A1X2). For these F, we actually have Qx = 1 by Lemma 4 (II). For
F of type (A), Ne = 1 and hF is odd. Hence, for F of type (A), we see that (H3) is satisfied if
and only if the conditions (ii) and (iii) of Theorem 3 are satisfied by Proposition 3, Corollary
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2 and Lemma 6. Let us deal with F of type (B). For these F, the 2-rank of Clr is one. We
see that Ne = 1 if and only if ¢, and g, (resp. o, and ;) are principal (cf. Exercise 1.2.4
in Mollin [10, page 13]). However, when these ideals are principal, the (unique) ideal class ¢
of F of order 2 does not contain an ambiguous ideal. Hence, the class ¢ does not capitulate in
K by Lemma 7. Therefore, by Proposition 3, (H3) is not satisfied for F' of type (B).

Next, let r = 3. Ast = r = 3, we have F = Q(/610), Q(+/61), Q(+/31) or Q(+/3Aw).
For these F, Ne = 1. As the 2-rank of Cl is one, we must have hp = 2 if (H3) is satisfied.
When 3|u, (H3) is not satisfied by Lemma 12 (and Remark 4). When 3 t u (and hr = 2,
Ok = 1), (H3) is not satisfied by Lemma 13.

(IV) The case Ne = 1 and Qg = 2. In this case, we have [Ex : E";(] = 2. Hence,
t =2andr =1, 2 if (H3) is satisfied. The case r = 1 can not occur as Ne = 1. Hence, we
obtain 7 = r = 2, and hence F = Q(v/3), Q(+/6) or Q(v/3u). For these F, Ne = 1. As hp
is odd, the prime ideal 3 is principal. Hence, Qx = 2 by Lemma 4 (III). By Proposition 1
and Lemma 3, this type of F satisfies (H3) if i = 1 and 3 f u. If hp > 1, it does not satisfy
(H3) by Proposition 3. If 3|u, it does not satisfy (H3) by Lemma 12 (and Remark 4).

Now, Theorem 3 follows from the above argument. [
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