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Abstract. We introduce a multiple analogue of the gamma function which differs from the one defined by
Barnes [B]. Using this function, we give expressions of the multiple sine and cosine functions in terms of zeta
regularized products. The expression of the multiple sine function can be interpreted as a reflection formula of this
new multiple analogue of the gamma function.

1. Introduction

The initial study of multiple trigonometric functions is due to Holder [H] who treated
the double sine function Sy (x) in 1886. It is observed that the multiple sine functions S, (x)
describe the values ¢(2m + 1) of the Reimann zeta function at odd integer points as their
special values (see [KW1, KOW]). Recently we found that these special values appear also
as the extremal values of multiple trigonometric functions [KW3]. On the other hand, due
to the work by Lerch [L], we have a zeta regularized product expression of the classical sine
function. Furthermore, quite recently in [KW4], we discovered similar expressions for the
multiple trigonometric functions of small orders, that is, the double and the triple ones, in
the course of the study of certain finite companions of such multiple trigonometric functions.
Instead of the classical sine function, however, in order to obtain such expressions for the
multiple ones it is necessary to introduce a new zeta regularization method. Namely, we
need to give an extended interpretation to the original zeta regularized product, e.g. developed
in [D, V]. With the help of this interpretation of the regularized product we can arrive at
introducing a multiple analogue G,,(x) of the gamma function which differs from the one
defined by Barnes [B]. We call it a basic multiple gamma function. We remark that the
Barnes multiple gamma function I7,(x) can be defined through the multiple Hurwitz zeta
function and consequently, it is expressed as a zeta regularized product. Therefore the so-
called normalized multiple sine function S, (x) is also defined by the same manner (see e.g.
[KKo, KW3]). Although there is an explicit relation between S, (x)’s and S, (x)’s, no such
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simple expression for S, (x) has been expected so far. To avoid a possible confusion due to
their names, we sometimes call S, (x) and C, (x) the basic multiple sine and the basic multiple
cosine functions, respectively.

The main purpose of the present paper is to give expressions of the multiple trigono-
metric functions S, (x) and C, (x) of general order r in terms of zeta regularized products. In
particular, we find that the expression of S, (x) can be regarded as a reflection formula of the
basic multiple gamma function G, (x).

Recall the basic multiple sine function

P ad X "
(X)) =e T P =
S (x)=e 1_[ (n)

n=—o00,n#0

and the basic multiple cosine function

00 @
cw= ] Pr(z)
2

n=—o0o,n:0dd

of order r > 2. Here we put

r

u? u”
Pr(u)=(1—M)€Xp<u+7+---+—).

The zeta regularized product we use here is introduced in [KW4] and given as follows.
Leta = {a,}n=1.2,... be a divergent series of non-zero complex numbers and b = {b,,},=12. ..
a series of complex numbers. Suppose that the Dirichlet series defined by

Pap(s) =D by-a,’

n=1
can be extended to a holomorphic function around s = 0. (We are assuming that the series
converges absolutely for large enough Re(s).) Then we define the zeta regularized product of

the sequences “{a,lf"}n:m,,,,” by

o

[ J(@)’ = exp(=¢} ,(0)) .

n=1
Note that if b,, = 1, then it is immediate to see that ]_[Zo=1 ((ap)! agrees with the usual zeta
regularized product | [ a, (see [D]), while [ [, ((an)? # [2, al" in general. Actu-
ally, even if we employ any generalized version of the zeta regularized product developed, e.g,
in [I, KW2, KiKSW, KiW], for instance, the product ]_[flo=1 n"" does not exist, though we can

show that ]_[Zoz 1 ((n))”m exists and indeed equals exp(—¢’(—m)). More precisely, we verify
that (in the proof of the main theorems in Section 3) the function defined by the regularized
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product

Gp(x) ™ = [j«n+mv

n=1

exists as an entire function of x and plays a role of a gamma function in the present treatment
of the basic multiple trigonometric functions (see also Remark 2 in Section 3). Note that if all
by are positive integers, then each b,, can be considered as a multiplicity of a,. Throughout
the paper we assume that — < arg(a,) < 7.

The following expressions (and its proof) of the basic multiple sine functions are the
main result of this paper.

THEOREM 1.1. For each positive integer m we have

1122, ((n — )™
112, + )y

2m + D2m)! 14 T m
@)(&WHu)=em(e4W5¥ﬂi—llﬁ>]J«n—x»* T+
n=1

(D Som(x) =

22m g 2m
n=1

where ¢ (s) denotes the Riemann zeta function.

We have proved (1) and (2) of the theorem when m = 1 in [KW4]. We will find that
the formula in the theorem gives an analogue of the reflection formula of the classical gamma
function: I"(x)I' (1 — x) = =/ sinwx (see Corollary 3.3).

Since C, (x) is a 2" ~!-multi-valued function, we treat the function C, (x) = C, (x)ZF1 in
place of C, (x). Obviously, C~, (x) defines a single valued function. We also give the expression

of the multiple cosine functions C, (x) in terms of the zeta regularized product.

THEOREM 1.2. For each positive integer m we have

P (G ) N
((n

5 _ n=1 2
(1) sz(-x) - 1 (2n71)2m—l ’
—2+x))

2 2 1H(2m)!
@) C2m+1(X)=exp((1 22my (— 1)’"M)

22m g 2m

Ae=3-0) Oll-)

n= n=1

We prove this theorem from the result in Theorem 1.1 with the help of the duplication
formula of the basic multiple sine function ((KOW, KKo]).
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2. Preparation of the proof

In order to prove the theorems, we recall the fundamental results in [KW4] for functions
defined by the present zeta regularized product.

LEMMA 2.1.

(A) ]_[((an))wb” = { ]_[((an))b"} forany w € C.
n=1 n=1

@) @t =T @’ ] @)
n=1 n=1 n=I

whenever all of the appearing regularized products exist.

© @) =222 [ J(@))  forany »>0. O

n=I1 n=1

Define also the Dirichlet series attached to the data (a, b) by

Gap(s, %) =Y by (an —x) .

n=1

Denote by u the exponent of convergence of the series Z:il |b,| - |a,|™", that is, the series
converges for Re(r) = u + ¢ and diverges for Re(t) = w — ¢ for any ¢ > 0. Then the
Dirichlet series ¢4 b (s, x) converges absolutely in the region Re(s) > u and uniformly for
each compact subset in x-space C which does not meet any a,. Thus we see that the function
Pa. (s, x) defines a holomorphic function in the region Re(s) > . Let p be the integer part
of . We assume that ¢, (s, x) can be extended to a holomorphic function at s = 0. Then
we define

i 9
[ [(Can = x))"" = exp ( = 55 Pan (0. x)) -
S

n=I1
As in the cases [V, I, KiW], we see that this zeta regularized product defines an entire function

with zeros of indicated order as follows.

LEMMA 2.2. Suppose that b, are all positive integers. Then the function ]_[zo: 1(an —

X)) is analytically extended to the whole complex plane as an entire function whose zeros
are exactly given by x = a, with multiplicity b,,. More precisely, there exits a polynomial
P(x) of degree at most p such that

00 00 b 4

" 1/ x
[ [(@n =20 = P<">||(1—i> e (b,,}j—(—) ) 0
n=1 ‘ ! ‘ n=1 Gn P e:lz Gn
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We also recall the periodicity of the multiple sine function. By the fact

S/
S—’(x) =ax""eot(rx) with S(0) =1
.
for r > 2, the binomial expansion shows the following results (for details, see [KKo]).

LEMMA 2.3. We have

St 1) = 52—;1) ISR
k=1

where S).(1) is given by

S/(1) = =27 exp < -2 > <}r€: 1)4/(1 - 13))

1<tl<r,l:0dd

=1
3 (-7

l<tl<r,l:0dd

Note here that

m—1

_22m)m N (=1)2

= '1-m). O
£(m) oS a=m
‘We put for convenience
> X ac xz
Si1(x) =2mx ]_[ Pl(;> =2nx ]_[ (1 - n_Z) = 2sin(x)
n=—o00,n#0 n=1

and

00 00 2
)2) =2cos(mrx).

o () L0

n
n=—o0,n:0dd 2 2

Then, by the formula due to Lerch [L] (see [KW2]), we have

Si(x) =x ]_[(n —X) ]_[(n+x)
n=1 n=1
and

=TT (o= 5) [T (- 42)

n=1

473

1)

)

3)

“)

(5)

(6)

We note here that Euler regarded the divergent series Y oo n*logn as —¢'(2)(=

n=1

{(3)/4712) in [E]. In our present notation, this implies ]_[Zil ((n))”2 = exp(—¢'(2)).
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3. Proof of the main theorems

Define

Gu(x) =] J(n+x)™". @

n=1

We call Gy, (x) a basic multiple gamma function of order m. We first study the behavior of
this G, (x) under the translation x — x + 1. Since

Gux+ D7 =] +x+ )" =] Je+xn*"", ®)
n=1 =1

by the property (B) of Lemma 2.1, the binomial theorem shows

Gu(x +1) = l_[ Gk(x)('/?)(—l)m-k . ©
k=0

We put temporarily f,; (x) = Gy, (x)~! and gn(x) = fm(—x). Then, similarly to the transla-
tion formula (8), we obtain

m
@+ 1) = (=) [] o) @ (10)
k=0
First note that we have proved the expressions of S (x) and S3(x) in [KW4]. Thus we
show the assertions of Theorem 1.1 by induction. Assume the formulas (1) and (2) in Theorem
1.1 are true for k less than m. Look at the ratio g2,,,—1(x)/f2m—1(x). Then by (9) and (10), we
see that

2m—1 2m—1

m— 1 _(—_1)2m—1-
Pt 0D o T e eco o
k=0

Som—1(x + 1)

2m—1

ml 2m—1y m—1 4 Gjo
= (—x)- Pm—1(x) l_[ {gzj(x)fzj(x)} 2 ) . {M} s
=1

o1 (x) j=0 p fj—1(x)

Hence the induction hypothesis asserts

Pm-1(x +1) _ GPm—1(x) )
fom—1(x +1) Sam—1(x)

S1(x)

m—

1
X {52,;'+1(X) CXP(
1

. . . (2’”f1) m—1
-2 DR 2j m—
il A n)} T sy
j=l1

.

m—1

(=D (2m — 1 .
:—exp(—ZW< 2j >§(2]+1)>

j=1
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2m
o Jm—1(0) 1(x) 2m—1
fzm 1(x) l_[ S

2m—1

(1) 2m— ] ng 1(x)
| | S (o) Gis
KOO fzm 1(x)

In the last equality, we used the expression of the value of &), (1) described in Lemma 2.3.
Therefore, using Lemma 2.3 again, we find that the functions Sy, (x) and g2, —1(x)/ fam—1(x)
have exactly the same periodicity as meromorphic functions of order 2m. On the other hand,
since the both meromorphic functions have the same zeros and poles (counting with their
multiplicity) by Lemma 2.2, there exists a polynomial P (x) of degree at most 2m with real
coefficients such that the identity

Pm—1(x)
Pom—-1(x)

holds. The aforementioned periodicity shows hence that the polynomial P(x) should be of
the form 2kmix + ¢ with an integer k while the real valuedness P(x) on R implies k = 0, that

is, P(x) should be a constant c. Noting %"%:Egg = S, (0) = 1, we obtain e = 1. Hence

the desired expression Sy, (x) in (1) for m follows.
We next derive the expression of S»p,4+1(x) in (2). The calculation similar to the one we
did shows that

=P8, (x).

2m

]"[Sk(x)(k DX go 41 () fam41 (X)

P41+ D fompr(x + 1) = Ll()

that is, the meromorphic function g,,,+1(x) fom+1(x) has the same periodicity of Sap41(x).
Therefore, employing again the same discussion made above, we prove the assertion for
Som+1(x) by Lemma 2.2. This completes the proof of Theorem 1.1. O

REMARK 1. It follows from Theorem 1.1 that

[T =exp ((—1)'"—l com+ Dom): 1)(2”’)!) . (11)

22m+ln2m
n=1

In other words, the value of ¢ (s) at the odd integer point can be written as

(_1)m—122m+17.[2m

(@m+1) = log ( ]_[((n))"z’“) . (12)

2m)!

n=1

REMARK 2. We can describe a generalization of the formula given in the remark
above. Let (s, x) = Zsio(n + x)7% be the Hurwitz zeta function. Then for m > 1,
we prove the following formula which is also considered as an analogue of the Lerch formula
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[LI: 0~ = @r)7 2 [ +x) = ) 2e 80,
G = [ [ + 2™ = [Jem(De """ (13)
n=1 =0

Here the differentiation ¢'(—¢, x) indicates the one with respect to s. In fact, by definition we
obtain G, (x) ! = exp (— %qﬁ{n},{nm}(s, —x)|s=0). Here, since

). iy (s, X) = an cn—x)"" = Z(n —x+x)" - mn—x)"*
n=1

n=0
o m
= ZZ (Zj) n—x)x"t m—x)""°
n=0 =0
m
= <’Z)xm%(s — 0, —x)
=0
we have
m
Pl ) 0, —X) = > (’Z)xm%%—e, x),
=0

whence we get the formula (13).

The theorem shows that the basic multiple gamma function G, (x) is a half zeta function
of the corresponding basic multiple sine function Sy, (x) in the sense of [HKW]. Actually,
the formula (8), that is, the equation

m—1

Gn(x + 1) = { I1 Gk<x>('f><‘>’”"} G (x) (14)

k=0

is regarded as a generalization of the translation property of the gamma function I"(x + 1) =
xI"(x). Moreover the theorem yields the reflection formulas of the basic gamma function as
follows:

COROLLARY 3.1. Form > 1 we have
Som (%) = Gom—1(x)Gom—1(—x) 7", (15)

m & 2Cm + 1)(2m)!

Som+1(x) = exp <(_1) 22m 7 2m

)sz(xrlem(—xr‘ .06
We will show the generalization of the duplication formula of G, (x) in the end of the
section (see Corollary 3.3).
The proof of Theorem 1.2 can be done in the following two ways. The first one is the
same as the above for Sy, (x) by the periodicity of the multiple cosine function obtained from
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the following characterization of C, (x):
/
C—’(x) = —ax"'tan(zx) with C.(0) =1.
.

The second one, which we take here, is to employ the duplication formula (see [KOW],
[KKo]) of the multiple sine functions given by

~ _nr—1

Cr(x) = 52087 (17
In fact, using the property (C) in Lemma 2.1, we have the following result.

PROPOSITION 3.2. Let ¢ (s, x) be the Hurwitz zeta function. Then the duplication pro-
cedure of the function Gy, (x)" = ]_[Zozl ((n + x))”m is described as

00 " ) 0 " 2m o 1 e—-1n"
]_[((n+2x))” =2z('"’X>-{]_[((z+x)) } -e]:[l((e—iwc)) . (18)

n=1 =1
Here we put
2(m,x) =Y <n.1)(—X)mj€(—j, x). 19)
j=0 N
PROOF. Put
pm(s,x) = n" - (n+x)"" (20)
n=I
and
_ o0 " 1 —S
pm(s,x>—;<2fz—1> <fz—§+x) : 1)

By the property (C) in Lemma 2.1 we have

[ [ +200™ = [ Je2e +20))@0" - T J(@t = 14 2x))@ D"

n=1 =1 =1
(o) m . o0 1 e—-1)m
- {zpm(o’” [ e+ x))(m} 2 OO ] <<£ —5+ x))
=1 =1
i 0 2" o0 1 Qe—1"
— 22mpm(0,x)+pm(0,x){ ]_[((@ +x))gm} ) ]—[ <<£ _ E T x))
=1 =1
Here we note (as in the calculation in Remark 2) that
m
m —j .
ACREDY <j)<—x>m Te(=j,x) = z(m, x). (22)

j=0
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Also, we obtain

oo

om(s, x) =2° Z(zz — )"0 —1+2x)"*
=1
= zS{ ka (k4 2x)~% — Z(ze)m (20 + 2x)“‘}
k=1 =1

=2°0(s,2x) — 2" pu (s, X) .
Thus, in particular,
2m)0m(07 x)+ ﬁl/ﬂ(os x) = pm(0, 2x) .

Hence the result follows immediately from (22). O
EXAMPLE. Since Bi(x) = x — % and By (x) = x2 — x + %, we have

1 1
z(1,m) = —x¢(0,x)+¢(—1,x) = —x I
PROOF OF THEOREM 1.2. Now we recall the formula
. Bjt1(x)
—J,X)= T 1
§(—=j,x) IEY
where Bj1(x) is the Bernoulli polynomial given by
j+1 .
j+1 ik
B; = Byx/ Tk,
) =>" ( k ) (2
k=0
Note that the Bernoulli numbers satisfy By;,+1 = 0 for m > 1 while B] = —% # 0. By this

fact, z(m, x) can be calculated as

e (m\ (=0 L+t +1—k
Z(m’X)__];o(j) (e

k=0

m j+1 ;
_ (— 1yt ZZ( ><J + 1) (j__i): B

j=0 k=0

Now looking at the coefficient of B1x™, we have

S ]+1>( 1/ () D (11" =0
;O(J)( o) =ash

Hence we see that if m is odd (resp. even), then the polynomial z(m, x) becomes even (resp.
odd). Therefore, by the proposition above together with the duplication formula (17) of S, (x)
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and Theorem 1.1, the proof of Theorem 1.2 can be accomplished. The detailed calculation is
easy and is left to the reader. [

REMARK 3. Similarly to the formula in Remark 1, by Theorem 1.2 we have

i 1\ &b 2m + 1)(2m)!
U((n—g» =exp((—1)'"—1(1—2'")%). 23)

n=1
A proof similar to the proposition gives the duplication formula of G, (x).

COROLLARY 3.3. Put p, (s, x) = Z:il n™ - (n+x)~*. Then the duplication formula
of Gy, (x) holds:

N 1y (e
G (2x) = 270019 Gy ()2 -H{Gm(x“)} ' .

. 2
Jj=0

Here,

w(m, x) = 2" pp (0, %) + ) ('j) J(=1)" p; (0, x = %)

j=0
and each p; (0, x) is calculated as

m

pm(0, %) = (?)(—l)m‘ex’"“zg(—z, x). O

£=0

REMARK 4. An analogue of the Gauss-Legendre multiplication formula of the gamma
function can be established similarly.
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