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On the Complex WKB Analysis for a Second Order Linear
O.D.E. with a Many-Segment Characteristic Polygon
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Abstract. Asymptotics of ODE appearing in the turning point problems can be characterized literally by its
characteristic polygon. The Airy equation has a one-segment characteristic polygon. Fedoryuk ([4]), Nakano ([8],
[12]), Nakano et al. ([13]), and Roos ([17], [18]) studied ODE’s with a several-segement one. The more segments,
the more complicated asymptotics. Here, we study an ODE with a many-segment one. Firstly, the ODE is reduced
to the simpler ODE’s in some subdomains, and then the reduced ODE’s have the WKB solutions as their asymptotic
solutions. Secondly, two sets of the WKB solutions in the neighboring subdomains are related by a matching matrix.
In our analysis the stretching-matching method is applied and the Stokes curves play an important role. How to get
the Stokes curve configuration for the reduced ODE’s is analyzed precisely.

1. Introduction

1.1. We study the following one-dimensional Schrödinger equation:


ε2h d2y

dx2 = Q(x, ε)y, Q(x, ε) :=
h∑

j=0

ajε
j xmj ;

mj := (h − j + 1)(h − j)

2
, C � ∀aj �= 0 ;

h = 2, 3, 4, · · · ; x, y ∈ C ; 0 < ε ≤ ε0 ; D : 0 ≤ |x| ≤ x0 ,

(1.1)

where x0 and ε0 are positive small constants. The zeros of Q(x, 0) (= a0x
(h+1)h/2) are

called turning points of (1.1), and so (1.1) has a turning point at x = 0 of order (h + 1)h/2.
Sometimes ε can be considered as the Plank constant h̄

Our aim is to analyze the asymptotics of solutions of (1.1) in D by using the concept
of the characteristic polygon (defined below) and by applying what we call the stretching-
matching method (Nakano ([8]–[12]), Nakano et al. ([13]), Nishimoto ([14]), Wasow ([22])).

We set another (X, Y )-plane, on which we put points Pj ’s according to the indices of
ε and x of Q(x, ε) and a point R according to the index of ε on the left hand side of (1.1)
defined, respectively, by

Pj :=
(

j

2
,
mj

2

)
(j = 0, 1, 2, · · · , h) and R := (h,−1) .(1.2)
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The characteristic polygon for (1.1) is, by definition, a polygon consisting of segments con-
necting points P0, P1, · · · , Ph and R in order (Iwano-Sibuya [7]). The point P0 is on the Y -

axis and corresponds to the first term a0x
(h+1) h/2 of Q(x, ε). Pj corresponds to the (j +1)-st

term of Q(x, ε). This characteristic polygon is convex downward, snaps at Pj ’s, and consists
of h + 1 segments. For j = 0, 1, · · · , h − 1, Pj and Pj+1 are on the (j + 1)-st one, and Ph

and R are on the (h+ 1)-st one, i.e., on the last one. In order to know the asymptotic property
of the solutions, we need several steps of analysis (§2).

The differential equations with a two- or three-segment characteristic polygon are studied
by Fedoryuk ([4]), Nakano ([8], [9]), Nakano et al. ([13]), Roos ([17], [18]). Nakano ([10],
[11]) studied the n-th order O.D.E. Some of them are reviewed in §7.

1.2. The differential equation (1.1) can be represented in the matrix form by the stan-
dard transformation and it is a special case of

εh dY

dx
=

[
0 1

q(x, ε) 0

]
Y ,

q(x, ε) :=
∞∑

j=0

( ∞∑
k=0

aj,k xmj,k

)
εj (mj,k ≥ 0; 0 < ε ≤ ε0; 0 < |x| ≤ x0) .

(1.3)

Since the power of ε of the left hand side of (1.3) is h, every term of εj (j ≥ h + 1) can
be considered to be a regularly perturbed term and so it can be asymptotically neglected.
The higher degree terms of aj,kx

mj,k (k ≥ 1) can also be asymptotically neglected because
their asymptotic contribution to the solutions is known to be small due to the theory of its
characteristic polygon. Thus (1.1) can be regarded as a fairly general differential equation in
this sense although it looks simple.

1.3. The contents of this paper are as follows. In §2, we reduce (1.1) asymptotically to
the simpler differential equations in appropriate subdomains of D. In §3, the WKB approx-
imations for the reduced differential equations are given. The WKB approximations are the
trancated formal solutions. In §4, the Stokes curve configurations and the canonical domains
for the reduced differential equations are constructed. Every canonical domain is bounded
by several Stokes curves. The asymptotic expansions of the true solutions are their WKB
approximations in a canonical domain. Thus, it is very essential for the analytic but not for
the formal asymptotic theory to determine Stokes curves and canonical domains. In §5, two
sets of the solutions of the reduced differential equaions are matched, i.e., they are connected
linearly by the matching matrix by using their WKB approximations. In §6, we consider
the differential equation of the same type as (1.1) in order to compute formally the matching
matrices by assuming the existence of its canonical domain. Then, in §7, we compare the
matching matrices in §6 with ones appeared in the papers cited in §1.1. The last section (§8)
is the summary, in which the process of all the analysis is repeated concisely.
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FIGURE 1.1. The characteristic polygon (mj := (h − j + 1)(h − j)/2).

2. The asymptotic reductions of (1.1)

2.1. Each term of Q(x, ε) can be considered “the asymptotically dominant term” in

some subdomain of D. In order to show the (j + 1)-st term (= aj ε
jxmj ) to be dominant, we

pick it up to the head and separate Q(x, ε) into three parts as follows:

Q(x, ε) = ajε
jxmj

{( j−1∑
k=0

+1 +
h∑

k=j+1

)
ak

aj

εk−j x(h−k+1)(h−k)/2−(h−j+1)(h−j)/2
}

.(2.1)

The first sum is represented as

j−1∑
k=0

ak

aj

{(εxj−h−1)−1}j−kx(j−k−1)(j−k)/2 ,(2.2)

which is small for x satisfying |x| ≤ kj ε
1/(h−j+1) with a sufficiently small constant kj be-

cause (j − k − 1)(j − k)/2 is nonnegative and x(j−k−1)(j−k)/2 is bounded in D.
The last sum is represented as

h∑
k=j+1

ak

aj

(εxj−h)k−j x(k−j)(k−j−1)/2 ,(2.3)
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which is small for x satisfying |x| ≥ Kj+1ε
1/(h−j) with a sufficiently large constant Kj+1

because (k − j)(k − j − 1)/2 is nonnegative and x(k−j)(k−j−1)/2 is bounded in D. Thus, we
can regard that the (j + 1)-st term is dominant to obtain the reduced differential equation

(2.4)j ε2h−j d2y

dx2
= ajx

mj y

(
mj := (h − j + 1)(h − j)

2
; j = 0, 1, 2, · · · , h

)

as ε → 0 for x in the subdomain Dout,j (⊂ D) defined by

(2.5)j
Dout,j := {(x, ε) : Kj+1ε

1/(h−j) ≤ |x| ≤ kj ε
1/(h−j+1), 0 < ε ≤ ε0}

(j = 0, 1, 2, · · · , h) ,

where we should read Kh+1ε
1/0 := 0 for j = h and k0ε

1/(h+1) := x0 for j = 0. Then, (2.4)j

becomes especially for j = h

(2.4)h εh d2y

dx2
= ahy in Dout,h := {(x, ε) : 0 ≤ |x| ≤ khε, 0 < ε ≤ ε0} .

We notice that (2.4)h has a constant coefficient and it is easily solved near the turning point
x = 0, that is to say, the equation (2.4)h gives the asymptotic property of (1.1) near the
turning point.

2.2. In the intermediate domain, designated by Dj+1, between Dout,j and Dout,j+1,
(1.1) can be asymptotically reduced as follows. Applying the stretching transformation, which
is the first step of the stretching-matching method (§5.1),

(2.6) x := tε1/(h−j) (j = 0, 1, 2, · · · , h − 1)

to (1.1), we obtain the differential equation

(2.7)j+1




ε2
j+1

d2y

dt2
= Qj+1(t)y ,

εj+1 := ε(3h−1−j)/4−1/(h−j), (3h − 1 − j)/4 − 1/(h − j) > 0 ,

Qj+1(t) := aj t
mj + aj+1t

mj+1

≡ aj t
(h−j−1)(h−j)/2

(
th−j + aj+1

aj

)
(j = 0, 1, 2, · · · , h − 1)

in the domain

(2.8)j+1 Dj+1 := {t : kj+1 ≤ |t| ≤ Kj+1, t := x ε−1/(h−j)} .

Here, we supposed the inequality between h and j of (2.7)j+1, which is called a singular
perturbation condition (cf. (6.1)′ in [10]). When this inequality holds, (2.7)j+1 is a differ-
ential equation of singular perturbation type and it possesses its own turning points at zeros
of Qj+1(t) which are called secondary turning points of (1.1). Thus, analyzing differential
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equations with secondary turning points is called a secondary turning point problem. The
secondary turning problem was firstly studied in [13].

We show how to get (2.7)j+1 in the following. After substituting (2.6) for x in Q(x, ε)

and separating it into two parts, we see that

Q(x, ε) ≡ Q(t ε1/(h−j), ε)

=
h∑

k=0

akt
(h−k+1)(h−k)/2εk+(h−k+1)(h−k)/(2(h−j))

= ε(h+1+j)/2
( j+1∑

k=j

+
∑

k �=j,j+1

)
akt

(h−k+1)(h−k)/2 ε(j−k+1)(j−k)/(2(h−j)) .

(2.9)

The first sum in the last expression of (2.9) contains two terms representing

(2.10) aj t
(h−j+1)(h−j)/2 + aj+1 t(h−j)(h−j−1)/2 ≡ aj t

mj + aj+1 tmj+1 .

The general term in the second sum is represented as

(2.11) akt
(h−k+1)(h−k)/2(ε1/(h−j))(j−k+1)(j−k)/2 ,

where the exponent (h−k+1)(h−k)/2 is nonnegative and 1/(h−j) and (j −k+1)(j −k)/2
are also positive. Since (2.11) tends to zero as ε → 0 for t ∈ Dj+1, we obtain

Q(x, ε) ∼ ε(h+1+j)/2aj t
(h−j−1)(h−j)/2(th−j + aj+1/aj ) (ε → 0, t ∈ Dj+1) ,

which gives (2.7)j+1. Especially, (2.7)h is

(2.7)h εh−2 d2y

dt2 = ah−1

(
t + ah

ah−1

)
y (kh ≤ |t| ≤ Kh

)
,

which has its own turning point t = −ah/ah−1, namely, a secondary turning point of (1.1) at
t �= 0. Solutions of (2.7)h can be represented by the Airy functions. Since x = 0 corresponds
to t = 0, (2.4)h may be unnecessary if solutions of (2.7)h are adopted. However, we take
account of all the reduced differential equations in this paper. We call (2.4)j an outer equation
for (1.1) and (2.7)j+1 an inner equation for (1.1) according to [13].

2.3. Summing up the above consideration, we get the following result.

THEOREM 2.1. The differential equation (1.1) is asymptotically reduced to (2.4)j in
(2.5)j , and (2.4)j corresponds to the point Pj on the characteristic polygon. Especially,
(2.4)h gives the asymptotic property of (1.1) near the turning point.

The differential equation (1.1) is also asymptotically reduced to (2.7)j+1 in (2.8)j+1,
and (2.7)j+1 corresponds to the points Pj and Pj+1 on the (j + 1)-st segment of the charac-
teristic polygon.
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We should notice that the domain (2.8)j+1 is bounded but it must be extended to an
unbounded domain

(2.12)j+1 D∞
in,j+1 := {t : 0 < |t| < ∞}

in order to match, i.e., to connect a set of solutions of an inner equation and that of an outer
equation. It is the second step of the stretching-matching method (§3.3 and §5). We call (2.5)j

and (2.12)j+1 the outer domain and the inner domain of (1.1), respectively.

3. The WKB approximations

3.1. Both (2.4)j and (2.7)j+1 have the form common to the singular perturbation.
Then, we here study

(3.1) ε2 d2y

dx2 = Q(x)y (x, y ∈ C; 0 ≤ |x| < ∞; 0 < ε ≤ ε1) ,

where ε1 is a small constant and Q(x) is a polynomial. x = ∞ is an irregular singular point
of (3.1). A point x = a is called a turning point of (3.1) if Q(a) = 0.

WKB approximations ỹ±(x, ε) for (3.1) are, by definition, given by

(3.2) ỹ±(x, ε) := C±
4
√

Q(x)
e± 1

ε
ξ(a,x) (C± : constants) ,

where

(3.3) ξ(a, x) :=
∫ x

a

√
Q(x) dx.

(3.2) is sometimes called a formal WKB solution. A curve on the x-plane defined by the
equation

(3.4) � ξ(a, x) = C (Q(a) = 0)

is called a level curve of level C and it is called a Stokes curve for (3.1) when C = 0, and a
curve defined by the equation

(3.5) � ξ(a, x) = C (Q(a) = 0)

is also called a level curve of level C and it is called an anti-Stokes curve for (3.1) when
C = 0.

The map ξ := ξ(a, x) (Q(a) = 0) defined by (3.3) is a confomal mapping from the
x-plane to the ξ -plane except for the turning points because dξ/dx �= 0 at x �= a. Then the
level curves defined by (3.4) and defined by (3.5) are mapped perpendicular on the ξ -plane by
ξ := ξ(a, x).

3.2. A Stokes curve configuration for (3.1) plays an important role for asymptotics of
(3.1) as shown, for example, in [1], [5] and [8]–[12]. We give here a brief sketch of main
properties of the Stokes curve configuration for (3.1) (cf. [2], [4], [10], [12]).
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(i) Stokes curves and anti-Stokes curves from a turning point tend to other turning
points or to the irregular singular point x = ∞.

(ii) A Stokes curve cannot intersect itself. An anti-Stokes curve cannot intersect itself,
either.

(iii) There are no (sums of several) Stokes curves or anti-Stokes curves homotopic to a
circle.

We prepare terminology for the Stokes curve configuration. A Stokes domain is, by
definition, a simply connected domain bounded by several Stokes curves without any Stokes
curves in its interior. There are two types of the Stokes domains. One is of half-plane type,
which is mapped onto a half plane (�ξ > C or �ξ < C) in the ξ -plane by ξ := ξ(a, x). The
other is of strip type, which is mapped onto a strip domain (C1 < �ξ < C2) in the ξ -plane.

A canonical domain for (3.1) is, by definition, a domain consisting of any two adjoining
Stokes domains of half-plane type, or a sum of Stokes domains of half-plane type and one or
more Stokes domains of strip type. A canonical domain must be mapped conformally onto
the whole ξ -plane except for one or several slits which are images of boundaries of Stokes

domains. For example, consider Q = Q3(x) := x3(x3 − 1) in (3.3). In Fig. 4.1 the solid
lines are the Stokes curves and the broken lines are the anti-Stokes curves. S1 is bounded by
three Stokes curves l1, l2, l3, S3 by two l4, l5, and S2 by four l3, l4, l6, l7. Every Sj is a Stokes
domain. S1 and S3 are of half-plane type and mapped conformally onto the half-planes on
the ξ -plane depicted in Fig. 4.1′. (Note that the same letters are used for the images.) S2 is of
strip type and mapped conformally onto a strip plane on the ξ -plane depicted in Fig. 4.1′. The
union of the three Stokes domains S1,S2 and S3 together with the two Stokes curves (l3, l4)
makes up a canonical domain because it is conformally mapped onto the whole ξ -plane except
for two slits, which emerge from the images of 0 and ω and go upward (Figs. 4.1 and 4.1′).
Also, S1,S2 and S3 together with two Stokes curves make up a canonical domain for Q4(t)

and its image is shown in Fig. 4.2′.
In Figs. 4.3 and 4.4, there exist six Stokes domains, only one of which is of strip type.

In Fig. 4.5, there are 12 Stokes domains of half-plane type, four of which are bounded by two
Stokes curves and the rest by three. Any two adjoining Stokes domains together with a Stokes
curve between them make up a canonical domain. There is no strip type. In Fig. 4.6, there are
four Stokes domains of strip type.

When Q(x) is a rational function, the Stokes curve configuration is very different from
the case of a polynomial. Several examples can be seen in Nakano [9], one of which will be
cited in §7.5.

The WKB approximations ỹ±(x, ε) possess the double asymptotic property stated as
follows (Fedoryuk [4]).

LEMMA 3.1. Let ỹ±(x, ε) and Dcan be the WKB approximations and a canonical do-
main for (3.1) respectively. Then, there exist the true solutions y±(x, ε) of (3.1) having
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ỹ±(x, ε) as their asymptotic expansions :

(3.6) y±(x, ε) ∼ ỹ±(x, ε) as

{
x → ∞ in Dcan (0 < ε ≤ ε1) ,

ε → 0 for x ∈ Dcan (0 < ε ≤ ε1) ,

where ε1 is a small constant.

Note that the first relation is vacant if Dcan is bounded from x = ∞.

3.3. The WKB approximations ỹ±
out,j (x, ε) for (2.4)j and ỹ±

in,j+1(t, ε) for (2.7)j+1 are

respectively given by

(3.7)j

ỹ±
out,j (x, ε) := a

−1/4
j x−(h−j+1)(h−j)/8

× exp

(
± 4 a

1/2
j

(h − j + 1)(h − j) + 4

x{(h−j+1)(h−j)+4}/4

εh−j/2

)

(j = 0, 1, 2, · · · , h) ,

(3.8)j+1

ỹ±
in,j+1(t, ε) := 1

4
√

Qj+1(t)

× exp

(
± 1

εj+1

∫ t

0

√
Qj+1(t) dt

)
(j = 0, 1, 2, · · · , h − 1) .

Then, from Lemma 3.1, we obtain

THEOREM 3.2. There exist true solutions y±
out,j (x, ε) (resp. y±

in,j+1(t, ε)) of (2.4)j

(resp. (2.7)j+1) such that the following asymptotic properties are valid:
(3.9)j y±

out,j (x, ε) ∼ ỹ±
out,j (x, ε) as ε → 0 for x ∈ Dcan

out,j (0 < ε ≤ ε0) ,

where Dcan
out,j is a canonical domain for (2.4)j , and

(3.10)j+1 y±
in,j+1(t, ε) ∼ ỹ±

in,j+1(t, ε) as

{
t → ∞ in Dcan

in,j+1 (0 < ε ≤ ε0) ,

ε → 0 for t ∈ Dcan
in,j+1 (0 < ε ≤ ε0) ,

where Dcan
in,j+1 is a canonical domain for (2.7)j+1.

We should notice that the WKB approximations ỹ±
out,j (x, ε) have a single asymptotic

property as shown in Lemma 3.1, because the x-domain Dcan
out,j is bounded.

4. The Stokes curves and the canonical domains

4.1. In this section, we will construct or define all the necessary canonical domains.
In order to get exact form of canonical domains we need to know first the Stokes curve con-
figuration. Since ambiguity of aj ’s can determine neither positions of turning points nor the
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geometry of Stokes curves, we must specify coefficients aj ’s of Q(x, ε) in (1.1). Thus we
put, for the sake of simplicity,

(4.1) aj := (−1)j (j = 0, 1, 2, · · · , h) .

Then we analyze the following two equations:
For j = 0, 1, 2, · · · , h, the outer differential equation

(4.2)j ε2h−j d2y

dx2 = (−1)j x(l+1)l/2y , l := h − j (= 0, 1, 2, · · · , h)

in the corresponding outer domain (2.5)j .
For j = 0, 1, 2, · · · , h − 1, the inner differential equation

(4.3)j+1


ε2
j+1

d2y

dt2
= Qj+1(t)y , εj+1 := ε(3l−1+2j)/4−1/ l ((3l − 1 + 2j)/4 − 1/l > 0)

Qj+1(t) := (−1)j t l (l−1)/2(t l − 1), l := h − j (= 1, 2, 3, · · · , h)

in the corresponding inner domain (2.12)j+1 (but not in (2.8)j+1 (§2.3)). Here we supposed
the singular perturbation condition (4.3)j+1 (cf. (2.7)j+1).

The WKB approximations (3.7)j and (3.8)j+1 induce respectively

(4.4)j
ỹ±
out,j (x, ε) := (−1)−j/4 x−(l+1)l/8 exp

(
± 4 (−1)j/2

(l + 1)l + 4

x{(l+1)l+4}/4

εh−j/2

)

(j = 0, 1, 2, · · · , h)

and

(4.5)j+1
ỹ±
in,j+1(t, ε) := Qj+1(t)

−1/4 exp

(
± 1

εj+1

∫ t

0

√
Qj+1(t) dt

)

(j = 0, 1, 2, · · · , h − 1) .

The origin x = 0 is only one turning point for (4.2)j . The point t = 1 is a turning point
for any (4.3)j+1. If l = h − j �= 0, then l-th roots of 1 are also turning points for (4.3)j+1,
which are secondary turning points for (1.1) (§2.2). The origin t = 0 also is a turning point
of (4.3)j+1 if l(l − 1) �= 0, i.e., if j = 0, 1, 2, · · · , h − 2.

4.2. First, we study the Stokes curve configuration for (4.3)j+1. Since � ∫ t

a

√
q(t)dt =

� ∫ t

a

√− q(t)dt(q(a) = 0) for any polynomial q(t), Stokes curves for −q(t) coincide with
anti-Stokes curves for q(t). Therefore, it is sufficient to study the Stokes curve configuration

defined by the integral
∫ t

a

√
q(t)dt . Putting

(4.6) q(t) := t l (l−1)/2(t l − 1) (= (−1)jQj+1(t), l ∈ N) ,
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we choose a branch of square roots of q(t) such that
√

q(t) > 0 for a large t (t > 1) on the
positive real axis. The interval between t = 0 and t = 1 is a (part of) Stokes curve for any
l ∈ N.

We investigate into the Stokes curve configurations for every l = 1, 2, 3, · · · .
(i) The case l = 1.

Since q(t) = t − 1, the turning point t = 1 is of order one and the Stokes curve configuration
is essentially the same as the Airy equation: ε2d2y/dt2 = ty. The straight line t ≤ 1 on the
real axis is a Stokes curve.

(ii) The case l = 2.

Since q(t) = t (t2 − 1), the points t = 0, ± 1 are the turning points of order one and the
Stokes curve configuration is simple.

(iii) The case l = 3.

Since q(t) = t3(t3 − 1), the turning points t = 1, ω, ω2 (ω := ei2π/3) are order one and
the turning point t = 0 is of order three. From t = 0 five Stokes curves and five anti-Stokes
curves emerge. This Stokes curve configuration is rather complicated.

(iv) The case l = 4
Since q(t) = t6(t4 − 1), there exist five turning points t = 0, t = ei mπ/2 (m = 0, 1, 2, 3)

and we see that ∫ t

0

√
q(t) dt =

∫ τei mπ/2

0

√
q(τ) dτ (t := τ ei mπ/2) .

Then, the Stokes curve configuration is symmetric with respect to the origin t = 0, and its
form is not changed by rotation of π/2.

(v) The case l ≥ 5.
There exist much more numbers of Stokes curves emerging from the origin than a number of
turning points. Then, at least two Stokes curves emerging from t = 0 pass between t = 1

and its neighboring turning point t = ei2π/l and tend to t = ∞. Thus we can get one Stokes
domain of half-plane type bounded by two Stokes curves emerging from t = 0, and there is
another Stokes domain of half-plane type bounded by two unbounded Stokes curves emerging
from t = 0, t = 1.

We illustrate rather complicated examples cited in (iii) (Figs. 4.1, 4.2 ).

EXAMPLE 1. Q3(t) := t3 (t3 − 1) for h = 5, j = 2.

EXAMPLE 2. Q4(t) := − t3 (t3 − 1) for h = 6, j = 3.

In Figs. 4.1 and 4.2, the shadow zones represent the canonical domains Deven,can
in,3 (for

h = 5, j = 2) and Dodd,can
in,4 (for h = 6, j = 3). The Stokes curves for Q3(t) are the

anti-Stokes curves for Q4(t), and the anti-Stokes curves for Q3(t) are the Stokes curves for
Q4(t). The thick lines and the broken lines designate the Stokes curves and the anti-Stokes
curves, respectively. S1 and S3 are Stokes domains of half-plane type and S2 is of strip-type.

The real part � ξj (t) of the function ξj (t) := ∫ t

0

√
Qj(τ) dτ(j = 3, 4) takes positive values
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FIGURE 4.1. Deven,can
in,3 (h = 5, j = 2. Q3(t) = t3(t3 − 1)).

FIGURE 4.2. Dodd,can
in,4 (h = 6, j = 3. Q4(t) = −t3(t3 − 1)).
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FIGURE 4.1′. The image of Deven,can
in,3 by ξ := ξ3.

Same letters are used for images.
FIGURE 4.2′. The image of Dodd,can

in,4 by ξ := ξ4.

Same letters are used for images.

FIGURE 4.3. Dodd,can
in,2 (h = 3, j = 1. Q2(t) = −t (t2 − 1)).

in S2 ∪ S3. Figs. 4.1′ and 4.2′ show the images of the canonical domains by the mapping
ξ := ξj (t). (Notice that the same letters are used for images for simplicity.) Other canonical
domains for various pairs of h and j are illustrated by the shadow zones in Figs. 4.3–4.6.

4.3. If “j is even", we can choose Deven,can
in,j+1 as a canonical domain for (4.3)j+1, which

is composed of two Stokes domains of half-plane type with or without a Stokes domain of
strip-type. Though the Stokes curves are not straight lines, Deven,can

in,j+1 has a sector-like shape

near t = ∞ such that

(4.7)∞ Deven,can
in,j+1 : 2π

(l + 1)l + 4
< arg t <

10π

(l + 1)l + 4
(t ∼ ∞) ,

and it has also a sector-like shape near t = 0 such that

(4.7)0 Deven,can
in,j+1 : 0 < arg t <

8π

(l − 1)l + 4
(t ∼ 0) .
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FIGURE 4.4. Deven,can
in,9 (h = 10, j = 8. Q9(t) = t (t2 − 1)).

FIGURE 4.5. Dodd,can
in,2 (h = 5, j = 1. Q2(t) = −t6(t4 − 1)).

We notice, as shown later in §4.5, two arguments 2π/((l + 1)l + 4), 10π/((l + 1)l + 4) of
(4.7)∞ correspond to ones of the canonical domain Deven,can

out,j for (4.2)j , and two arguments

0, 8π/((l − 1)l + 4)) of (4.7)0 correspond to ones of the canonical domain Dcan,even
out,j+1 for

(4.2)j+1.

If “j is odd”, we can obtain Dodd,can
in,j+1 as a canonical domain for (4.3)j+1, which is

composed of two Stokes domains of half-plane type and one Stokes domain of strip type. The

canonical domain Dodd,can
in,j+1 is bounded by several “curves” but it has a sector-like shape near
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FIGURE 4.6. Deven,can
in,7 (h = 10, j = 6. Q7(t) = t6(t4 − 1)).

t = ∞ such that

(4.8)∞ Dodd,can
in,j+1 : 0 < arg t <

8π

l (l + 1) + 4
(t ∼ ∞) ,

and it has also a sector-like shape near t = 0 such that

(4.8)0 Dodd,can
in,j+1 : − 2π

l(l − 1) + 4
< arg t <

6π

l(l − 1) + 4
(t ∼ 0) .

We notice that these arguments correspond to ones of the canonical domains Dodd,can
out,j for

(4.2)j and Dodd,can
out,j+1 for (4.2)j+1, respectively (§4.5).

4.4. Before we construct canonical domains for (4.2)j , we study (3.1) with Q(x) :=
xp/2 (p/2 ∈ N), i.e.,

(4.9) ε2 d2y

dx2
= xp/2y (Kεβ ≤ |x| ≤ kεα)

with positive constants k,K, α and β. First we analyze the Stokes curve configuration for

(4.9)∞ ε2 d2y

dx2
= xp/2y (0 < |x| < ∞) .

It is clear that the Stokes domains for (4.9) are derived from ones for (4.9)∞ if they are

limited in the region Kεβ ≤ |x| ≤ kεα . We choose a branch of square roots of xp/2 such that

(xp/2)1/2 > 0 for large x > 0, and put

(4.10) ξ̂ (0, x) :=
∫ x

0
xp/4 dx .
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As easily seen from the equation �ξ̂ = 0, there exist p/2 + 2 Stokes curves emerging from
x = 0 with arguments

(4.11) ± 2π

p + 4
, ± 6π

p + 4
, ± 10π

p + 4
, ± 14π

p + 4
, · · ·

and they tend to x = ∞ with the same arguments, respectively. Similarly, from the equation

�ξ̂ = 0, there exist p/2 + 2 anti-Stokes curves emerging from x = 0 with arguments

(4.12) 0 , ± 4π

p + 4
, ± 8π

p + 4
, ± 12π

p + 4
, · · ·

and they tend to x = ∞ with the same arguments, respectively. That is to say, Stokes and
anti-Stokes curves are straight lines connecting x = 0 and x = ∞. Any sector bounded
by neighboring two Stokes curves produces a Stokes domain of half-plane type for (4.9)∞.
There exist no Stokes domains of strip type .

Then, through the above consideration, we can get several canonical domains for (4.9)

such as, say,

(4.13)

{
x : 2π

p + 4
< arg x <

10π

p + 4
; Kεβ ≤ |x| ≤ kεα

}
,

(4.13)′
{
x : − 2π

p + 4
< arg x <

6π

p + 4
; Kεβ ≤ |x| ≤ kεα

}
.

The function �ξ̂ takes positive values for x satisfying 6π/(p + 4) < arg x < 10π/(p + 4)

or −2π/(p + 4) < arg x < 2π/(p + 4), and negative values for x satisfying 2π/(p + 4) <

arg x < 6π/(p + 4).
Stokes curves for the differential equation

(4.14) ε2 d2y

dx2
= −xp/2 y (Kεβ ≤ |x| ≤ kεα)

are anti-Stokes curves for (4.9). Thus, we can obtain a canonical domain for (4.14) such as

(4.15)

{
x : 0 < arg x <

8π

p + 4
, Kεβ ≤ |x| ≤ kεα

}
.

4.5. Suppose that “j is even” in (4.2)j . Then, from §4.4, we obtain a canonical domain
for (4.2)j such as

(4.16)

Deven,can
out,j :=

{
x : 2π

(l + 1)l + 4
< arg x <

10π

l(l + 1) + 4
, Kj+1ε

1/ l ≤ |x| ≤ kj ε
1/(l+1)

}
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corresponding to (4.7)∞, and a canonical domain for (4.2)j+1 such as

(4.17) Deven,can
out,j+1 :=

{
x : 0 < arg x <

8π

l(l − 1) + 4
, Kj+2ε

1/(l−1) ≤ |x| ≤ kj+1ε
1/ l

}

corresponding to (4.7)0.
Suppose that “j is odd” in (4.2)j . Then, we obtain a canonical domain for (4.2)j such

as

(4.18) Dodd,can
out,j :=

{
x : 0 < arg x <

8π

(l + 1)l + 4
, Kj+1ε

1/ l ≤ |x| ≤ kj ε
1/(l+1)

}

corresponding to (4.8)∞, and a canonical domain for (4.2)j+1 such as

(4.19)

Dodd,can
out,j+1 :=

{
x : − 2π

l(l − 1) + 4
< arg x <

6π

l(l − 1) + 4
, Kj+2ε

1/(l−1) ≤ |x| ≤ kj+1ε
1/ l

}

corresponding to (4.8)0.

5. Matching matrices

5.1. Since the reduced differential equations (4.2)j and (4.3)j+1 are asymptotically
derived from (1.1) (with (4.1)), their solutions have linear relations, which can be represented
by matrices. These matrices are called matching matrices (the second step of the stretching-
matching method (§2.2)).

Let y±
out,j (x, ε) and y±

in,j+1(t, ε) be the true solutions of (4.2)j and (4.3)j+1, respec-

tively. Their corresponding WKB approximations are (4.4)j and (4.5)j+1. The matching
matrix M[Oj, Ij+1] connecting two sets of solutions is, by definition, given by the relation

(5.1) M[Oj, Ij+1]
[

y+
out,j (x, ε)

y−
out,j (x, ε)

]
=

[
y+
in,j+1(t, ε)

y−
in,j+1(t, ε)

]
(j = 0, 1, 2, · · · , h − 1) .

Then, M[Oj, Ij+1]’s are asymptotically given in the following

THEOREM 5.1. For j = 0, 1, 2, · · · , h − 1,

(5.2) M[Oj, Ij+1] ∼ ε(h−j+1)/8E (ε → 0) ,

where E is the 2 × 2 identity matrix.

PROOF. Substituting the corresponding WKB approximations for the true solutions in
(5.1), we get the asymptotic relation

(5.3)

[
a b

c d

][
ỹ+
out,j (x, ε)

ỹ−
out,j (x, ε)

]
∼

[
ỹ+
in,j+1(t, ε)

ỹ−
in,j+1(t, ε)

]
(ε → 0) ,
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where we put

M[Oj, Ij+1] :=
[

a b

c d

]
.

Then, each element of (5.3) reads as

(5.4)




a
ỹ+
out,j (x, ε)

ỹ+
in,j+1(t, ε)

+ b
ỹ−
out,j (x, ε)

ỹ+
in,j+1(t, ε)

∼ 1

c
ỹ+
out,j (x, ε)

ỹ−
in,j+1(t, ε)

+ d
ỹ−
out,j (x, ε)

ỹ−
in,j+1(t, ε)

∼ 1

(ε → 0) .

Since x and t are related by the equality x = t ε1/ l , we split the exponent 1/l of ε such

that x = tε{1/ l−1/(l+1)}/2 · ε{1/ l+1/(l+1)}/2 and put

(5.5) x := η ε{1/ l+1/(l+1)}/2 , t := η ε{1/(l+1)−1/ l}/2

with a new parameter η (|η| = 1) determined later. Then, x belongs to the outer domain and t

to the inner domain, and we see that x → 0, t → ∞ as ε → 0. We get, by substituting (5.5)
in (4.4)j ,

(5.6)


ỹ±
out,j (x, ε) := (−1)−j/4(η ε{1/ l+1/(l+1)}/2)−(l+1) l/8

× exp

(
± 4 (−1)j/2

(l + 1)l + 4
η{(l+1)l+4}/4 ε(−6 l3−5 l2+9 l+4)/(8 l (l+1))−j/2

)
,

where the power of ε in the exponential part is negative.

On the other hand, noticing that Qj+1(t) ∼ (−1)j t(l+1) l/2 as ε → 0 or t → ∞,
integrating it and substituting (5.5) in (4.5)j+1, we can see that

(5.7)


ỹ±
in,j+1(t, ε) ∼ (−1)−j/4(η ε{1/(l+1)−1/ l}/2)−(l+1) l/8

× exp

(
± 4 (−1)j/2

(l + 1)l + 4
η{l (l+1)+4}/4 ε(−6 l3−5 l2+9 l+4)/(8 l (l+1))−j/2

)
.

Since the exponential parts of (5.6) and (5.7) equal each other, we get the relations

(5.8)
ỹ+
out,j (x, ε)

ỹ+
in,j+1(t, ε)

∼
(

t

x

)l (l+1)/8

· exp(0) = ε−(l+1)/8 (ε → 0)
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and

(5.9)


ỹ−
out,j (x, ε)

ỹ+
in,j+1(t, ε)

∼ ε−(l+1)/8

× exp

(
− 8 (−1)j/2

(l + 1) l + 4
η{(l+1) l+4}/4 ε(−6 l3−5 l2+9 l+4)/(8 l (l+1))−j/2

)
→ ∞ (ε → 0)

with an appropriate parameter η which can be chosen in the canonical domain such as, say,
η := η+∞ in Fig. 4.1 or 4.2. Thus, the first relation of (5.4) becomes

(5.10) ε−(l+1)/8(a + b · ∞) ∼ 1 (ε → 0) ,

which induces

(5.11) a ∼ ε(l+1)/8 , b ∼ 0 (ε → 0) .

In the similar way, by choosing an appropriate η, say, η := η−∞ in Fig. 4.1 or 4.2, we
can see that

(5.12) c ∼ 0 , d ∼ ε(l+1)/8 (ε → 0) .

Thus, the matching matrix is given by (5.2). Q.E.D.

5.2. Let y±
in,j+1(t, ε) and y±

out,j+1(x, ε) be the true solutions of (4.3)j+1 and (4.2)j+1,

respectively. Then, the matching matrix M[Ij+1,Oj+1] connecting two sets of solutions is,
by definition, given by the relation

(5.13) M[Ij+1,Oj+1]
[

y+
in,j+1(t, ε)

y−
in,j+1(t, ε)

]
=

[
y+
out,j+1(x, ε)

y−
out,j+1(x, ε)

]
.

Then M[Ij+1,Oj+1]’s are asymptotically given as follows.

THEOREM 5.2. For j = 0, 1, 2, · · · , h − 1,

(5.14) M[Ij+1,Oj+1] ∼ ε−(h−j−1)/8E (ε → 0) .

PROOF. By substituting the corresponding WKB approximations for the true solutions
in (5.13), we get the asymptotic relation

(5.15)

[
a b

c d

][
ỹ+
in,j+1(t, ε)

ỹ−
in,j+1(t, ε)

]
∼

[
ỹ+
out,j+1(x, ε)

ỹ−
out,j+1(x, ε)

]
(ε → 0) ,

where we put again

M[Ij+1,Oj+1] :=
[

a b

c d

]
.
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(We hope there is no confusion even though we use the same letters as the matching matrix in
§5.1.) The elements of (5.15) read as

(5.16)




a
ỹ+
in,j+1(t, ε)

ỹ+
out,j+1(x, ε)

+ b
ỹ−
in,j+1(t, ε)

ỹ+
out,j+1(x, ε)

∼ 1

c
ỹ+
in,j+1(t, ε)

ỹ−
out,j+1(x, ε)

+ d
ỹ−
in,j+1(t, ε)

ỹ−
out,j+1(x, ε)

∼ 1

(ε → 0) .

Although two variables x and t are again related by the same equality x = tε1/ l , we

split, in this case, the power 1/l of ε such that x = tε{1/ l−1/(l−1)}/2 · ε{1/ l+1/(l−1)}/2 and put

(5.17) x := η ε{1/ l+1/(l−1)}/2 , t := η ε{1/(l−1)−1/ l}/2

with another new parameter η (|η| = 1) determined later. Then, x belongs to the outer domain
and t to the inner domain, and we see that x → 0, t → 0 as ε → 0.

By noticing that Qj+1(t) ∼ (−1)j+1 t(l−1) l/2 as ε → 0 or t → 0, by integrating it, and

by substituting (5.17) in ỹ±
in,j+1(t, ε), we can see that

(5.18)




ỹ±
in,j+1(t, ε) ∼ (−1)−(j+1)/4(η ε{1/(l−1)−1/ l}/2)−l (l−1)/8

× exp

(
± 4(−1)(j+1)/2

l(l − 1) + 4
η{l (l−1)+4}/4ε(−6 l3+9 l2+5 l−4)/(8 l (l−1))−j/2

)
,

where the power of ε in the exponential part is negative. We also get

(5.19)




ỹ±
out,j+1(x, ε) := (−1)−(j+1)/4(η ε{1/ l+1/(l−1)}/2)−l(l−1)/8

× exp

(
± 4 (−1)(j+1)/2

l(l − 1) + 4
η{l (l−1)+4}/4ε(−6 l3+9 l2+5 l−4)/(8 l (l−1))−j/2

)
.

Since the exponential parts of (5.18) and (5.19) equal each other, we get the relations

(5.20)
ỹ+
in,j+1(t, ε)

ỹ+
out,j+1(x, ε)

∼
(

x

t

)l (l−1)/8

· exp(0) = ε(l−1)/8 (ε → 0)

and

(5.21)




ỹ−
in,j+1(t, ε)

ỹ+
out,j+1(x, ε)

∼ ε(l−1)/8

× exp

(
− 8 (−1)(j+1)/2

l(l − 1) + 4
η{l(l−1)+4}/4ε(−6 l3+9 l2+5 l−4)/(8 l (l−1))−j/2

)

→ ∞ (ε → 0)
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with an appropriate parameter η which can be chosen in the canonical domain such as, say,
η := η+0 in Fig. 4.1 or 4.2. Thus, the first relation of (5.16) becomes

ε(l−1)/8(a + b · ∞) ∼ 1 (ε → 0) ,

which induces

(5.22) a ∼ ε−(l−1)/8, b ∼ 0 (ε → 0) .

In the similar way, by choosing an appropriate η, say, η := η−0 in Fig. 4.1 or 4.2, we can see
that

(5.23) c ∼ 0 , d ∼ ε−(l−1)/8 (ε → 0) .

Thus the desired matching matrix is given by (5.14). Q.E.D.

6. The formal computation of matching matrices

6.1. Since we specified the values of aj ’s of Q(x, ε) in §4, we could construct the exact
form of several canonical domains for the reduced differentail equations and could compute
the matching matrices in §5. Here, we try to compute formally the matching matrices without
specifying the concrete values of aj ’s. We can properly suppose the existence of canonical
domains because we can construct them for, e.g., (3.1) with a polynomial coefficient Q(x).

Theorem 8.5-2 of Wasow [22] gives a general form of the matching matrix for an n-th
order differential equation. It points out that the diagonal entries are asymptotically important
and the off-diagonal entries equal asymptotically to zero. However, it does not give concrete
values of entries of the matching matrix since the differential equation is not concrete.

Let us consider the rather concrete differential equation

(6.1) ε2h d2y

dx2
= Q̂(x, ε)y , Q̂(x, ε) :=

h∑
j=0

ajε
j xmj , C � ∀aj �= 0 ,

(6.1)′




m0 > · · · > mj−1 > mj > mj+1 > · · · > mh ≥ 0 ,

mj−1 + mj+1 > 2 mj (j = 1, 2, · · · , h − 1) ,

h > {j + α(mj + 2)}/2
(
α := 1/(mj − mj+1)

)
(j = 0, 1, 2, · · · , h − 1) ,

where h is a positive integer and mj may be, in general, different from that of (1.1). The
inequalities among mj ’s are important, especially the second means that the characteristic
polygon of (6.1) is convex downward and all the points Pj ’s are situated at the snapping
points of the characteristic polygon. The last one is a singular perturbation condition (cf.

(2.7)j+1, (4.3)j+1), which means that an inclination of the segment Pj+1R is bigger than that

of the segment PjPj+1.
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By the same method of the reduction in §2, we can get the following two outer and one
inner asymptotically reduced differential equations:

(6.2)j ε2h−j d2y

dx2
= ajx

mj y

(
Kεα ≤ |x| ≤ k′εα′

, α := 1

mj − mj+1
> α′

)
,

(6.3)j+1




ε2
j+1

d2y

dt2
= Q̂j+1(t)y, εj+1 := εh−j/2−α(mj +2)/2 ,

Q̂j+1(t) := aj t
mj + aj+1t

mj+1 (k ≤ |t| ≤ K, t := x ε−α) ,

(6.2)j+1 ε2h−j−1 d2y

dx2
= aj+1x

mj+1y (K ′εα′′ ≤ |x| ≤ kεα, α′′ > α) ,

where K and K ′ are sufficiently large constants, k and k′ are sufficiently small constants, and
α′ and α′′ are positive constants. When we consider (6.3)j+1 in the domain {t : 0 ≤ |t| <

∞}, the origin t = 0 and (mj − mj+1)-th roots of −aj+1/aj are secondary turning points of
(6.1) and t = ∞ is always an irregular singular point of (6.3)j+1.

As shown in §3, their WKB approximations are, respectively, given by

(6.4)j ỹ±
out,j (x, ε) := a

−1/4
j x−mj /4 exp

(
± 2

√
aj

mj + 2

x(mj+2)/2

εh−j/2

)
,

(6.5)j+1

ỹ±
in,j+1(t, ε) := Q̂

−1/4
j+1 (t) exp

(
± 1

εj+1
ξj+1(t)

)
, ξj+1(t) :=

∫ t

0

√
Q̂j+1(t) dt ,

FIGURE 6.1. The assumed canonical domain.
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(6.4)j+1 ỹ±
out,j+1(x, ε) := a

−1/4
j+1 x−mj+1/4 exp

(
± 2

√
aj+1

mj+1 + 2

x(mj+1+2)/2

εh−(j+1)/2

)
,

and we see that

(6.5)′j+1

ỹ±
in,j+1(t, ε) ∼




(aj t
mj )−1/4 exp

(
± 1

εj+1

∫ t

0

√
aj t

mj dt

)
(t → ∞)

(aj+1t
mj+1 )−1/4 exp

(
± 1

εj+1

∫ t

0

√
aj+1t

mj+1 dt

)
(t → 0)

.

Though we cannot determine the concrete form of the Stokes curve configuration due
to the ambiguity of aj , we assume here the existence of a canonical domain illustrated in
Fig. 6.1. In about a half of it �ξj+1(t) > 0 and �ξj+1(t) < 0 in the rest. In the region
{t : �ξj+1(t) > 0 (resp. < 0)} there exist anti-Stokes curves along which �ξj+1(t) tends to
+∞ (resp. − ∞) as t → ∞ and �ξj+1(t) tends to +0 (resp. − 0) as t → 0.

6.2. We compute two particular matching matrices similar to ones given in §5. The
first is as follows.

THEOREM 6.1. Let M[Oj, Ij+1] be the matching matrix connecting a set of two WKB

approximations ỹ±
out,j (x, ε) to a set of two WKB approximations ỹ±

in,j+1(t, ε):

(6.5) M[Oj, Ij+1]
[

ỹ+
out,j (x, ε)

ỹ−
out,j (x, ε)

]
∼

[
ỹ+
in,j+1(t, ε)

ỹ−
in,j+1(t, ε)

]
(ε → 0) .

Then, M[Oj, Ij+1] is given by

(6.6) M[Oj, Ij+1] ∼ εmj /(4(mj−mj+1))E (ε → 0) .

PROOF. The proof of this theorem is very similar to that of Theorem 5.1. Putting

M[Oj, Ij+1] :=
[

a b

c d

]
,

we get just the same relation as (5.4). By choosing some constant β (0 < β < α (:=
1/(mj − mj+1)), which is a very different choice from Theorem 5.1, we put

x := η εα−β → 0 , t := η ε−β → ∞ (ε → 0)

with a new parameter η (|η| = 1). Then, x belongs to the outer domain (i.e., Kεα ≤ |x| ≤
k′εα′

) and t belongs to the inner domain (0 ≤ |t| < ∞), so that

ỹ+
out,j (x, ε)

ỹ+
in,j+1(t, ε)

∼ ε−α mj /4 (ε → 0) ,
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ỹ−
out,j (x, ε)

ỹ+
in,j+1(t, ε)

∼ ε−αmj /4 exp

(
− 4

√
aj

mj + 2
η(mj +2)/2ε−h+j/2+(α−β)(mj+2)/2

)
→∞ (ε → 0)

with a parameter η := η+∞, which can be chosen on one of the anti-Stokes curves in the
canonical domain (Fig. 6.1). The exponent of ε in the exponential part is negative because of
the singular perturbation condition. Thus, we can see

a · ε−α mj /4 + b · ∞ ∼ 1 (ε → 0) ,

which induces

a ∼ εα mj /4, b ∼ 0 (ε → 0) .

In the similar way, by choosing η := η−∞ on another anti-Stokes curve in the canonical

domain, we see that c ∼ 0, d ∼ εα mj /4 (ε → 0). Q.E.D.

We compare this general result to the matching matrix given in §5.1. Putting mj :=
l(l + 1)/2, mj+1 := l(l − 1)/2 (l := h − j) for (6.6), we see that mj/4(mj − mj+1) =
(l + 1)/8 = (h − j + 1)/8, which coincides with (5.2).

In Theorem 6.1, the inverse matching matrix M[Oj, Ij+1]−1 connects a set of two WKB

approximations ỹ±
in,j+1(t, ε) to a set of two WKB approximations ỹ±

out,j (x, ε). Hence the

relation M[Oj, Ij+1]−1 = M[Ij+1,Oj ] holds. Thus, we get

COROLLARY.

(6.6)′ M[Ij+1,Oj ] = M[Oj, Ij+1]−1 ∼ ε−mj /(4(mj−mj+1))E (ε → 0) .

6.3. We compute another matching matrix.

THEOREM 6.2. Let M[Ij+1,Oj+1] be the matching matrix connecting a set of two

WKB approximations ỹ±
in,j+1(t, ε) to a set of two WKB approximations ỹ±

out,j+1(x, ε):

(6.7) M[Ij+1,Oj+1]
[

ỹ+
in,j+1(t, ε)

ỹ−
in,j+1(t, ε)

]
∼

[
ỹ+
out,j+1(x, ε)

ỹ−
out,j+1(x, ε)

]
(ε → 0) .

Then, M[Ij+1,Oj+1] is given by

(6.8) M[Ij+1,Oj+1] ∼ ε−mj+1/4(mj−mj+1)E (ε → 0) .

We remark that (6.8) has a similar form to (6.6)′. The proof of this theorem is similar
to that of Theorem 5.2 and we omit it here. We compare this general result got above to the
matching matrix given in §5.2. Putting mj := l (l + 1)/2, mj+1 := l (l − 1)/2 (l := h − j)

for (6.8), we see that −mj+1/4(mj −mj+1) = −(l−1)/8 = −(h−j −1)/8, which coincides
with (5.14).



434 MINORU NAKANO

7. Reviewing the known matching matrices

7.1 We review some known results about the matching matrices for the differential
equations with a several-segment characteristic polygon, and we compare them with our for-
mulas (6.6) and (6.16).

The first example is the simplest case of (6.1) given in [13],

(7.1) ε2 d2y

dx2 = (x3 − ε)y (h = 1, a0 = 1, a1 = −1,m0 = 3,m1 = 0) .

The reduced differential equations and their WKB approximations are as follows:

(O0)




ε2 d2y

dx2 = x3y (Kε1/3 ≤ |x| ≤ x0) ,

ỹ±
out,0(x, ε) := 1

4√
x3

exp

(
± 2

5ε
x5/2

)
,

(I1)




ε1/3 d2y

dt2 = (t3 − 1)y (k ≤ |t| ≤ K, t := xε−1/3) ,

ỹ±
in,1(t, ε) := 1

4
√

t3 − 1
exp

(
± 1

ε1/6

∫ t

1

√
t3 − 1 dt

)
,

(O1)




ε
d2y

dx2 = − y (0 ≤ |x| ≤ kε1/3) ,

ỹ±
out,1(x, ε) := exp

(
± i√

ε
x

)
,

where K (resp. k) is a sufficiently large (resp. small) constant.
The WKB approximations in (O1) are the true solutions of the equation in (O1). Let us

denote the set of two WKB approximations in (Oj ) (resp. (I1)) by the same symbol Oj (resp.
I1). Our formulas (6.6) and (6.16) give us the matching matrices

M[O0, I1] ∼ εm0/(4(m0−m1))E = ε1/4E ,

M[I1,O1] ∼ ε−m1/(4(m0−m1))E = ε0E = E .

M[O0, I1] coincides with the matching matrix M1 of Theorem G in [13]. M1 is defined to
connect two fundamental matrices of solutions so that it looks different from M[O0, I1]. In
analysing (I1) for t in {t : 0 ≤ |t| < ∞}, M[I1,O1] is not necessary because the information
around t = 0, i.e., x = 0, can be obtained from (I1). In fact, it was not computed in [13].

(7.1) possesses three secondary turning points: 1, ω (:= ei2π/3), ω2 (= ω−1). The

Stokes curve configuration for (I1) is determined by the integral
∫ √

t3 − 1dt and shown in
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FIGURE 7.1. The Stokes curve configuration for Q(t) = t3 − 1.

Fig. 7.1. The solid lines and the broken lines show the Stokes curves and the anti-Stokes
curves, respectively, and the shaded region is one of the canonical domains.

We remark that there is a slight mistake about anti-Stokes curves of Fig. 2 in [13]. That

is two anti-Stokes curves linking 1 and ω, 1 and ω2. Really, these anti-Stokes curves do not
exist. Here, we correct them. We see that two anti-Stokes curves emerging from t = 1 do not
tend to the other turning points, because the value of the integral∫ Ω

1

√
t3 − 1 dt =

( ∫ 0

1
+

∫ Ω

0

)√
t3 − 1 dt = (Ω − 1)

∫ 1

0

√
r3 − 1 dr (Ω := ω±1)

is neither real nor pure imaginary. Then, they must tend to ∞ in the first and the fourth
quadrants respectively, because they cannot cross other anti-Stokes curves from t = ω or
t = ω2. Also, we can show the existence of an anti-Stokes curve linking ω and ω2. In fact,
the integral ∫ ω2

ω

√
t3 − 1 dt =

( ∫ 0

ω

+
∫ ω2

0

)√
t3 − 1 dt = √

3
∫ 1

0

√
1 − r3 dr

takes real values only, and hence this definite integral suggests the existence of the anti-Stokes

curve linking ω and ω2. There does not exist an anti-Stokes curve linking ω and ω2 via ∞
because of the symmetry of the Stokes curve configuration with respect to the real axis and the
general property of the anti-Stokes curves (§3.2). This Stokes curve configuration appeared
in [1], too.

7.2. Fedoryuk studied the generalized differential equation of (7.1) such as

(7.2) ε2 d2y

dx2 = (xn − ε)y (h = 1, m0 = n ≥ 3, m1 = 0)
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in §8.4 of [4]. The reduced differential equations and their WKB approximations are as
follows:

(Õ0)




ε2 d2y

dx2
= xny (Kε1/n ≤ |x| ≤ x0) ,

ỹ±
out,0(x, ε) := x−n/4 exp

(
± 2

(n + 2)ε
x(n+2)/2

)
,

(Ĩ1)




ε(n−2)/n d2y

dt2
= (tn − 1)y (0 ≤ |t| < ∞, t := xε−1/n) ,

ỹ±
in,1(t, ε) := (tn − 1)−1/4 exp

(
± 1

ε(n−2)/2n

∫ t

1

√
tn − 1 dt

)
,

where K is a sufficiently large constant. We denote the solution of the equation (Õj ) (resp.

(Ĩj )) by the same symbol Õj (resp. Ĩj ).
Then, formula (6.6) gives us the matching matrix

M[Õ0, Ĩ1] ∼ εm0/(4(m0−m1))E = ε1/4E ,

which coincides essentially with Ω(ε) in p.226 of [4].

7.3. Other cases were studied in [8] and [17], and Roos also studied in [18] the follow-
ing equation

(7.3) ε4 d2y

dx2 = (x5 + εx2 + ε2)y (h = 2, a0 = a1 = a2 = 1,m0 = 5,m1 = 2,m2 = 0) .

Our reduction method yields five reduced equations:

(Ô0) ε4 d2y

dx2 = x5y ,

(Î1) ε5/3 d2y

dt2 = t2(t3 + 1)y (t := xε−1/3) ,

(Ô1) ε3 d2y

dx2
= x2y ,

(Î2) ε
d2y

dt2 = (t2 + 1)y (t := xε−1/2) ,

(Ô2) ε2 d2y

dx2 = y .
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We denote the solutions of the equations (Ôj ) and (Îj ) by the same symbols Ôj and Îj ,
respectively. Now, let us check matching matrices. Applying the formulas (6.6) and (6.16),
we can get the following matching matrices.

M[Ô0, Î1] ∼ εm0/4(m0−m1)E = ε5/12E ,

M[Î1, Ô1] ∼ ε−m1/4(m0−m1)E = ε−1/6E ,

M[Ô1, Î2] ∼ εm1/4(m1−m2)E = ε1/4E ,

M[Î2, Ô2] ∼ ε−m2/4(m1−m2)E = ε0E = E .

Our reduction of the equations is different from Roos’s, and we can see that

M[Î1, Ô0] = M[Ô0, Î1]−1 ∼ C21(ε) , M[Ô2, Î2] = M[Î2, Ô2]−1 ∼ C32(ε) ,

where Cjk(ε)’s are matching matrices given in Satz 2 of [18].

7.4. The next example was given in [12]

(7.4) ε2h d2y

dx2
=

( h∑
j=0

aj εj xmj

)
y ,

where

aj :=
{

kCj (j = 0, 1, 2, · · · , k) ,

h−kCj−k (j = k + 1, k + 2, · · · , h) ,

mj :=
{

h + m + k − 2j (j = 0, 1, 2, · · · , k) ,

h + m − j (j = k + 1, k + 2, · · · , h) ,

and points Pj ’s and R are defined in (1.2). (7.4) is out of a category of (1.1) because it has a
three-segment characteristic polygon on each segment of which there exist many points, that
is, the points P0, · · · , Pk are on the first segment defined by the equation Y = −X+(h+m)/2,
the points Pk, · · · , Ph are on the second one defined by the equation Y = −(m + 2)/hX +
m+ 1, and the points Ph and R are on the third one defined by the equation Y = −2X + (h+
m + k)/2. We dare, however, to apply our formulas (6.6) and (6.16) to (7.4).

First, before applying directly our formulas, we must recognize that Pj is the adjacent
point to Pj±1. By our reduction method, we have five reduced equations:

(Ŏ0) ε2h d2y

dx2 = xh+m+ky ,

(Ĭ1) ε(3h−m−k−2)/2 d2y

dt2 = th+m−k (t2 + 1)k y (t := xε−1/2) ,
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(Ŏ1) ε2h−k d2y

dx2
= xh+m−k y,

(Ĭ2) εh−m−2 d2y

dt2
= tm(t + 1)h−k y (t := xε−1) ,

(Ŏ2) εh d2y

dx2 = xmy .

We denote the solution of the equation (Ŏj ) (resp. (Ĭj )) by the same symbol Ŏj (resp. Ĭj ) as
before. Now, let us check matching matrices.

(i) The first point is P0 and m0 := h + m + k. Since the adjacent point to P0 is P1 and
m1 := h + m + k − 2, we get

M[Ŏ0, Ĭ1] ∼ εm0/(4(m0−m1))E = ε(h+m+k)/8E ,

which coincides with M1,2 of Theorem 6.1 in [12].
(ii) The point Pk−1 is nearest to the left of Pk and we put mk−1 := h + m − k + 2 and

mk := h + m − k. Then, we get

M[Ĭ1, Ŏ1] ∼ ε−mk/4(mk−1−mk)E = ε−(h+m−k)/8E ,

which coincides with M2,3.
(iii) Another nearest point to Pk is Pk+1 and we put mk := h + m − k and mk+1 :=

h + m − k − 1. Then, we get

M[Ŏ1, Ĭ2] ∼ εmk/(4(mk−mk+1))E = ε(h+m−k)/4E ,

which coincides with M3,4.
(iv) The point Ph−1 is adjacent to Ph and we put mh−1 := m + 1 and mh := m. Then,

we get

M[Ĭ2, Ŏ2] ∼ ε−mh/(4(mh−1−mh))E = ε−m/4E ,

which coincides with M4,5.
Thus we see that formulas (6.6) and (6.16) can be applied to the differential equation of

different type from (1.1). On each segment of the characteristic polygon of (1.1) are only two
points. Therefore, we understand that formal matching matrices can be calculated from the
snapping points, say, Pj0 and its adjacent points Pj0±1. As shown above, we could calculate
matching matrices from the coordinates of snapping points, so that we should notice that they
can be got even without the (formal) solutions. In fact, the snapping points designate the
asymptotic character of the differential equation.

7.5. Next, we review an equation having a singular point

(7.5) ε2 d2y

dx2
=

(
xν − ε

x2

)
y (ν ∈ N; 0 < |x| ≤ x0) ,
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which was studied in the part II of [9]. Apparently this is out of a category of (1.1). The
origin x = 0 is a turning point and a regular singular point as well. Since h = 1,m0 = ν

and m1 = −2, its characteristic polygon consists of two segments connecting P0 := (0, ν/2)

and P1 := (1/2,−1), and P1 and R := (1,−1). Since the second segment is parallel to the
X-axis, the characteristic polygon does not have the general property given in [7]. However,
the matching matrix connecting the inner and the outer solutions was computed in [9].

We see that two reduced differential equations and their WKB approximations are

(Ǒ0)




ε2 d2y

dx2 = xνy (Kε1/(ν+2) ≤ |x| ≤ x0),

ỹ±
out,0(x, ε) := 1

xν/4
exp

(
± 1

ε

2

ν + 2
x(ν+2)/2

)
,

(Ǐ1)




ε
d2y

dt2 =
(

tν − 1

t2

)
y (t := xε−1/(ν+2); 0 < |t| ≤ K) ,

ỹ±
in,1(t, ε) := 1

(tν − t−2)1/4 exp

(
± 1√

ε

∫ t

1

√
tν − t−2dt

)
,

where K is a sufficiently large constant. The WKB approximations come from the asymptotic
approximations of the solution

1

xν/4
exp

(
± 1

ε

2

ν + 2
x(ν+2)/2 + 1

ν + 2
x−(ν+2)/2

)

of (5.2) in [9] as εx−(ν+2) → 0. Thus, applying the formula (6.6) to (Ǒ0) and (Ǐ1), we get

M[Ǒ0, Ǐ1] ∼ εm0/4(m0−m1)E = εν/4(ν+2)E ,

which coincides with M in §6 of [9]. Thus, again we understand that the formula (6.6) can be
applied to a differential equation of different type from (1.1).

7.6. As the last example, we review another equation with a singular point

(7.6) ε2h d2y

dx2
=

(
xm − εl

xr

)2

y

(
m, l ∈ N; r ≥ 0; h >

m + 1

m + r
l; 0 < |x| ≤ x0

)
,

which is a special case (n = 2, p1 = 0, p2 = 1) of [10]. This is also apparently out of a
category of (1.1). x = 0 is a turning point and a singular point as well. Since (xm −εl/xr )2 =
x2m − 2εlxm−r + ε2lx−2r , its characteristic polygon consists of two segments connecting
P0 := (0,m) and P2l := (l,−r), and P2l and R := (h,−1). The point Pl := (l/2, (m−r)/2)

is on the first segment.
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We see that two reduced differential equations and their WKB approximations are

(Ō0)




ε2h d2y

dx2 = x2my (Kεl/(m+r) ≤ |x| ≤ x0)

ỹ±
out,0(x, ε) := 1

xm/2 exp

(
± 1

εh

xm+1

m + 1

) ,

(Ī1)




ε2h′ d2y

dt2
= p(t)2y

(
t := xε−l/(m+r); 0 < |t| ≤ K;

h′ := h − m + 1

m + r
l > 0; p(t) := tm − 1

tr

)
,

ỹ±
in,1(t, ε) := 1

p(t)1/2 exp

(
± 1

εh′

∫ t

1
p(t) dt

)
,

where K is a sufficiently large constant.
Since m0 = 2m,m1 = m−r when l = 1, we can apply formula (6.6) to get the matching

matrix connecting two sets of solutions (Ō0) and (Ī1) such that

M[Ō0, Ī1] ∼ εm0/(4(m0−m1))E = εm/(2(m+r))E .

This result coincides with M of (7.4) in [10], because we can see that

M ∼ εm/(m+r) diag[µ1,µ2] = εm/(m+r) diag[1/2,1/2] = εm/(2(m+r))E .

We remark that the characteristic equation is λ2−x2m = (λ−a1x
m)(λ−a2x

m) = 0 and so we
can put a1 := −1, a2 := 1 (a1 < a2), and µ1 := a1/(a1 − a2) = 1/2, µ2 := a2/(a2 − a1) =
1/2 in the computation of M (cf. (1.4), (1.5), (3.6) in [10]).

When l > 1, we cannot apply our formula directly because there are no points between
P0 and Pl , namely, there exist no points P1, Pl±1 and P2l−1 adjacent to P0, Pl and P2l , re-
spectively. We should insert, for example, an additional point P1 := (1/2,m1/2) (m1 :=
2m − (m + r)/ l) adjacent to P0 on the first segment. Then, the formula (6.6) gives us a
matching matrix connecting two sets of solutions (Ō0) and (Ī1) such that

M[Ō0, Ī1] ∼ εm0/(4(m0−m1))E = εml/(2(m+r))E ,

which again coincides with M of (7.4) in [10].
From the above consideration we can see that the matching matrix M[Ō0, Ī1] above

coincides with one for the differential equation having more terms

(7.7) ε2h d2y

dx2 =
( 2l∑

j=0

bj ε
jxmj

)
y

(
bj ∈ C; mj := 2m − m + r

l
j

)
.

The equation (7.6) with r = 0 (for n = 2) was studied in [11] and the corresponding
matching matrix coincides with (7.4) in [11].
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8. Summary

8.1. We studied the one-dimensional Schrödinger equation (1.1) which has a turning
point at x = 0 and secondary turning points at zeros of Qj+1(t) in (2.7)j+1. Its characteristic
polygon consists of h + 1 segments and (1.1) is reduced asymptotically to the h + 1 outer
differential equations (2.4)j in the outer domain (2.5)j and to the h inner differential equa-
tions (2.7)j+1 in the inner domain (2.12)j+1. The equation (2.4)h has a constant coefficient
and its true solution gives the asymptotic information at the turning point. The inner domain
(2.12)j+1 is adopted as the true inner domain instead of the formal inner domain (2.8)j+1,
because there exist common interior points in (2.5)j and (2.12)j+1. The common interior
points are necessary for computing matching matrices. The outer and the inner WKB ap-
proximations are given by (4.4)j and (4.5)j+1, respectively. Here we specified coefficients
of (1.1) like (4.1) to get the exact Stokes curve configurations and the canonical domains for
the reduced differential equations. The Stokes curve configurations for several examples are
shown in §4. The linear relations between the outer and the inner solutions, called the match-
ing matrices, are got in (5.2) and (5.14). Thus we can know every value of the asymptotic
solution of (1.1) in some sector containing the turing point.

For the concrete analysis of the matching matrix we need the canonical domains given
in §4, but we show in §6 that the matching matrices can be calculated formally without spec-
ifying the coefficients of the equation. The differential equation to be studied is (6.1) and the
formal matching matrices are (6.6) and (6.16), which are compared with some known results
for the concrete equations (7.1) - (7.7). The matching matrices (5.2) and (5.14) are special
cases of (6.6) and (6.16), respectively.

8.2. It is well-known that the asymptotic theory of differential equations consists of
two aspects.

(i) Formal Theory: To determine the form of solutions (the formal solutions),
(ii) Analytic Theory: To determine their asymptotic property, that is, to determine in

which regions (or sets) they increase or decrease exponentially or in which regions they oscil-
late.
The WKB approximations and formal matching matrices belong to (i), and the canonical
domains belong to (ii). We considered (i), (ii) in §§4,5, and (i) in §§6, 7.
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Henri poincaré 69 (1998), 31–81.

[ 6 ] M. HUKUHARA, Sur les points singulieres des équaions différentielles linéaires III, Mém. Fac. Sci. Kyushu.
Univ. 2 (1941), 125–137.

[ 7 ] M. IWANO and Y. SIBUYA, Reduction of the order of a linear ordinary differential equation containing a small
parameter. Kodai Math. Sem. Rep. 15 (1963), 1–28.

[ 8 ] M. NAKANO, On asymptotic solutions of a second order linear ordinary differential equation with a turning
point I, II, Bull. of Hiyoshi. 14 (1972), 70-75; 15 (1973), 64–70.

[ 9 ] M. NAKANO, Second order linear ordinary differential equations with turning points and singularities I, II,
Kodai Math. Sem. Rep. 29 (1977), 88–102; Kodai Math. J. 1 (1978), 304–312.

[10] M. NAKANO, On a n-th order linear ordinary differential equation with a turning-singular point, Tokyo J.
Math. 21 (1998), 201–215.

[11] M. NAKANO, On the complex WKB method for a secondary turning point problem, Tokyo J. Math. 24 (2001),
343–358.

[12] M. NAKANO, On the complex WKB analysis for a Schrödinger equation with a general three-segment char-
acteristic polygon, Vietnam J. Math. 30 (2002), 605–625.

[13] M. NAKANO and T. NISHIMOTO, On a secondary turning point problem, Kodai Math. Sem. Rep. 22 (1970),
355–384.

[14] T. NISHIMOTO, On matching method for a linear ordinary differential equation containing a parameter I, II,
III, Kodai Math. Sem. Rep. 17 (1965), 307–328; 18 (1966), 61–86; 19 (1967), 80–94.

[15] F. W. J. OLVER, Asymptotics and special functions, Academic Press (1974).
[16] R. B. PARIS and A. D. WOOD, Asymptotics of high order differential equations, Longman Scientific and

Technical (1986).
[17] H. G. ROOS, Die asymptotische Lösung einer linearen Differentialgleichung zweiter Ordnung mit zweiseg-

mentigem charakteristischen Polygon, Beitr. Anal. 7 (1975), 55–63.
[18] H. G. ROOS, Die asymptotische Lösung einer linearen Differentialgleichung mit dreisegmentigem charakter-

istischen Polygon, Math. Nachr. 88 (1979), 93–103.
[19] K. UCHIYAMA, How to draw Stokes curves for 2nd order differential equations (Computer program revised

by M. Nakano).
[20] W. WASOW, Turning point problems for systems of linear differential equations, I. The formal theory, II. The

analytic theory. Comm. Pure Appl. Math. 14 (1961), 657–673; 15 (1962), 173–187.
[21] W. WASOW, Asymptotic expansions for ordinary differential equations, John Wiley (1965).
[22] W. WASOW, Linear turning point theory, Springer (1985).
[23] D. ZWILLINGER, Handbook of differential equations, Academic Press (1989).

Present Address:
DEPARTMENT OF MATHEMATICS, KEIO UNIVERSITY,
HIYOSHI, KOHOKU, YOKOHAMA, 223–8522 JAPAN.
e-mail: nakano@math.keio.ac.jp


