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Abstract. A filtration of the loop group of unitary group by singular complex algebraic varieties defined by
S. Mitchell and G. Segal is studied, focusing on determining the singularities of those varieties.

1. Introduction

The (based) loop group ΩUn is the space of all smooth maps (that we shall call loops)

γ : S1 → Un such that γ (1) = I. Here S1 is the unit circle in the complex plane. ΩUn is an
infinite dimensional Lie group. Notice that each loop has a Laurent series expansion. Consider
those loops that have finite Laurent series expansion, called algebraic loops. Denote the set of
all algebraic loops by ΩalgUn which is a subgroup of ΩUn. S. Mitchell in [3] and G. Segal in
[5] define a filtration by singular complex algebraic varieties of ΩalgUn. In [3], this filtration
is used to study the stable homotopy type of ΩSUn while, in [5], it is used to study harmonic
maps from the two sphere to Un. The space of holomorphic maps from the two sphere to
this filtration is studied in [1] by M. Guest. In [2] Guest and Ohnita use this filtration to
study deformations for harmonic maps. In this article, we determine the singularities of each
stratum of this filtration. The strategy is to realize each stratum of the filtration as intersection
of two smooth varieties and study the intersection of the tangent spaces.

The outline of this article is as follows. In Sect. 2, we gather some facts about ΩUn

and ΩalgUn. Sect. 3 is devoted to describing the said filtration. In Sect. 4 we determine the
singular points of the filtration (Theorem 4.1).

2. Basic facts about ΩUn and ΩalgUn

The basic reference for this section is [4].
There are isomorphisms π0(ΩUn) ∼= π1Un

∼= Z. Each connected component of ΩUn is
determined by the degree of the determinant of loops. All connected components are diffeo-
morphic to each other.
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The subgroup ΩalgUn is an approximation to ΩUn in the sense that its natural inclusion
in ΩUn is a homotopy equivalence. Hence π0(ΩalgUn) ∼= Z with each connected component
determined by the degree of the determinant of loops. Notice that ΩalgUn is not a smooth
manifold. On the other hand, similar to the case of smooth loops, all components of ΩalgUn

are homeomorphic to each other.
While ΩSUn is properly included in the identity component of ΩUn, the subgroup

ΩalgSUn is equal to the identity component of ΩalgUn.
There is a “Grassmannian model” for ΩUn defined as follows.
Let H = L2(S1, Cn) = H+ ⊕ H−, where

H+ = 〈ziej : i ≥ 0, j = 1, · · · , n〉
and H− its orthogonal complement. Here {e1, · · · , en} is the standard basis of Cn and {ziej :
i ∈ Z, j = 1, 2, · · · , n} a basis of H and the closure is taken with respect to the L2 norm

topology. The Grassmannian Gr∞ consists of all closed subspaces W ⊂ L2(S1, Cn) such
that

1. the orthogonal projections pr± : W → H± are Fredholm and Hilbert-Schmidt oper-
ators respectively;

2. zW ⊂ W ;
3. the images of both orthogonal projections W → H− and W⊥ → H+ consist of

smooth functions.
It is an infinite dimensional smooth manifold with connected components determined by

the Fredholm index of pr+ : W → H+, called the virtual dimension of W. The map

ϕ : ΩUn → Gr∞ : γ �→ γH+
is a diffeomorphism such that if deg.det(γ ) = −k, then virt.dim(ϕ(γ )) = k.

Let Gralg be the subspace of Gr∞ consisting of elements W such that for some k ∈ N,

zkH+ ⊂ W ⊂ z−kH+ .

Notice that this condition implies that W must be closed and that the orthogonal projections
pr± : W → H± are Fredholm and Hilbert-Schmidt respectively. So one has

Gralg = {W ⊂ H | zkH+ ⊂ W ⊂ z−kH+, zW ⊂ W } .

One can check that Gralg is precisely the image of ΩalgUn ⊂ ΩUn under ϕ.

3. A filtration of algebraic loops

We describe a filtration of ΩalgUn defined in [3] and [5]. For each k, denote by
(ΩalgUn)k the connected component with deg.det= k. Let Mk be the set of all loops in

(ΩalgUn)−k that are polynomials in z−1. One can “shift” Mk by multiplying zm to obtain
a set

zmMk = {zmγ | γ ∈ Mk}
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for any integer m. It is easy to see that zmMk ⊂ (ΩalgUn)−k+mn and it is homeomorphic to
Mk. Moreover, there is a filtration

M0 ⊂ zMn ⊂ z2M2n ⊂ · · · ⊂
⋃
k≥0

zkMkn = (ΩalgUn)0 = ΩalgSUn .

One can define a Grassmannian analogue: For each k, define

Fk = {W ∈ Gralg | H+ ⊂ W ⊂ z−kH+, dim W/H+ = k}
= {W ⊂ H | H+ ⊂ W ⊂ z−kH+, dim W/H+ = k, zW ⊂ W } .

It is easy to see that Fk is contained in (Gr∞)k , the connected component with virt.dim= k.
Moreover, the homeomorphism ϕ : ΩalgUn → Gralg restricts to a homeomorphism ϕ :
Mk → Fk.

Similar to the situation for Mk , one can “shift” Fk to a set

zmFk = {zmW | W ∈ Fk}
= {W ′ ⊂ H | zmH+ ⊂ W ′ ⊂ z−k+mH+, dim W ′/H+ = k, zW ′ ⊂ W ′} .

This set is contained in (Gr∞)k−mn and is homeomorphic to Fk. We have a sequence

F0 ⊂ zFn ⊂ z2F2n ⊂ · · · ⊂
⋃
k≥0

zkFkn = (Gralg)0 .

For each k, Fk can be realized as an algebraic subvariety of a finite dimensional Grass-
mannian. To see that, we first notice that by taking quotient by H+, we obtain a homeomor-
phism

Fk
∼= {V ⊂ z−kH+/H+ | zV ⊂ V, dim V = k} .

With the identifications

z−kH+/H+ ∼= 〈ziej : j = 1, · · · , n; i = −1, · · · ,−k〉 ∼= Cnk ,

multiplication by z induces a map

N : z−kH+/H+ ∼= Cnk → z−kH+/H+ ∼= Cnk .

This map is nilpotent: Nk = 0. So we have

Fk
∼= {V ∈ Grk(Cnk) | NV ⊂ V } ⊂ Grk(Cnk) .

LEMMA 3.1. Fk embeds into a complex projective space as the intersection of two
smooth subvarieties.

PROOF. Consider the linear map I + N : Cnk → Cnk , where I : Cnk → Cnk is the
identity map. It is an isomorphism, and 1 is the only eigenvalue. It induces an isomorphism
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(I + N)Gr : Grk(Ckn) → Grk(Ckn). Notice that for any E ∈ Grk(Ckn), we have

NE ⊂ E ⇔ (I + N)GrE = E .

Embed the Grassmannian Grk(Ckn) in projective space using Plücker embedding ι :
Grk(Ckn) → CPr−1, where r =

(
nk

k

)
.

Consider the induced linear map

Λk(I + N) : ΛkCnk ∼= Cr → ΛkCnk ∼= Cr .

Again, 1 is the only eigenvalue. Consider the 1−eigenspace

V = {v ∈ ΛkCnk | Λk(I + N)v = v} .

Its quotient V∗ = V/C∗ ⊂ CPr−1 is a smooth subvariety. It is clear that

Fk = V∗ ∩ ι(Grk(Cnk)) . �

The above argument also applies to the “shifted” Fk : There are homeomorphisms

zmFk
∼= {V ⊂ z−k+mH+/zmH+ | NV ⊂ V, dim V = k}
∼= {V ∈ Grk(Cnk) | NV ⊂ V }

with the identifications

z−k+mH+/zmH+ ∼= 〈ziej : j = 1, · · · , n; i = m − 1, · · · ,m − k〉 ∼= Cnk .

Again, zmFk is an algebraic subvariety of the Grassmannian and embeds into a complex
projective space as intersection of two smooth subvarieties.

4. Singularities of Fk

In this section, we assume that n ≥ 2.

Define the subset

F ′
k = {E ∈ Fk | dim(E ∩ Cn) ≥ 2}

of Fk , where Cn = 〈z−1e1, · · · , z−1en〉.
LEMMA 4.1.

F ′
k = {E ∈ Fk | zk−1E = {0}} .

PROOF. We need to show that for any E ∈ Fk , the two conditions
(i) dim(E ∩ Cn) ≥ 2;

(ii) zk−1E = {0}
are equivalent. Recall that dim zE < dim E, dim z2E < dim zE etc. This means the
dimension drops at least by one each time we apply z. Assuming (i), the dimension drops by
at least two when we apply z to E. Since E is of dimension k, condition (ii) must be satisfied.
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Similarly, if zk−1E = {0}, then there must be a jump

dim zi+1E ≤ dim ziE − 2 .

That is,

dim(zi+1E ∩ Cn) ≥ 2 .

Since zi+1E ⊂ E, condition (i) is satisfied. �

Since condition (ii) in the above proof is an algebraic condition, F ′
k is a subvariety of Fk .

THEOREM 4.1. F ′
k is precisely the set of all singular points in Fk .

PROOF. Recall from the previous section that the space Fk is the intersection of two

smooth subvarieties of CPr−1, r =
(

nk

k

)
:

Fk = V∗ ∩ ι(Grk(Cnk)) ,

where ι is the Plücker embedding; V∗ = V/C∗, where

V = {v ∈ Cr = ΛkCnk | Λk(I + N)v = v} .

Since Fk is the intersection of two smooth subvarieties, a point E ∈ Fk is singular if and
only if the tangent space

TEV∗ ∩ TE ι(Grk(Cnk))

is not of minimal dimension. This gives us a criterion to find all such points. To do this, let

us compute the above intersection of tangent spaces in general. Put a metric on Cnk = 〈ziej :
i = −1, · · · ,−k; j = 1, · · · , n〉 such that the basis {ziej : i = −1, · · · ,−k; j = 1, · · · , n}
is orthonormal. This naturally induces a metric on Cr = ΛkCnk. Then for any η ∈ V∗, we
have

TηV∗ ∼= Hom(η, η⊥ ∩ V) ,

where η⊥ is the orthogonal complement of η with respect to the metric described above.

On the other hand, we have, for any E ∈ Grk(Cnk),

TιE ι(Grk(Cnk)) = dι TEGrk(Cnk) = dι Hom(E,E⊥) .

To compute this tangent space, let ft : E → E⊥ be a family of linear maps such that
f0 = I , the identity map. Write E = 〈u1, · · · , uk〉, we then have a curve αt = 〈u1 +
ftu1, · · · , uk + ftuk〉 on Grk(Cnk) such that α0 = E. Hence
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dι

(
d

dt
αt

∣∣∣∣
t=0

)
= d

dt
ι(αt )

∣∣∣∣
t=0

= d

dt
(u1 + ftu1) ∧ · · · ∧ (uk + ftuk)

∣∣∣∣
t=0

= u1 ∧ · · · ∧ uk �→
k∑

i=1

(u1 + f0u1) ∧ · · · ∧ (ui−1 + f0ui−1)

∧ ḟ0ui ∧ (ui+1 + f0ui+1) ∧ · · · ∧ (uk + f0uk)

= u1 ∧ · · · ∧ uk �→
k∑

i=1

ui ∧ · · · ∧ ui−1 ∧ ḟ0ui ∧ ui+1 ∧ · · · ∧ uk

∈ Hom(∧kE, (∧kE)⊥) .

Notice that here ḟ0 ∈ Hom(E,E⊥). We can now see that TιE ι(Grk(Cnk)) consists of
maps

u1 ∧ · · · ∧ uk �→
k∑

i=1

u1 ∧ · · · ∧ ui−1 ∧ vi ∧ ui+1 ∧ · · · ∧ uk

for v1, · · · , vk ∈ E⊥. It is isomorphic to
⊕k

i=1 E⊥ because v1, · · · , vk are arbitrary.

Hence for any η = ΛkE ∈ V∗ ∩ ι(Grk(Cnk)), where

E = 〈u1, · · · , uk〉 ∈ Grk(Cnk) ,

we have

TηV∗ ∩ Tη ι(Grk(Cnk))

=
{
f : η → η⊥ ∩ V

∣∣∣∣ f (u1 ∧ · · · ∧ uk) = ∑k
i=1 u1 ∧ · · · ∧ ui−1 ∧ vi∧

ui+1 ∧ · · · ∧ uk ∈ V
}

∼=




∑k
i=1 u1 ∧ · · · ∧ ui−1∧
vi ∧ ui+1 ∧ · · · ∧ uk

∣∣∣∣∣∣∣
(I + N)(

∑k
i=1 u1 ∧ · · · ∧ ui−1∧

vi ∧ ui+1 ∧ · · · uk) =∑k
i=1 u1 ∧ · · · ∧ ui−1 ∧ vi ∧ ui+1 ∧ · · · ∧ uk


 .

We now look at the condition (the equality) defining the above space more closely. First
notice that the left hand side of the equality is equal to

k∑
i=1

(I + N)u1 ∧ · · · ∧ (I + N)vi ∧ · · · ∧ (I + N)uk

=
k∑

i=1

u1 ∧ · · · ∧ vi ∧ · · · ∧ uk +
k∑

i=1

∨∑
g1u1 ∧ · · · ∧ givi ∧ · · · ∧ gkuk ,
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where
∑∨ sums all terms such that gj = N for at least one j , and gj equals the identity for

other j ’s.
Therefore the equality becomes

k∑
i=1

∨∑
g1u1 ∧ · · · ∧ givi ∧ · · · ∧ gkuk = 0 . (4.1)

We consider the following two cases:
Case 1: dim(E ∩ Cn) ≤ 1.
Since N is nilpotent and NE ⊂ E, we must have dim(E ∩ Cn) = 1, and E must have

the form 〈u1, · · · , uk〉 such that Nui = ui−1 for all i and Nu1 = 0.

PROPOSITION 4.1. The complex dimension of the above intersection of the two tan-
gent spaces is equal to k(n − 1).

PROOF. First notice that the possibly non-zero terms on the left hand side of equation
(4.1) are:

v1 ∧
k∑

i=2

Ji , − v2 ∧
k∑

i=3

Ji , v3 ∧
k∑

i=4

Ji , −v4 ∧
k∑

i=5

Ji ,

· · · · · · , (−1)kvk−1 ∧
k∑

i=k

Ji

and

Nv1 ∧
k∑

i=1

Ji , − Nv2 ∧
k∑

i=2

Ji , Nv3 ∧
k∑

i=3

Ji , −Nv4 ∧
k∑

i=4

Ji ,

· · · · · · , (−1)kNvk−1 ∧
k∑

i=k−1

Ji , (−1)k+1Nvk ∧
k∑

i=k

Ji ,

where Ji = u1 ∧ · · · ∧ ûi ∧ · · · ∧ uk . Here ûi means omitting the factor ui .
Adding and regrouping all the terms above, equation (4.1) becomes

Nv1 ∧ J1

+(Nv1 + v1 − Nv2) ∧ J2

+(Nv1 + v1 − Nv2 − v2 + Nv3) ∧ J3

...

+{(I + N)(v1 − v2 + v3 − · · · + (−1)kvk−1) + (−1)k+1Nvk} ∧ Jk = 0 .

Write

ξ1 = Nv1 ,
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ξ2 = Nv1 + v1 − Nv2 ,

ξ3 = Nv1 + v1 − Nv2 − v2 + Nv3 ,

...

ξk = (1 + N)(v1 − v2 + v3 − · · · + (−1)kvk−1) + (−1)k+1Nvk .

Then (4.1) becomes

k∑
i=1

ξi ∧ Ji = 0 . (4.2)

By wedging both sides of (4.2) with ui , one can see that ξi ∧ (u1 ∧ · · · ∧ uk) = 0 for all
i. It is easy to see that this is equivalent to the conditions that

−Nv1 ∈ E ,

v1 − Nv2 ∈ E ,

v2 − Nv3 ∈ E ,

...

vk−1 − Nvk ∈ E .

Moreover, if we write ξi = ∑k
j=1 ξ

j

i uj for each i, then (4.2) implies that

ξ1
1 − ξ2

2 + ξ3
3 − ξ4

4 + · · · = 0 .

Hence TηV∗ ∩ Tη ι(Grk(Cnk)) is isomorphic to the set of (v1, · · · , vk) ∈ E⊥ ⊕ · · · ⊕ E⊥
which satisfy

(1) −Nv1, v1 − Nv2, · · · , vk−1 − Nvk ∈ E,

(2) ξ1
1 − ξ2

2 + ξ3
3 − ξ4

4 + · · · = 0.

LEMMA 4.2. Condition (1) above implies condition (2).

PROOF. First, modulo E⊥, we have

ξ1 = Nv1 ,

ξ2 = N(v1 − v2) ,

ξ3 = N(v1 − v2 + v3) ,

...

ξk = N(v1 − v2 + v3 − · · · + (−1)k−1vk) .
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Let Nvi = ∑k
s=1 as

i us modulo E⊥. We then have

ξ1 =
∑

s

as
1us ,

ξ2 =
∑

s

(as
1 − as

2)us ,

ξ3 =
∑

s

(as
1 − as

2 + as
3)us ,

...

ξk =
∑

s

(as
1 − as

2 + as
3 − · · · + (−1)k−1as

k)us .

Hence

ξ1
1 − ξ2

2 + ξ3
3 − ξ4

4 + · · · = a1
1 − (a2

1 − a2
2) + (a3

1 − a3
2 + a3

3)

− (a4
1 − a4

2 + a4
3 − a4

4) + · · ·
= (a1

1 − a2
1 + a3

1 − · · · ) + (a2
2 − a3

2 + a4
2 − · · · )

+ (a3
3 − a4

3 + · · · ) + · · · + (ak
k ) .

On the other hand, modulo E⊥, we have (I + N)vi = Nvi for each i. Therefore

0 = vi = (I − N + N2 − N3 + · · · )Nvi

= Nvi − N2vi + N3vi + · · · .

For i = 1, this equality becomes

0 = Nv1 − N2v1 + N3v1 + · · ·
= (a1

1 − a2
1 + a3

1 − · · · )u1 + · · · ,

which implies that a1
1 − a2

1 + a3
1 − · · · = 0.

Also, for each i,

0 = N(Nvi − N2vi + N3vi + · · · )
= N2vi − N3vi + N4vi + · · · .

For i = 2,

0 = N2v2 − N3v2 + N4v2 + · · ·
= (a2

2 − a3
2 + a4

2 − · · · )u1 + · · · ,

which yields a2
2 − a3

2 + a4
2 − · · · = 0.

Proceeding in a similar way, one gets ξ1
1 − ξ2

2 + ξ3
3 − ξ4

4 + · · · = 0. �
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Consider the linear map

T : E⊥ ⊕ · · · ⊕ E⊥ → Cnk ⊕ · · · ⊕ Cnk

(v1, · · · , vk) �→ (−Nv1, v1 − Nv2, · · · , vk−1 − Nvk) .

Write E⊥ =< w1, w2, · · · , wm >, where m = nk − k. The vectors

{u1, · · · , uk,w1, · · · , wm}

form an ordered basis B of Cnk. This naturally gives an ordered basis Bk of Cnk ⊕ · · · ⊕ Cnk.

With respect to this basis, the map T has the form




−N ′ 0
I −N ′ 0

0
. . .

. . .

I −N ′


 ,

where N ′ and I + N ′ are the restrictions of N and I + N on E⊥. Write

N ′ =
(

A

B

)
, I ′ =

(
0
1

)
,

where A : E⊥ → E; 1, B : E⊥ → E⊥.

We can see that T (v1, · · · , vk) ∈ E ⊕ · · · ⊕ E if and only if




−B

1 −B

.. .
. . .

1 −B







v1

v2
...

vk


 = 0 .

Denote the above matrix by D. We have

TηV∗ ∩ Tη ι(Grk(Cnk)) = ker D .

We now calculate the rank of D. First notice that since B : E⊥ → E⊥ is just the
restriction of N followed by a projection, it must be nilpotent. Hence by choosing the basis
{w1 · · · , wm} appropriately, we can assume that −B has the form




X

X

.. .

X


 ,
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where

X =




0
1 0

. . .
. . .

1 0


 .

Observe that because of the presence of the blocks 1, the row vectors in D with such
blocks (that is, from the (nk − k + 1)-st row to the last row) are linearly independent, while,
because of the form of −B, the first nk − k rows can be expressed as linear combinations of
the rows below them. Hence the rank of D is equal to (nk − k)(k − 1), which implies that

dim ker D = (nk − k)k − rank D = (nk − k)k − (nk − k)(k − 1) = k(n − 1) .

The proof of the proposition is completed. �

Case 2: dim(E ∩ Cn) > 1.

Let us first examine the case dim(E ∩ Cn) = 2.

Then E must be of the form 〈u1, u3, · · · , u2, u4, · · · 〉 such that Nu1 = Nu2 = 0 and
Nui = ui−2.

The possibly non-zero terms on the left hand side of (4.1) are

Nv1 ∧ J1 , − Nv2 ∧ J2 ,

{(1 + N)(−v1) + Nv3} ∧ J3 , {(1 + N)(v2) − Nv4} ∧ J4 ,

{(1 + N)(v1 − v3) + Nv5} ∧ J5 , {(1 + N)(−v2 + v4) − Nv6} ∧ J6 ,

{(1 + N)(−v1 + v3 − v5) + Nv7} ∧ J7 , {(1 + N)(v2 − v4 + v6) − Nv8} ∧ J8 ,

...
... .

As in case 1, let ξi be such that the above terms become ξi ∧ Ji = 0 for all i. Then (4.1)
implies ξi ∈ E.

We claim again that, if we write ξi = ∑k
s=1 ξs

i us, then we automatically have ξ1
1 − ξ2

2 +
ξ3

3 − · · · = 0. Writing Nvi = ∑
as
i us modulo E⊥, we have

ξ1 = Nv1 =
∑

as
1us ,

ξ2 = −Nv2 = −
∑

as
2us ,

ξ3 = −Nv1 + Nv3 =
∑

(−as
1 + as

3)us ,

ξ4 = Nv2 − Nv4 =
∑

(as
2 − as

4)us ,

ξ5 = Nv1 − Nv3 + Nv5 =
∑

(as
1 − as

3 + as
5)us ,

... .
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Therefore

ξ1
1 − ξ2

2 + ξ3
3 − · · · = a1

1 + a2
2 + (−a3

1 + a3
3) − (a4

2 − a4
4) + (a5

1 − a5
3 + a5

5) − · · ·
= (a1

1 − a3
1 + a5

1 − a7
1 + · · · ) + (a2

2 − a4
2 + a6

2 − · · · )
+ (a3

3 − a5
3 + a7

3 − · · · ) + · · · .

Manipulating ξ1, ξ3, ξ5, · · · as in case 1, one gets

a1
1 − a3

1 + a5
1 − a7

1 + · · · = 0 ,

a3
3 − a5

3 + a7
3 − · · · = 0 ,

... ,

while combining ξ2, ξ4, ξ6, · · · as in case 1 gives

a2
2 − a4

2 + a6
2 − · · · = 0 ,

... .

Consider the linear map T : E⊥⊕· · ·⊕E⊥ → Cnk ⊕· · ·⊕Cnk which sends (v1 · · · , vk)

to (ξ1, · · · , ξk). In terms of the basis Bk defined in case 1, we have

T =




−N 0
0 −N 0
I 0 −N 0

I 0 −N

.. .
. . .

. . .




.

Writing N =
(

A

B

)
as in case 1, we again have

TηV∗ ∩ Tη ι(Grk(Cnk)) = ker D ,

where

D =




−B 0
0 −B 0
I 0 −B 0

I 0 −B

.. .
. . .

. . .




.

Arguing as in case 1, one can see that rank D = (k − 2)(nk − k) because of the presence of
the submartix ( −B

−B

)
.
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at the upper left corner of D. Hence

dim ker D = (nk − k)k − (k − 2)(nk − k) = 2k(n − 1) .

In general, one can see that if dim E ∩ Cn = d, then

rank D = (k − d)(nk − k)

because there will be a submatrix



−B

.. .

−B




of size d(nk − k) at the upper left corner of D. Hence we have

LEMMA 4.3. If dim E ∩Cn = d, then TηV∗ ∩Tη ι(Grk(Cnk)) has complex dimension
dk(n − 1).

In particular, if dim E∩Cn > 1, the dimension of TηV∗ ∩Tη ι(Grk(Cnk)) is greater than
the case 1 situation. In other words, in the case 1 situation we have the minimal dimension,
while in the case 2 situation the dimension is greater. Therefore we can conclude that E ∈ Fk

is a smooth point if and only if dim(E ∩ Cn) = 1. And the proof of the theorem is now
complete. �

To finish, let us make two remarks.
First, for a general segment

zmFmn → zm+1F(m+1)n

of the filtration, we can ask if the first set is precisely the set of singularities of the second one.
This is equivalent to asking the same question for the shifted inclusion:

z−1Fk−n → Fk ,

where we write k for (m + 1)n = mn + n.

PROPOSITION 4.2. The space F ′
k contains z−1Fk−n.

PROOF. For any W ∈ z−1Fk−n,

z−1H+ ⊂ W ⊂ zn−k−1H+ .

So

zk−1W ⊂ zn−2H+ ⊂ H+

because n ≥ 2. But this is equivalent to the condition (ii) that defines F ′
k. �

PROPOSITION 4.3. In the case of n = 2, F ′
k = Fk−2.
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PROOF. Notice that when n = 2, we have

E ∈ F ′
k ⇔ dim E ∩ C2 ≥ 2 ⇔ E ⊃ C2 ⇔ E ∈ Fk−2 . �

When n > 2, z−1Fk−n ⊂ F ′
k is a proper inclusion. For example, look at the case

n = k = 3. The set z−1Fk−n = z−1F0 is a point whereas F ′
3 is easily seen to contain more

than a point.
The second remark has to do with a “desingularization” of Fk defined in [3]. Assume that

n ≥ 2. For any k, define F̂k to be the subspace of the flag manifold F1,2,··· ,k(Cnk) consisting
of flags of the form

{0} = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Ek ⊂ Cnk

that satisfy the conditions:
(1) dim Ei/Ei−1 = 1 for all i,
(2) NEi ⊂ Ei for all i,

where Cnk is identified with 〈z−i ej : i = 1, 2, · · · , k; j = 1, 2, · · · , n〉.
It is proved in [3] p. 358 that F̂k is a smooth complex manifold and the projection

π : F̂k → Fk : E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Ek �→ Ek

is surjective and restricts to a biholomorphism

π : π−1(Fk − F ′
k) → Fk − F ′

k .

(In [3], F̂k is denoted Xn,k and Fk − F ′
k is denoted Vn,k .)

Since F ′
k is precisely the singular set of Fk , we see that the above projection is a genuine

desingularization of Fk .
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