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Abstract. After certain completions, we define adjoint groups of extended affine Lie algebras with nullity 2.
Then we show that such groups have Tits systems with affine Weyl groups (Part 1). This idea allows us to consider
linear groups over some completed quantum tori. By the same argument, we can prove that these linear groups aso
have Tits systems with affine Weyl groups. Using this fact we will study their universal central extensions as well as
associated K'1-groups and K»-groups (Part I1). We will discuss some relationship among our groups constructed here
(Part 111).

1. Introduction

The classification theory of finite dimensional complex semisimple Lie groups was com-
pleted by W. Killing and E. Cartan in the early 20th. It was a very important observation
that the classification of finite dimensional complex semisimple Lie groups can be reduced to
classify finite dimensional complex semisimple Lie algebras, which is equivalent to classify
(finite) reduced root systems. Then, finally such root systems can be described completely in
terms of Dynkin diagrams or Cartan matrices (cf. [4]).

Around 1967, anew ideawas born. That is, V. Kac and R. Moody independently discov-
ered that there exists a natural and very important generalization of the above theory. They
gavethe definition of generalized Cartan matrices, and constructed the associated Lie algebras
(cf. [8], [10]), and they developed the so-called Kac-Moody (Lie algebra) theory. In generd,
Kac-Moody Lie algebras can be infinite dimensional. Then, the corresponding groups and
root systems were studied systematically (cf. [6], [8], [10], [17], [14]).

In this Kac-Moody theory, there is the most important class called affine Lie algebras
and associated groups. Here we sometimes include loop algebras and loop groups as a rough
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explanation. Then many applications are found to other areas in mathematics as well as in
mathematical physics. In 1990, two physicists named R. Hgegh-Krohn and B. Toresani in-
troduced a new generdization of affine Lie algebras. Such new Lie algebras were originally
called quasi-simple Lie algebras. Later, five mathematicians (AABGP) arranged and devel-
oped the theory of those new Lie algebras (cf. [2]). Now they are called extended &ffine Lie
algebras. However, the corresponding groups have not yet considered systematically in group
theory.

Each extended affine Lie algebra has its nullity. For example, affine Lie algebras have
nullity 1. Roughly saying, the nullity isthe rank of the lattice generated by imaginary roots or
isotropic roots. Then, it is a very important open problem to study the groups corresponding
to extended affine Lie algebras with nullity > 2. Again roughly speaking, such Lie algebras
have the structure similar to loop algebras with many variables. Then, the corresponding
groups look like loop groups with many variables. Those groups are generally rather difficult
to study in some sense.

On the other hand, linear groups over severa fields and rings have been studied (cf. [1],
[5], [6], [7], [9], [12], [13], [15], [21]). Then, these groups can sometimes be considered
using the associated K -theory. Also, it isvery natural to consider linear groups over quantum
tori, since linear Lie algebras over quantum tori can appear as some homomorphic images
of extended affine Lie algebras, more precisely their derived subalgebras. The idea of our
approach here comes from this point of view.

In this paper, we assume that the nullity is 2, and we need some kind of completion.
Extended affine Lie algebras with nullity 2 are theoretically corresponding to elliptic Lie a-
gebras, and our completionisessentially corresponding to K. Saito’s marking for his extended
affine root systems (cf. [19]). Here, we make a completion of the corresponding groups, and
we study them. In fact, we will obtain Bruhat type decompositions, and using such decom-
positions we will establish group presentations and universal central extensions as well asthe
structures of the corresponding K1-groups and K»-groups.

One may expect, in the next step, some structure theory without completions. Also, one
may want to study the higher nullity case. At this moment, it seems to be rather difficult. To
do so, we might need another new idea. It is our dream in afuture.

We will discuss the groups corresponding to extended affine Lie algebrasin Part |. Then,
we will study some linear groups over quantum tori and their universal centra extensionsin
Part I1. Finally, in Part 111 we will deal with the relation between the resultsin Part | and Part
Il.

Now we can draw the following picture in terms of Lie algebras.
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Here, we will study the group version of this picture. That is, we will study some groups
defined by extended affine Lie algebras with nullity 2 as well as some linear groups over
guantum tori, and discuss the relationship among them.

In the above picture, one can find three kinds of topics asfurther development after affine
Lie algebras or loop algebras. namely oneis the theory of Kac-Moody Lie algebras, another
is the theory of linear Lie algebras over rings, and the third is the theory of extended affine
Lie algebras. All of them are very interesting and important in Lie theory. There might be a
hidden new observation.

Part |: EALA Groups

We make a completion of some extended affine Lie algebra with nullity 2, and construct
and study the associated adjoint group. We suppose here that afield F is of characteristic O.

1. Extended affineLiealgebras

Let L be an extended affine Lie algebra over a field, F, of characteristic O, which is
studiedin[2], [17], [18], for example, and called an EALA sometimes. That is:
(EALAL) L hasanondegenerate symmetric invariant bilinear form

b:LxL— F,

(EALA2) L hasafinite dimensional toral subalgebra H, consisting of diagonalizable
elements under the adjoint representation, with H A Qand C(H) = H,

(EALA3J) ad;(x)islocaly nilpotent for al x € Ly witha € R*,
where R* isthe set of nonisotropic roots of the root system R defined by (L, H), and where
L, istheroot subspace of L corresponding to «,

(EALA4) Lisirreducible (in terms of the root system R).

We let Z denote the ring of rational integers, and Q the field of rational numbers. The
multiplicative group of F isdenoted by F*, namely F* = F\ {0}. Thedefinition of extended
affine Lie algebrasgivesanaturd generalization of affine Lie algebras (cf. [8], [10]). For each
a € R*,leto, € GL(H™) bethereflection defined by o, () =  — i (hy)o foral u € H*,
where h,, is the coroot of « € R* defined by h, = 21,/b(ty, ty) With 1, € H satisfying
b(h,ty) = a(h) foral h € H. Then the Weyl group W is defined to be the subgroup of
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GL(H*) generated by o, foral a € R*, thatis, W = W(R) = (o, | @ € R* ). Let V be
the Q-span of R, and Vo the Q-span of RY, where R® = R\ R* isthe set of isotropic roots
of R. Then the famous Kac-conjecture says that the induced bilinear form on V is positive
semi-definite after a certain neccessary scalar modification (cf. [2], [17]) and Vp isitsradical.
Furthermore, the image R* of R* in V = V/Vq is a (not neccessarily reduced) finite root
system (cf. [2], [4]). We choose a complete set, @, of representatives of R* in R*. In this
note, we suppose the following three conditions (ASS1) — (ASS3).

Assumption.

(ASS1) RO = Z¢ @ Zn for somenonzero &, n € RC.

(ASS2) R* = @ + (Z& & Zn).

(ASS3) @ isareduced (irreducible finite) root system.

2. Completed adjoint groups

We shall consider, as aformal infinite sum,

o
Z Sa+in »
i=k

wherea € R and sq+iy € Latin. Weput @, = @ +Z£. Fora = & + mé € ¢, witha € @
andm € Z, weput I, = (D12 Satin | k € Z, Sa+in € Latin}, and form € Z we put
e = {2724 Sme+in | k € Z, Smetin € Lmg+iy}. Then we define

i=(@n)e(@n).
aed, meZ
which naturally becomes a Lie algebra and is called the completion of L along with n. Also
weput I'g={>_721 sin | sin € Lin}. For eachs € I', we define
xq(s) = expad(s) € Aut(L),
and for each s’ € I'y we define
xo(s') = expad(s’) € Aut(L) .

Then we can construct & to be the subgroup of Aut(L) generated by x,(s) and xo(s’) for
dla € ¢, andforals e I; and s’ € I'j. One may symbolicaly call & an EALG or
an EALA group, otherwise one may call it the completed adjoint group defined by L. Let
W, (= W(d,) = W,(P)) bethe subgroup of W(R) generated by o, for all a € &,, and then
W, is called the affine Weyl group of @ or the Weyl group of @, (cf. [4], [17]).
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3. Somerelations

We fix a simple system IT of @, and we let denote by @ (resp. @ ~) the set of positive
(resp. negative) rootsof @ with respectto I7. Thenweput @ = (@ +Z-0&)U(® ~+Z-0&)
and @, = (PT+Z_0)U(P™ +Z0é), andweset [T, = {&, —do+& | & € IT}, whereqgis
the highest root of @ relativeto I1. Fora = & +mé& € &, wedefinel, = ( x,(s) | s € Iy).
For {+a} C R*, wechoose elementse, € L, ande_, € L_, suchthat {ey, hy, e_o} iSan
slp-triplet with [ey, e_q] = hy and [hy, e1q] = £2e14. If @« € R*, then Ly = Fe,, since
dmL, =1 Fora € R*andforr € Fandt € F*, weput

Xq(r) = eXp ad(rea) s
Wa () = X ()Xo (—t " Dxa (1),
he(t) = we (Hwe(=1).
Then we have the following standard relations (cf. [2], [10], [21]):
(R1) wo () xg (N we (1) = xaaﬂ(naﬁtiﬁ(ha)r)i
(R2)  wa(DHwp)we(—1) = we, p(napt PHu),
(R3) Wo (Dhg(Wwe(—1) = ho,p(u),
(RA)  ho(xp(r)ha ()™t = xp(PPer),
(R5)  ho (Nwpuhe ()™t = wp(tPhu),
(R6)  ho (hp(w)he ()™ = hp(u),
(R7)  wa(®)xq(s)wa(—t) = ana(U)l
(R8)  wq()xo(s)we(—1) = xo(v")
forala,p e R*,re F,t,ue F*,ae ®,,s € I, ands” € I'j. Herewy (1) (ep) = nepes,p
withngg € F*, and wy (t)(s) = v € Iy and we (1) (s") = v" € T},

4. Subgroupsand Titssystems

Forae @,,i e Zandt € F*, weset
Oa,i(1) = Watin(H)wa(=1).
Then, we define
UF = (Y la e dF),
To = (hqa(1), 04,i(1), x0(s") |
aeR*, teF*, ae®, icZ s ely),

BF = (To, 4F),

N={(wy), To|a e P,, t € F*)

= (wq (1), xo(s") | € R*, t € F*, s’ € I}),
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S ={w, () mod%g|acll}.
Sometimes we identify & with {w,(1) | a € I1,}. Also we put

Dia = ( Xaa (MU (—r) | b € ®E\ {%a), r € F)

for each a € I1,. Then we obtain the following (cf. [2], [7], [21]).

(Q1) wa(pwa(—1) =Yg, foradla, b e &, andr € F*:
this follows from the standard relations among the x,, (1), wq (1) and kg, (2).

(Q2) Fonormalizes i, and Toll, = U,Toforal a € & :
by the definitions of 4, and %o together with (Q1), this can be obtained.

(Q3) B = UFTH = TouF, U+ «BE:
by (Q2), we find that 4U* is normalized by To, which implies that $(* is anormal subgroup of
BE, hence B+ isa product of both U+ and To.

(Q4) BENN=Tg<«NandMN/To~ W,:
by the standard relations among the x, (r), wy (¢) and k4 (1), we have that Tg is normal in M.
Considering the action of 9t onthe set 2 = {I, | a € &}, thereisanatura homomorphism
of 9 onto W, and ¥ actson 2 trivially. Hence, it induces a homomorphism of 91/, onto
W,. On the other hand, the fact that W, is a Coxeter group impliesthat 91/%¢ isisomorphic
to W, . By the definitions of B+ and 91, we see B+ N 91 O . If x € BE NN, then x must
stabilize 2% = {I, | a € ®F} and ¥ € M/Fp iscorresponding to 1 € W,. This means that
x € %o, which showsthat B+ N 91 coincides with <.

(QS) QJ:I:a <yF and y* = gjiauia = il:l:a@:l:a forala e @,:
we see that 2+, isanormal subgroup of 4 by the definition of 9).,, which leads to the fact
that 4* isaproduct of 9+, and U,.

(Q6) wig()YD1qwiq(—1) =Yy, fordlaell, andr € F*:
this can be established (cf. [1], [6]).

Hence, using the standard argument, we can show the following theorem.

THEOREM 1. Notation is as above. Then, (&, B+, N, &) is a Tits system with the
corresponding affine Weyl group W,,.

PROOF OF THEOREM 1.  We will show our result in case of 9. For 8, the proof can
similarly be given. Itiseasy to show that & is generated by 95 and 91, and the above (Q4) says
that o isanormal subgroup of 9t with 6 N 91 = To and 91/%o isisomorphic to the affine
Wey! group, W,, of @ (cf. [4], [17], [12]). Also by (Q3) one can obtain that 8B is a product of
i and T satisfying that L1 is anormal subgroup of 5. The main part of the proof should be
to prove:

we(DBw,(—1) C B UDBw,(1)B

forala e IT,. Since w, (1)Bw,(—1) C U_,B, which can be established as in the standard
method using (Q1) — (Q6), asin [1], [6], [ 7], [2]], it is enough to show

Uy CBUBw, (DB
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Letx € U_,. If x = 1, then x isin B. We suppose x # 1. Then, we can write x = x_,(s)
for somes = Z;’ik S—atin € I'_qg With s_q 4y = te_q4iy # Ofor somer € F*. Thenthere
isasuitable element s” e I'y such that

x0(") (S —atkn) = X0(s") (te_asin) = 5.
Hence, we obtain
X =x_4(s)
= x0(s")X—artkn(t)x0(—s")
= x0(8")Xa—ty (t " Hwa—kn (=t Hxa—in(t™Hxo(—5")
= x0(5")Xa—kn(t ™) Waten(—t " Hwa (= 1) wa (Dxg—in(t ™ Hxo(—s")
= x0(5")Xa—ky (7100, 1 (=t Hwa (D Xa 1y (¢ Hx0(—5")
€ ToUsTows (DU, %o
C Bw,(1)B.

Other remaining part of the proof can also be established easily. Q.E.D.
COROLLARY. Notation isas above. Then, we have:
(1) 6 =Uyew, B*wB* (Bruhat decomposition),
2 6 =Uyew, B*wBT (Birkhaff decomposition),
(3) & = UFUTTUT  (Gauss decomposition).

Part I1: Groups over Quantum Tori

Asatypical example, we can take a certain central extension of sl,, over aquantum torus
with some derivation part. Our ideain Part | can be applied to this example, which allows us
to consider, in asimilar way, alinear group defined by s{,, over a quantum torus. According
to the story of Part I, one may expect to discuss several subgroups of PGL,. However here
we will choose and study GL,, instead of PGL,,. One can argue about PGL,, in the same
way asin case of GL,. Herewe suppose that F isafield of any characteristic.

5. Completed quantum tori

Let F be afield (of any characteristic). We fix an element ¢ of F*. Let K = F((X1))
be the field of the formal power seriesin X over F, that is,

o0
K:{Zajxi

j=m

meZ, ajeF},
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andlet K, = K[X2, X5 1 bethe (not necessarily commutative) ring of Laurent polynomials
in X2 over K with XoX1 = ¢ X1X>, that is,

12
K, = { > ai(X1) X

i=k

k,telZ, k<l a,-(Xl)eK}.

We call K, the completed quantum torus associated withg € F*. If a(X1) € K andi € Z,
then we have X5 a(X1) = a(q' X1) X5. In general, we obtain

£y 17 L1 L2
(Z ai (X1)X'2>< > bj(xl)x§> =3 > ai(X0)bj(q' X)) X5
i=ki Jj=k2 i=ky j=k2
L1+Lo m—kz
= > (X atwbeaxn)xg.
m=ki1+ky  i=ky

Using the spread of degrees in X, we find that K, is a Euclidean ring and that X, has no
(nonzero) zero-divisor.

6. General linear groupsand Tits systems

Let M(n, K;) be the ring of n x n matrices whose entries are in K,;, and we set
GL(n,Ky) = M(n, K,)*, the multiplicative group of M (n, K).

Letd ={e —¢; | 1L <i # j < n} bearoot system of type A,_1 in the sense of
[4], where the ¢; are an orthonormal basis of a certain Euclidean space with an inner product
(-,-),and let IT = {a&1, ..., &a,—1} beasimple system of @, whered; = ¢; — ¢;+1. We put
&t ={dj+diq1+---+a; | 1<i < j <n-—1},theset of positiveroots,and ¢~ = -,
the set of negative roots, and hence @ = @+t U @~. Thenwg = d1 + o + -+ + 1 iS
the highest root of @ with respect to I7. The associated abstruct affine (real) root system is
definedby @, = @ x Z. Assimpleroots, we choosea; = (o1, 0), a2 = (x2,0), ..., a,-1 =
(tp-1,0),a, = (—ap, L), that is, [T, = {a1,a2,...,a,} isasmple system of &,. Let
OF = (P xZs0)U (@™ xZop)and @, = (@ x Z_0) U(P~ x Z<p), whicharecalled
positive roots and negative roots of @, respectively. For each & € @, we define

Eijr1 fa=ai+aip1+---+a;,
ey = . L .
Ejv1; ifa=—(+ap+---+a;),

where E;; isthematrix unit with Linthe (i, j) position and O elsewhere. Fora = ¢; —¢; € @
and f € K, we put

Xa(f) =xij(f) =1+ feq,
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where I = E11 + E2 + --- + E,, is the identity matrix. Then the elementary subgroup
E(n, K,) is defined to be the subgroup of GL (n, K,) generated by x4 (f) foral & € ¢ and
f ek,

In a standard way, the Weyl group W of @ is generated by o, forall @ € @, where oy is
the reflection along with ¢&. Then the associated affine Weyl group W, is generated by o, for
adla = (o, m) € &,, where

2(a, B) )
—_ m
(&, &)

oa(b) = (adﬂ‘,z

fora = (@, m), b = (B, ) € ®,. Wecdl W, (= W,(®) = W(P,)) the affine Weyl group
of @ or the Wey! group of @,. Usualy @ isidentified with @ x {0} in &,,.
Fora = (&,m) € &,,r € K andt € K*, wedefine

xa(r) = x4 (r X3,

Wa (1) = xa(O)x—a(—t"Hxa(t) ,
ha(t) = wa(Hwa(—-1).

Then we put

E=Emn,K,),

Ua = (xa(r) | r € K),
U= (U, |aecd?,

T = (he(t) |a € ®,, t € K*),
N=(w,(t)|aed, teK*).

If h e T isexpressed as

up O 0
0 u 0
h= .
0 0 - uy
withu, ..., u, € qu,thenwedefine, foreachi =1,...,n,

deg; (h) = deg(u;) = m; ,
whereu; = 1;X5" withs; € K* andm; € Z, Then we set:
To=(h|heT, deg;(h) =0forali=1,...,n),
B* = (U™, To),
S ={w,(1)modTy|acll,}.
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Sometimes we identify S with {w,(1) | a € I1,}. Asone can imagine, we will establish the
following result.

THEOREM 2. Notation is as above. Then, (E, B, N, S) is a Tits system with the
corresponding affine Weyl group W,.

The proof is essentially the same asin [12]. The only difference is that our ring K, is
not necessarily commutative. Hence, we sometimes need specia relationsin our group E in
the noncommutative case. For example,

(A) xa(f)xa(9) = xe(f +9),
X 5(fg)  ifat+ped j=k,

(B) [xa(f).x4(9] = xp(—9f) ifa+ped i=t,
1 otherwise,

where f, g € K, and &, f € @ satisfyingthat @ = &; —¢j, f = ex — e and & + f # O.
Furthermore, we put
we (1) = xg () x_g (—u Hxa () ,
he(u) = wg (W)wg (—1)
foreachu € K. Then, we obtain:
(P ws ()™ = ws(—u), wa) =w_s(—u1),
We ()X (f)wg (—u) = X (—uFt fuFh,

we ()xg (fHwe (—u) = xz(f)
if (@,B) =0,

we W) xg(lHwg(—u) = x, z@uf)

if a+p£0, j=k,
(P2 § wa(w)xz(HHws(—u) = x,, 4(—fu)

if «£p#£0, i=¢,
w )xz (Nlwa(—u) = x, 4(—u"1f)

if a+p£0, i=k,
we )z (NHwa(—u) = x,5(fu™

if a+p£0, j=¢,




(P3)
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W (W) wg (V)wg (—u) = weg(—uTlouTly,

we (Wwg(W)we (—u) = wg(v)

if (&, f)=0,
wg Ww g (Vwe (—u) = w,, 3(uv)

if «a£f #£0, j=k,
we (Wwg(W)we (—u) = wy, z(—vu)

if a+p#£0, i=¢,
we ()wg (V) we (—u) =w%ﬂ~(—fr1u)

if a+p#£0, i=k,
wg (W wj ()wg (—u) = w,, 5(u™t)

if ¢a+f#£0, j=¢,

(P4 ho)=h_gu™) =h_g)™,

(PS)

(P6)

foral &, € @, andforall f € K, andu, v € K, whered and  are written as

W (Wh 6 (V)we (1) = he FouFHhee *?)
wg (Whg(W)wg (—u) = hg(v)

if (@ 8)=0,
we (0h g (W)wa (=) = hy, 5 @v)hg, ;™"

if a+£p#£0, j=k,
wg (Whg)we(—u) = hy, 5@y, 5™

if «£p£0, i=¢,
we (Wh g (W)wa (=) = hy, 5™ o)y, ;5 (u)

if a+pf#£0, i=k,
wa (Wh 3 (Ywe (=) = hy, g Hh, 5 w)

if e £0, j=¢,
ha W) x5 (fha @)™ = xag * futh) |
he )z (Hha )™ =x;(f)

if (@,8)=0,
he )x3(Hha @)™ =xz™tf)

if a+p#£0, j=k,
he )3 (Hha @)™ =xz(fu™)

if ap£0, i=¢,
he )z (ha )™ = xz(uf)

if a+p#£0, i=k,
he )xz(Hha @)™ = xz(fu)

if a£pf#£0, j=¢,

357
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a=¢ —e¢; and B=er—er.

Asaspecial case, we have the following relation:

(B)  wsxg(Nwa(—u) = x—g(—u~t fu™h)
forala € @ andforal f € K, andu € K. Then, using those relations, we can establish
the following lemma (cf. [1], [7], [12]).

LEMMA 3. Notationisasabove. Then:

(1) BT =U*xTo.

(2 T<NandTp< N.

(3 B*NN =T

(4 N/To>~W,.

(5) (N/To, S) isa Coxeter system.

For our purpose, we need alittle bit more explicit discussion. Put

Yiq = (x2a(Upxsa(—1) | 7 € K, b € &7\ {%a})

for each a € I1,. Then, we obtain the following (cf. [1], [7], [10]).

PrROPOSITION 4. Leta € I1,. Then:

(1) Ui =Yiq X Usq.

(2) wia(O)Yrqwig(—t) =Yy, forallre K*.

(3) BT U B*w,(1)B* isa subgroup.

(4 sB*s ¢ Bfforalls e S.

Hence, it is easy now to establish Theorem 2 in a standard way.

PrROOF OF THEOREM 2. We should check the axiom of “Tits System.” We will con-
sider the case of B. We can easily confirm that E is generated by B and N. By Lemma 3
(2) and (3), wesee BN N = Top < N. By Lemma 3 (5), we can find W, = N/To = (S).
For w € W,, we define the length /(w) of w with respect to S asusual. If w € W, and
s = wg(1) e Swithl(w) < I(sw), then w(a) € &+ and

wBs = wU,Y,Tos
= (anwil)ws(sleas)(sflTos)
= Uw(a)wsyaTO
C BwsB.
Ifwe W, ands = ws(1) € S withl(ws) < I(w), thenw(a) € @, . Put w’ = ws. Then
l(w") < l(w”s) and
wBs = w'sBs

C w'(BU BsB)
=w BUw BsB
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Cc w'BUBw'sB
C BwsBU BwB.
In any case, we obtain
wBs C BwsBU BwB .
By Proposition 4 (4), wehavesBs ¢ B foral s € S. Q.E.D.

COROLLARY. Notationisasabove. Then, we have:

(1) E=Uyew, B¥*wB*  (Bruhat decomposition),
(2) E=Uyew, BFwB*  (Birkhoff decomposition),
(3) E =U*UTToU* (Gaussdecomposition).

7. Steinberggroups

Let St(n, K,) be the Steinberg group of type (A,—1) over K,, which is defined by the
generators

xij(f)
forall<i# j<nandf e K, and the defining relations
(A) %i;(HXij(9) =X (f+9)

Xie(fg) if j=k,
(B) [Xij (). Xke()] = 3 Znj(—gf) ifi=¢,
1 otherwise

forall<i#j<nandl<kz{<nwith(i,j) # (¢, k),adforadl f, g € K,. Exactly
this definition isvalid for n > 3. If n = 2, then we should replace (B) by the following (B)' :

(BY Wy )i (i (—u) = Xji(—u=t fu=b
forali, jwith{i, j} = {1,2}andforal f € K, andu € K, where
Wij () = £ @) ji (—u~ Dz (u) .

Then, there is a natural homomorphism of ¢ of St(n, K,;) onto E(n, K,) with ¢ (%;;(f)) =
xij(fHyfordll<i#j<nand f € K,. Similarly we put

hij(u) = i (u) i (—1) .
We notethat (B) holdsin St (n, K,) forn > 3. Infact, if we choose anindex k different from
i, j,then
Wi (W)X (f)wij(—u)

= %i; X ji (—u~Hxj ) [Fik (L), &y (IR (—0)% ji D Rij (—u)
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= £ij )& ji (—u~ DRk (D), 2y (HIRi ™ HRij (—u)
= R )£ jx(—u D Eir (D), R (Fu™ D)%k (IR (—u0)
= [Rik (=D& j(—u DRk (D), Fx (= )R (fu~ DRk ()]
= [Rjx(—u™h, & (fu™)]
=%ji(—utfuh.
Here we also use the same idea of notation:
Ra(f) = Rij(f), W) =bij@w), halu) = hij(u)
if @ =& —e; € ®. Then, in St(n, K,/) we observe the relations (P1) — (P6) similar to (P1)

—(P6), where x, w, h should be changed into x, w, fzrespectively. More precisely we need
to change alittle bit, namely:
(PA)  hg(u) = h_a)™,
and
Wa (h1a (V) e (—u) = hga (—uFouTHhze (—uFH ™2,
Da@hg@)da(—u) =h;@)
if @ f)=0,
Da@hg@)da(—u) = hy, 5@)h,, 40"
if «£f#£0, j=k,
(PS) Y os ) 3 (W)doa(—u) = hy, g(—vit)hy, g(—u)~
if axp#£0, i=¢,
DaWh g W)a(~u) = hy g (—u= ) hg, 5 (~uH ™t
if a+pf#£0, i=k,
DeWhgW)Da(—u) = h, g uDhg,5™H
if a+B#£0, j=¢,

which are dightly different from (P4) and (P5).
Now we define the subgroups named N and 7 of St (n, K,) by

N = (bs()|ded ueky),
T =(hg(u)|ded uek)).
Then we put
To=(h e T |deg (¢(h)) =0 foral i =1,...,n).

Then we shall define:
Uy, = (R rX8) | r € K) for a=(&,m) € ®,,
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U% = (U, | aedl),
BE = (U*, Ty),

S={w, ) modTp|acil).

Then, similarly we can show the following (cf. Lemma 3, [13]).

LEMMA 5. Notation isasabove. Then:

(1) U* <«B* =U*Ty.

(20 T<NandTp<N.

(3) BENN =To.

(4 N/Tog=W,.

(5) (N/To, S) isa Coxeter system.

Weput Vi, = (xUpx 1 | x € Usy, b € @F \ {a}) for eacha € I1,. Then, we obtain
thefollowing (cf. [1], [12], [21]).

PrROPOSITION 6. Leta € I1,. Then:

(1) ?:I:a < 0i = ?:I:a(j:ta-

(2)  Wiq(t)Yiqia(—t) = Yigy forallt € K.

(3) B* U B*w,(1)B* isasubgroup.

(4) §B*s ¢ BEforall§es.

Hence, we can reach the next result, which is similar to the proof of Theorem 2.

THEOREM 7. Notationisasabove. Then, (St(n, K,), B*, N, §) isa Tits system with
the corresponding affine eyl group W,,.

COROLLARY. Notationisasabove. Then, we have:

(1) St(n,Ky) = Upew, BEwB*  (Bruhat decomposition),

(2 St(n.Kg) =Uypew, BTwB*  (Birkhoff decomposition),

(3) St(n, K,) = U*UFToU* (Gaussdecomposition).

8. K>-groupsand presentations (rank 1)

Here we suppose that n = 2, that is, the rank of @ is 1 in the sense of root systems.
Namely we assume @ = {+da}. Then we put K»(2, K,) = Ker ¢, where ¢ is the canonical
homomorphismof S¢(2, K,) onto E(2, K,). Let E(2, K ) bethe group defined by generators
xij(f)fordl {i, j} = {1, 2}andforall f € K, andthedefining relations(A) and (B)' together
with the following relation:

(C)  c(uz,vi)c(uz, v2)---cup,vp) =1
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forall ug,...,up,v1,...,vp € qu satisfying
[ug, vallug, vl - [up, vyl =1,
whereforu, v € qu we put
Wij () = Xij )% ji (—u~HF; @),
hij(u) = wij )i (—1)
&, v) = h1a)h12(v)h12(vu) ™t

and where x, w in therelations (A) and (B)’ should be changed into &, w respectively. Using
the above discussion, we obtain the following theorem.

THEOREM 8. Notationisasabove. Then, we have E (2, K,) ~ E2,Ky).
PROOF OF THEOREM 8. Thehomomorphism ¢ : St(2, K,) — E(2, K,) induces two
canonical homomorphisms called $ and ¢, that is,
b : St(2,K,) — E2,K,),
¢ EQ2.Ky) — EQRK,),
which are defined by
PG () =Fij(f) and ¢Fj(f)) = xij(f)
with the following diagram.
b E(Z, Ky) é
/! N
St(2, Ky) — E2, Kg)
¢

We use the same notation of subgroups of £(2, K, 4) 8sin St(2, K,) changing” into~, namely
qS(A) =". Then, we find two kinds of Bruhat decompositions:

E@2,K,) = U BwB > B = UTy,
l weW, l
E(2,K,) = U BwB D B = UxTy

Therefore, by these decompositions, we can obtain Ker ¢  B. We take an element & ¢
Ker ¢. Then, wewrite ¥ asi = jz forsomey € U andz € To. Put y = ¢(3) and z = ¢(3).
Sincei € Ker ¢, we have

1=¢F) =¢(3)p(Z) =yz €U x Ty,
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whichimplies y = 1 and z = 1. Hence, in particular, 3 and Z belong to Ker ¢.

C,aMm 1. y=1

PROOF OF CLAIM 1. Sincey € Tp C T, wecanwrite j as

¥ = h12(u) P hiou2)™ - hap(up)*t
forsomeus, ..., u, € K usingtherelation (P4). Ontheother hand, [u, u=] = 1foralu e
K implies1 = &(u, u™) = h12(u)h12(u=) by (C), which leadsto f12(u) ™t = h1a(u™?).
Hence, one can write
¥ = h12(wD)h12(v2) - - - h12(vp)

for somewvs, ..., v, € K*. Since ¢(5) = 1, we see that

VIV2 - Up = vIlvglo'ovljl: 1.
Then, we can compute, by (C),
5 = é(v1, v2) h12(v2v1) h12(v3) - -+ h12(v))
= &(v1, v2) E(vav1, v3) h12(v3v2v1) h12(va) -+ hia(v))
= &(v1, v2) E(v2v1, v3) -+ E(Vp_1- - - V2v1, Vp) h12(Vp - - V1)
= ¢(v1, v2) ¢(v2v1, v3) -+ C(Vp—1-- - V2V1, Vp)

and furthermore the last part of this equation should be 1 by (C), since

[vy, v2llvove, v3] - - - [vp—1---vovy, vp] = 1.

CLAIM 2. Zz=1.
PrROOF OF CLAIM 2. Using the degree map of K[X2] in X2, we can establish that U

isthe free product of
1 K[X2] 1 0
(O 1 > and (XzK[Xz] l) '

Hence, U isisomorphicto U, and Z = 1.
Therefore, we just reached X = 1, whichimpliesthat E(2, K,) >~ E(2, K). Q.E.D.
We need to know a set of generatorsfor K»(2, K,), which we will use later, as follows.
PROPOSITION 9. Notation isas above. Then we have:
K2(2, Ky) = (¢(u1, v1)(uz, v2) - - - Clug, vp) 1 k = 1,

UL, V1, ... Uk, Uk € KJ° [ug, vallug, val -« [uk, vl = 1),

where é(u, v) = h12(u)h12(v)h12(vu) 1, and K2(2, K,;) isa central subgroup of Sz(2, K ,).
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PROOF OF PROPOSITION 9. Itisenough to confirm that
¢(u1, v1)é(uz, v2) - - - C(uk, vi)
iscentral if [u1, v1][uz2, v2] - - - [uk, vi] = 1, whichis easily checked by a direct computation:
{E(u1,v1)Euz, v2) - - - Euge, i) Yo12(F){E(uz, v1)E(uz, v2) - - - Eug, ve)}

= X12([u1, valluz, v2] - - - [ug, vl f)

= x12(f)
and
{e(u1,v1)8(u2, v2) -+ E(ur, vOYR21 ({1, v1)E(u2, v2) - - Sk, v}
= X21(f [k, ug] - - - [v2, uzllv1, ual)
= R21(f{lua, villuz, vl - - - [ug, v} ™)
= x21(f)
foral f € K. Q.E.D.

9. Kpz-groupsand presentations (higher rank)

We supposen > 3. Put Ka(n, K;) = Ker ¢. Then, in general, there exists a canonical
homomorphism of K2(2, K,) into K»(n, K,), which is induced from the following diagram
(cf. [9)):

1 — K22, K;) — St(2,K;) — E(2,K;) —> 1 (exact)
\ \ \
1 — Ka(n,K;) —> St(n,K;) —> E(n,K;) —> 1 (exact)

Since K, is a Euclidean ring, the homomorphism of K2(2, K,;) into K»(n, K,) is surjective
by [5]. Hence, we have the following.

THEOREM 10. Supposen > 3. Let E(n, K,) bethe group generated by x;; ( f) for all
1<i#j<nandf e K, withthe defining relations (A), (B) and (C). Then, E(n, K,)is
isomorphicto E (n, Ky).

On the other hand, by a similar computation appeared in the proof of Proposition 9, we
see that

¢(u, v1)C(uz, v2) - - - C(ug, vi)
iscentral in St (n, K,). Therefore, we obtain the following.
PrROPOSITION 11. Supposen > 3. Then,

Ka(n, Kg) = ( ¢(ug, v1)é(up, v2) - Clug, vp) | k=1,
U1, 1, -y up, vk € Kg's [ug, villug, v2l- - [ug, vl = 1),
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where é(u, v) = h12(u)h12(v)h12(vu) 2, and K2(n, K ;) isa central subgroup of St (n, K,,).

10. Universal central extensions

We first fix four central elements a*, b*, ¢*, d* € K* asfollows. If |F| > 4, then we
choose a* € F* suchthat a*?> — 1 # 0, and put b* = 1/(a**> — 1) € F*. Incaseof |F| < 3,
weseta* = X% € K* and b* = 1/(a*2 — 1) € K*. Furthermore, we choose ¢*, d* € F*
such that

*#£0, *—1#£0, *2—c*+1£0, 3-1#£0

if |[F| > 5, and we definec* = d* = X$ € K> if |F| < 4.

We notethat E (n, K,) is perfect, since

[hij(@®), xij (0" )] = xi;(f)

forl<i# j<nand f € K,. Hence, thereisa(unique up toisomorphism) universal central
extension of E(n, K,). We will establish that St(n, K,;) is a universal central extension of
E(n, K,) foraln > 2. By thesamereason asin case of E(n, K;), we can seethat St (n, K,)
isalso perfect.

Let¢p* : E* — E(n, K,) beacentral extension. For z € E(n, K,), we put

M) ={" e E* | ¢ () =2} =¢" '(2),

and hence, in particular, we have M (1) = Ker ¢*. Then,for1 <i # j <nand f € K;, we
define

xi(f) = [h*, x*] € E*,
where we choose h* € M (h;j(a*)) and x* € M(x;;(b* f)). Thin;f‘j(f) is well-defined by
the so-called central trick. Also we put
wi (u) = x5 ) (—u ™ )
i) = wi (ww;; (=1).
Then we obtain the following.
LEMMA 12, Letl<i # j <n,andlet f € K, andu € K;. Then:
(D) wi@xs(Hwh(—w) = xj;(—u™t fu™),
(@) B xl (OB )™ = x5 fu),
PROOF OF LEMMA 12. By the definition, we have
wi; )x; (HHrwf; (—u) = wi; @A (@), x5 (0" fHlw;; (—u)

= [w}; Whi; (@) wi; (—u), wi; w)x; b fHw}; (—u)]
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1, -1
= [hji(a*), x;‘fl-(—b*u Su=9)]

= x5 (—u" fuh

and
Ry @O (RS )™ = B )l @), x5 0 L )~
= [h; h}; (@)hi; ) ™h b s (0 R )™
= [h};(a"), x}; (b ufu)]
= x;ufu),
which impliesthe lemma Q.E.D.

We suppose (i, j) # (£, k) withl < i # j < n. Fori, j, k, £ andfor f,g € K,;, we
definew (f, 9) = mi jk,e(f, ) by

L (). x5 (@I, (f) L i j =k,
7T(f7 g) = T[i,j,k,ﬂ(f’ g) = [_xl*](f)’ x;ckﬂ(g)]x;:j(_gf)il if i ’

(x5 (), x5 (9)] otherwise.
Then we can show the following (cf. [21]).

LEMMA 13. Let f. /', g. g € Kyand1<i # j <nwith i, j) # (€, k). Then:
V) mijrelf + 19 =mjrefs D jre(fs 9),

@ mijrelfog+9) =mijrelfs Dmijre(fs 9,

Q) mijrelfig) =1,

(4 x5O () = x5(f + 9).

PROOF OF LEMMA 13. To prove (3), we need to show (1) and (2). We will proceed
dividing into three cases.
(Casel) j #k, i # ¢: By thedefinition, we have

w(f+ [ g) = (f 4+ 1), xi(9)]
=[x/ (N5 (), x5 (9)]
= x5 (O (s D T () e ()7
= xS DX @) D (@)™

Xl () ()t

= x5 (O U X (O () () (97
= x5 (NS 9xi(@x () i (7
=n(f, 9 (f’, 9)
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and
m(fog+9) =[x, x50 (g + ¢)]
= [x}5 (/). x5 (9)x7 ()]
= x5 (x5 (D% () i (9 ()t
= x5 (Nxgx(H
(e (e (9 () T hxe () M) ™t
= x5 ()xf (x5 (O T g (). o (@) ()
= x5 (N (@x5 (N (f, ()™
=n(f, n(f.g).
Ifi #kandj # ¢, then
m(b* f. g) = hj;(a®)m (b f. g)h}; (@)™
= hj; (@®)xf; (0" ). xfy (@ @)
=[x/ (@*’b* f). x{,(9)]
= 1(a*’b* f. g)
and
n(f. g) = m(@*?* f —b*f. g)
= n(@?b* f, ) (b* f, 9)
=1.
Ifi =kandj # ¢, then we obtain
7 (f, 9) = h(@d"m(f, gt ")~
— n(d*z, d*g)
and
w(f, 9) = hj;(d*)m(f, ;)™
=nx(d* f,d*g).
Therefore,
a(f.9) =m@d?f.d*g) =n(d"f. g).

whichimpliest((d*3 = 1) f, g) = land 7 (f, g) = 1.
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Ifi £ kand j = ¢, wesimilarly obtain, using the same d*,
7(f,9) =n@d? d* f) =7(@d* g),

which gives 7 ((d*2 — 1) f, g) = Land 7 (f, g) = 1.
Ifi =kand j = ¢, then, by

7 (f, 9) = h(cn(f, phfi (e
= h}; ()X (). x5 (g ()7t
= L (). 3529
=m(c*?f,c*%g),
we obtain
n(fog) =nC*f+1=cNf9)
n(c* f, (L= f, 9)
m(f, 9/ (f, 9/(1—c"))
=7 (f, (g/c*) + (g/(L—c")))
=7r(f, g/{c* (1 ="}
=n(c*1~-c"f9)

and
T(c*?—c*+1)f, g)=1.

Therefore, wereached 7 (f, g) = 1forall f, g € K,. In particular, we notice that
x5 (O)xi(9) = x5 (x5 (f)

fordll<is#j<nandf,geKk,.
Now, we put

T(f. 9) = Tij(f. 9) = x5 (OxS(x (f + )7t
foreachl <i # j <nand f, g € K,;. Then, we have
T(b* f,b*g) = hfj (@) T(b* f,b* )k (@)

= hj; (a®)xf; (0" [)x}:(b* g)x} (b* f + b*g) " hf;(a*) 7t

= [hi; (@), x/; (0" HHlx; " )
[h];(a®), x5 (" 9)1x; (b g)
[} (@), x5 (0" f + b )~ s (b* f + b* )™

= x;; (H)xf; 0" f)xi;(9)x"ij (" g)
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X5 (f 4 ) b f bR )
=1(f, T " f, b g)
and t(f, g) = 1, whichimplies (4). Hence, we see x; (H 1= x5 (= )
(Case2) j =k: Bythedefinitionz(f, g) = [x;"j(f),x;?‘e(g)]x;"e(—fg), we have
T+ f9) = L5+ £ D@ (—(f + )
= x5 (N (x5 (@)xEs (= x5 (= f)x (=)
xfy (= fxf(=f'9)
= x5 (xS (X 5(@)x5 (= X T (=) xfy (— f9)}
X (@] (= X (=9)xiy (= f9)
= x5 (N, OxT (x5 (= HHxf(=x (= f9)
=n(f, Pr(f’, 9)
and we similarly have
T(fog+ ) = DN x5(g + 9HIxf(—f (g + ¢)
= xj5(Nx5(g + 95 (= NHxT(=g — gHx[ (= fg = f9)
= x5 (xS (@ (= f)
s (x5 (@D (= H)xfe(=g)xy (= f9))
X (=@xj (= fg)
= x5 ()X (x5 (= ) (f, ¢)xT (= 9)xiy (= f9)
=n(f, pr(f. ).
On the other hand, we obtain
7 (f. 9) = h; @ (f, g @)™t
= R (@) (), X5 (Ixy (— f b (@)~
=[x} (@2 ). x%,(d* ) Ixy (—d* f g)
— ﬂ(d*zf, d*_lg)
and
w(f. 9) = hiy@)m(f. phfy@H ™"
= hiy (@)x; (), X7 (@x]y (= f 9hi, @t
=[x} (d* ). X7 (d* I}y (—d** f )
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=na(d*f,d"g).
Therefore, we have

7 (f,9) =m(d?f,d*1g) = 7 (@3, g)
and
7@ - 1f 9 =1.
Hence, we just showed n(f, g) = 1foradl f, g € K.
(Case3) i = ¢: Bythedefinition(f, g) = [x;;(f),x,fl.(g)], we can similarly reach
n(f+f.9=rf,9r(f, 9,
n(f,9+9)=n(f,r(f. g).
Using the same d*, we can establish 7w (f, g) = 1foral f, g € K. Q.E.D.

THEOREM 14. Notation isas above. Then, St(n, K,;) isa universal central extension
of E(n, Ky).

PrROOF OF THEOREM 14. Using a given central extension ¢* : E* — E(n, K,),
we constructed the elementh;"j(f) forall <i # j <nand f € K;. The relations

which we obtained above give a homomorphism, called é*, of St(n, K,) into E* such that
*(%ij () = xi(fforall<i# j<nandf €K, This¢* isadesired homomorphism.
Q.E.D.

In case of ¢ = 1, the group structure of K»(n, K,;) has been discussed in terms of Witt
rings(cf. [14], [15]). However, for generd ¢, it might be rather difficult to determine its group
structure.

11. Normalitiesand K1-groups
Since K, isaEuclidean ring, we see
GL(n, K,) = (E(n, K;), D(n, K,))
= (EWn, Ky), Di(n, Ky))

>E(n, Kg),
where
ug 0 .. 0
0 .
D(n,Ky) = "2 Ui, ... up € KS
0



GROUPS DEFINED BY EXTENDED AFFINE LIE ALGEBRAS 371

and D1(n, Kg) = {d() | u € K} with

u O 0
dGn) = 0 1

: . . 0

o ... 0 1

Weput K1(n, Kg) = GL(n, K;)/E(n, K4) asin[9]. Hence, we obtain

Ki(n,K,) = E@, K,)Di(n, K,)/E(n, K,)

~ Di(n, Kg)/(E(n, Kg) N D1(n, Ky)) .
Using our Bruhat decomposition:

Em. Ky = | ) BuwB

wew,
aswell as
X;” 0 0
BwB =UwToU = Uw 0 X'2"2 ToU
: . 0
0 0 X?”

for somew € W and for somemq, mo, ..., m, € ZWithmyi+ma+---+m, = 0, we obtain:

BwB N Di(n, K,) # 0

xX* 0 .. 0
ma
= Uw (_) 42 ToU N D1(n, Ky) # 0
; : .0
0 0 X’Z"n
x,™ 0 .. 0
-
= UNDin, Ky)UTo (_) X2 wl £y
0 0o XxX,™
If we set
K* = K\ {0},
K70 = K[Xz],

K70 = K[X2]X2,
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then we have
0 >0 >0
1+Kq> Kq Kq
0 0
Uc Kq> 1+I(q>
: .. ) k=0
.>0 >0 1 >0
Kq Kq 1+Kq

We suppose BwB N D1(n, K;) # ¥. Then, we take an element x = d(u)xyxoyo With
d(u) € D1(n, Kg), x4 € U, xo € Tp and

X, 0 0
—m2 N
yo = (_) X2
: 0
—mpy
0 0 X2
such that xw=?! liesin U and
m—m 0 m—m 0 m—mp 0
Xy "N+ KO X5 2KqZ X, "MK
X"k X" 1+ K9
WL,
—mp 0
X;"KZ
X;"K 0 X" KO X"+ K0

whereu = tX7' € qu withr €e K*andm € Z. If m; > Oforsome2 < i < n, then
x has an entry with a negative power of X,. Thisis a contradiction. Therefore m; < 0 for
adl 2 <i < n. Inparticular, we have m1 > 0. Now we suppose that as a permutation of
columns w1t takes j to 1. Then2 < wL(k) < nforal 2 < k < nwithk # j. Since
every diagonal entry of x has a nonzero constant term, we havemy = Oforal 2 <k <n
with k # j. Furthermore w~1(k) = k for all such k, which follows from the fact that 1w~ (k)
cannot be not only greater than & but also less than k by checking the positions of 1 + K ;0
and K q>°. Hence, we just falled into two cases, namely the case when w is the transposition
of the 1-st column and the j-th column with j # 1 or the case when w = 1. Suppose that
w = (1, j) isatransposition with 1 # j. Then, wehavetXZ'_’"1(1+Kq>°) quZo #£ () since
the 1-st column is going to the j-th column, which impliesm — m1 > 0. On the other hand,
we have X3 "/ KZ%N (14 Kz # ¢ since the j-th column is going to the 1-st column,
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whichimpliesm — m; < 0. Combining these inequalitiesand m1 + m; = 0, we obtain
m<mj=-m1<0<m1<m,

which leadstom = m1 = m; = 0. However, the 1 4 Kq>° of the j-column can not move to
the 1-st column, since 1 + K9 N K70 = . Thisis acontradiction. Therefore, 1 = 1. We
just proved that BwB N D1(n, K;) # @ impliesw = 1andu € K*, and we also showed

t 0 0
1

BN Di(n,Ky) C 0 te K™
0 0O 1

Thus,
E(n, K4) N D1(n, Ky) = BN Di(n, Ky)
= (U xTo) N D1(n, Ky)
=ToN Di(n, Ky,)
C TN Din, Ky).
SinceT = (hjj(u) |1<i#j<n uecKS)wefindT = (h1j(u) |2<j<n, uecKky)
by the relation h;; (1) = hl,'(zrl)hlj(u). Hence, any element » € T N D1(n, K;) can be
expressed as
h = h1¢,(u1)hae,@2) - - - ha g, (ug)
with2 <£q,..., 8 <nanduy,...,u; € qu satisfying
1_[ u;l =1,
iEAj
whereA; = {i |1 <i <n, {; = jjforeach2 < j < n. Wenote{1,2,...,k} =

A2UA3U---U A, Thenweputs; = [T, u,* By h € Di(n, K,), wesees; = 1forall
2 < j <n.If wewrite

u 0 0

b= 0 1
0
0 0 1

withu € qu , then we obtain

U=ULUD - U} = ULUD -+ - Uk0203 -+ Op .
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Therefore, we can rewrite u as

U= M1M2"'Mkbl,-_ll 1_21”121
With {1, 2, ...k} = {i1, ia, ..., ix}. If i¢ = 1, then putting

1 -1

Ul=M2"'MkM,-_l e Ty
we have

u = [us, vl]vlul.;ll e ”i:l~
If iy = 2, then putting

”22”3"'”k”i_11"'”i_5/1_1’

whereu; * ismissingin case of ¢ < ¢, we have

1 _1
u = [Ml, Ul][l/tz, U2]v2ui(’+1 . ”ik

9

Whereu;zl ismissingin caseof ¢ > ¢'. Continuing thiswefinaly reach

u = [ug, villuz, v2l - - - [ug, vil

forsomewvy, ..., v; € qu. Thus, we have
[KX,KqX] o --- 0
T N Di(n, K,) C 0 !
0
0 0 1

On the other hand, we can see

[u,v] O --- O
0 1 : 1 _
= h12)h12(v)hp( ™t
: .. .. 0
o -~ 0 1

foralu,v e qu, which implies

[KX,KqX] o --- 0
0

=
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Hence, we have
E@m, Ky) N Di(n, Ky) C T N D1(n, Ky)

[KqX,KqX] o --- 0
0 1 :
C

: . . 0
0 0 1

CEm,Ky)NDi(n, Ky)

and
[KX,KqX] o --- 0
E(n,K;) N Di(n, Ky) = 0 1

0
0 0 1

Therefore, we obtain the following.
THEOREM 15. Notation isasabove. Then, we have
Ki(n, Kg) ~ K /K. K]
for all n > 2.

Part I11: Homomor phisms and isomor phisms

We will discuss a relationship between the group & in Part | and the group E in Part 11.
Here we suppose again that F isafield of characteristic O.

12.  Homomor phismsof Lie algebras

Thereisan EALA L suchthatthecore L, = (L, | @ € R*), which isthe subalgebra of
L generated by L, for al « € R*, isauniversal central extension of

fiu frz - fin

sy = | /2 /2 fiL+ frt e+ fun =0
fnfl,n

fnl te fn,nfl fnn
D [F.F ]I

where F, = F[X1, Xo] isaquantum torus over F defined by the relation X2X1 = g X1Xo.
Thatis, L = (s, (F,)®3)®0, wheresl, (F,)®; isauniversa central extension of sl,, (F,) and
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0 gives a certain derivation part, and hence the core L. of L just coincides with sl,,(F;) @ 3.
Therefore, we have the following exact sequence:
0—3— L, i) sl,(Fy) — 0.
Then, we can choose ¢, e—, € L fora € R* satisfying
¥(ea) = X1X5 Eij ,
Viea) = X;" X7 Eji,

wherea = & + mé + {nwitha =¢; —¢; € @t and€,m € Z. Then, fora = (&, m) € &,
we see that each

00
§ = Z Tkea+me+kn € Iy,
k=ko

with r;, € F iscorresponding to some

e¢]

! vk ym
Z n X1 X5 Eij
k=ko

withr; € F. Hence, I, is corresponding to
KXZl E;j.
To establish arelation between Part | and Part 11, from now on, we shall take the core L.
instead of the full Lie algebra L. Even if we select L. and make its completion I:C, then we

use the same notation for groups and group elements. For example, we can define I'y(L.) for
L. inthesameway asin Part |. Then, I'j(L.) is corresponding to

Y X 0 e 0
0 Z?il ri,Xi
sl (Ky) | ri,ri,....rl' €F
0
0 e 0 XX V,'/,Xi
We note that as formal functions we have two bijective maps:
Exp
—>
FI[X1]1X1 1+ FI[X1]1Xa1
Log

<«
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between F[[X1]1X1 and 1 + F[[X1]]1X1. Then the group &(L.) is generated by x,(s) and
xo(s") fordl a € @, andforal s € I',(L.) and s’ € I'j(L.). We note that the same method
works for &(L.). Since the subalgebra L. isinvariant under the action of &, by restriction
thereis anatural homomorphism & — &| i whoseimage &| i contains &(L.).

13.  Homomor phisms of groups

We discussed E(n, K,) as a subgroup of GL(n, K;). Now we need to consider the
center, Z(E(n, K,;)), of E(n, K;). We note that every element of Z(E(n, K;)) must be a
scalar matrix with diagonal entries in the center, Z(K ), of K (cf. Section 14). Usualy
weput PE(n, Ky) = E(n,Ky)/Z(E(n, Ky)) and PGL(n, K;) = GL(n, K;)/Z, where
Z = Z(GL(n,Ky)). Since E(n, Ky) N Z = Z(E(n, Ky)), there is a natura injection of
PE(n, K;) into PGL(n, K;). Then, the notion x mod Z for x € E(n, K;) makes sense
as an element of PE(n, K,). Therefore, there exists a canonical surjective homomorphism,

caled ¥, of &(L,) onto PE(n, K,) with
s
&(L.) — PE(®, K,)

using the above central extension L. i> sl,(F,) and their completions. Hence, mod Z we
obtain the following correspondence:

xa(Iy(Le)) — x4(K) mod  Z;

rn 0 -0 r1, 72, oy T
/ 0
xo(Ig(Le)) —> < o € (L+ FIIX1lIXD), | .
' 0
0O --- 0 rirge o =1
ef o ... 0 f=fXo
0 e . o
) € (F[X1]1X1 N [Ky, K4 D,
S ¢
0O --- 0 ¢&f el = Exp(f)

mod Z;
U, — U, mod Z;
xo(F) —> x4 (FX{X%) mod Z;
we(F*) — wg(F*X{X4) mod Z;
ho(F*) — hg(F*) mod Z;
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0a,i(F*) — ha(F* X} X5)ha(X5)™t mod Z;
ﬂi(ﬁc) —U* mod Z;
To(Le) — Tg=¥(To(Le)) CTo mod Z:
BE(L) — BF = §(B* (L)) c BY mod Z;
N(Le) — N =JOM(L)) CN mod Z;
S(Le) — S mod Z;
Via(Le) — Yiq mod Z.

We note that Z(E(n, K4)) is contained in Tp (cf. Section 14). Using the following Bruhat
decompositions:
6(Le) = | B*LowB*(Le)
weW,
and
PE(n.Ky) = | J B*wB* mod Z,
weW,

we observe the following:

Té =Tp
(*) Bli:B:I:
N =N

modulo Z. To confirm thisin another way, we will check the generators of T;j explicitly. We

need to write down the matrices of the generators of To under the homomorphism . That is,
T, is generated by, modulo Z,

rn 0 ... 0 e 0 .. 0 7 0 ... 0
0 r 0 ef : 0 n :
o | oo | o |
0 0 ry 0 0 e 0 0 t,
X’fl 0 0 qfii o --- 0
0 Xj? : 0 4t :
Lo o | P ¢
0 0 X’fn o --. 0 qen

foral ri,ro,...,rp € (14 F[[X1]1X1) With rira---r, = 1, fordl f € (F[[X1]1X1 N
[K,, Kg]) with e/ = Exp(f), for al t1,12,....1, € F* with rito---1, = 1, for all
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mi,mo,...,m, € Zwithmq1 +mo+---+m, = 0, and for all £4, £, .

means that 7} is generated by, modulo Z,

uz 0O ... 0 gte 0 .. 0
0 u AP and 0 1

: . .0 : .o .0
0 --- 0 u, o -.- 0 1

379

.., ¢, € Z. This

forall us, uz, ..., u, € K*withuquo---u, = 1,foral ¢ e Zandforadl f € (F[[X1]]1X1N

[K4, K41). Then, we obtain
(g%’ |t ez, feFIIXiNX1N[Ky, Kql)
=(qt, /X2 9%" |4 meZ, fgeK, fgeFlIXi)

of (X1 g(g"X1)
_ L
=\7 Lexvrq X0

ef (X1
— 4
“\7 T@xy

=[KX,KqX].

tmelZ, f(X1)ed+ F[[X1]])>

Therefore, T; is generated by, modulo Z,

up 0 -~ 0 v 0 .- 0
0 u and 0O 1

: . .0 .00
0 -~ 0 u, o ... 0 1

tmeZ, f(X1),9(X1) e+ F[[Xl]])>

foral us,uz, ... ,up € K* Withuquo---u, = landforal v e [K}, K;]. Thisleadsto
the fact that T;; coincides with Top modulo Z, which implies a proof of (*) by direct matrix

computation without using Bruhat decompositions.

14. Remarkon Z(E(n, K;))

Let z = (zij) € Z(E(n, Ky)). Then, z commuteswith x;; (f) foral 1 <i # j <n and
foral f e K,, which means that z is a scalar matrix A1 for some nonzero central element
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S qu NZ(K,). Then, we see

A0 ... 0
o 1 . o —(n-1) —(1-2) -1
=M= h12(A Vh23(A ) hn10 (A7)
0 0 1
and
A 0 .- 0
o 1 € Emn. K,).
: . . 0
0o ... 0 1

Therefore, by the same discussion as in Section 11, we have A" € [K qX, K qX]. On the other
hand, by direct calculation, we obtain

(K, KX1C (g) 1+ FI[X1]1X1) € K™

If wewriteA = fX5' forsome f € K* andm € Z, then\" = gX5" € K> withg € K*.
Hence, m = 0, whichimpliesz € Ty, and

Z(E(n,K,)) C To.
In particular, both Bruhat decompositions:
6(Le) = | B*LowB* (L)
weW,
and

PE(n, K,) = U BwB

weW,

are compatible with the homomorphism v, where B = B modulo Z.

15. Isomorphismsof groups

We should confess first that we made some redundant discussion in the previous section.

It might be so usefull to understand an explicit relationship between both groups &(L.) and
PE(n, K,;), but wewill show herethat they are isomorphic.
From the following exact sequence

0—> 3 —> Lo —5 sl,(Fy) —> 0,
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we constructed its completed version:

0— 3 —> Lo L sly(K,) — O,

which is also a central extension of Lie algebras over F. Then, the groups &(L.) and
PE(n, K;) are subgroups of Aut(ic) and Aut(sl,(K,)) respectively. To study both sub-
groups, we need the next lemmas.

LEMMA 16. Notationisasabove. Then,wehave L. = [L., L.].

PrROOF OF LEMMA 16. Thecentral extension v can bereduced to the following skew-
symmetric F-bilinear mapping (cf. [3], [16]):

(-, i Fy xFy— 3,
where 3 is given by
3=Fz5) ® Fzg)
if g isgeneric, that is, ¢ isnot aroot of 1, and
i=(( @ rat)ors
ve(Zv)?
if ¢ issingular, that is, ¢ isaroot of 1 with v asthe minimal positive power satisfying ¢ = 1,

and the definition of the mapping { , } is given by

(XTX2, XX = { izl + 2P if i+ si=r2+s52=0

0 otherwise
if g isgeneric, and
VlZ(()l) + rzz(()z) if ri+s1=r+s=0
1 r1+s1#0
" 2Z§r1)+s1,0) if {r1+s1=0(modv)
ro+s2=0

(XX X1 X7} =
172 r1+s1 =0 (modv)
if $ro+s2#0

ro2 + s2 = 0 (mod v)

r182 — 172 ey
Fo + 52 (r1ts1,r2+s2)

0 otherwise

if g issingular. Then, 5 = ®;ezv [ne (3) and the above explicit construction of 3 imply that
L. isperfect. Infact, for example, we suppose that ¢ is singular, and we take

00

A 1

7= E "iZE,’z,m) IS Fmg(j) .
i=1
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Then we can compute in a standard way

o0 o0

ci . ci . .
(3 e ] = 30 i xp =

i=1 i=1 "

if m # 0, and

oo oo
[Z ci Xy’ Xahg , lehd] =) alX!'X2. X, =2
i=1 i=1

if m = 0. Herewe chooseonea € @ and hy isidentified with itsimage ¥ (hg) by . Hence,
the main infinite sum parts of elements belonging to I,z (3) can be written as elements of

[Le, L.]). We also see that the remaining finite sum parts can be expressed as elements of
[Le, Lel. Q.E.D.
Let

02— 5o

be an exact sequence of Lie algebras with a characteristic ideal Z of £. Then, x induces a
natura group homomorphism, i, of Aut (L) into Aut(L).

LEMMA 17. Notationisasabove. Supposethat £ = [£, £] and Z isthe center of L.
Then, the homomor phism jx isinjective.

PROOF OF LEMMA 17. Let g € Ker it. Then, we notethat for every x € L thereisa
central element z(x) € Z suchthat g(x) = x + z(x). On the other hand, we can express x as

afinite linear combination: Zf?:l[xi, yilwithx;, y; € L, since L = [L, L]. Hence we obtain
g(x) = x by

9([xi, yi) = [g(xi), g(vi)]
= [xi +2(xi), yi + 2yl
= [xi, yil.
Thismeansg = landKer it = 1. Q.E.D.
Then, using these lemmas, we obtain the following.

THEOREM 18. Notation is as above. Then, &(L.) is isomorphicto PE(n, K,). In
particular, St(n, K,;) isauniversal central extension of Q5(ic).
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