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Abstract. After certain completions, we define adjoint groups of extended affine Lie algebras with nullity 2.
Then we show that such groups have Tits systems with affine Weyl groups (Part I). This idea allows us to consider
linear groups over some completed quantum tori. By the same argument, we can prove that these linear groups also
have Tits systems with affine Weyl groups. Using this fact we will study their universal central extensions as well as
associated K1-groups and K2-groups (Part II). We will discuss some relationship among our groups constructed here
(Part III).

1. Introduction

The classification theory of finite dimensional complex semisimple Lie groups was com-
pleted by W. Killing and E. Cartan in the early 20th. It was a very important observation
that the classification of finite dimensional complex semisimple Lie groups can be reduced to
classify finite dimensional complex semisimple Lie algebras, which is equivalent to classify
(finite) reduced root systems. Then, finally such root systems can be described completely in
terms of Dynkin diagrams or Cartan matrices (cf. [4]).

Around 1967, a new idea was born. That is, V. Kac and R. Moody independently discov-
ered that there exists a natural and very important generalization of the above theory. They
gave the definition of generalized Cartan matrices, and constructed the associated Lie algebras
(cf. [8], [10]), and they developed the so-called Kac-Moody (Lie algebra) theory. In general,
Kac-Moody Lie algebras can be infinite dimensional. Then, the corresponding groups and
root systems were studied systematically (cf. [6], [8], [10], [17], [14]).

In this Kac-Moody theory, there is the most important class called affine Lie algebras
and associated groups. Here we sometimes include loop algebras and loop groups as a rough
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explanation. Then many applications are found to other areas in mathematics as well as in
mathematical physics. In 1990, two physicists named R. Høegh-Krohn and B. Toresani in-
troduced a new generalization of affine Lie algebras. Such new Lie algebras were originally
called quasi-simple Lie algebras. Later, five mathematicians (AABGP) arranged and devel-
oped the theory of those new Lie algebras (cf. [2]). Now they are called extended affine Lie
algebras. However, the corresponding groups have not yet considered systematically in group
theory.

Each extended affine Lie algebra has its nullity. For example, affine Lie algebras have
nullity 1. Roughly saying, the nullity is the rank of the lattice generated by imaginary roots or
isotropic roots. Then, it is a very important open problem to study the groups corresponding
to extended affine Lie algebras with nullity ≥ 2. Again roughly speaking, such Lie algebras
have the structure similar to loop algebras with many variables. Then, the corresponding
groups look like loop groups with many variables. Those groups are generally rather difficult
to study in some sense.

On the other hand, linear groups over several fields and rings have been studied (cf. [1],
[5], [6], [7], [9], [12], [13], [15], [21]). Then, these groups can sometimes be considered
using the associated K-theory. Also, it is very natural to consider linear groups over quantum
tori, since linear Lie algebras over quantum tori can appear as some homomorphic images
of extended affine Lie algebras, more precisely their derived subalgebras. The idea of our
approach here comes from this point of view.

In this paper, we assume that the nullity is 2, and we need some kind of completion.
Extended affine Lie algebras with nullity 2 are theoretically corresponding to elliptic Lie al-
gebras, and our completion is essentially corresponding to K. Saito’s marking for his extended
affine root systems (cf. [19]). Here, we make a completion of the corresponding groups, and
we study them. In fact, we will obtain Bruhat type decompositions, and using such decom-
positions we will establish group presentations and universal central extensions as well as the
structures of the corresponding K1-groups andK2-groups.

One may expect, in the next step, some structure theory without completions. Also, one
may want to study the higher nullity case. At this moment, it seems to be rather difficult. To
do so, we might need another new idea. It is our dream in a future.

We will discuss the groups corresponding to extended affine Lie algebras in Part I. Then,
we will study some linear groups over quantum tori and their universal central extensions in
Part II. Finally, in Part III we will deal with the relation between the results in Part I and Part
II.

Now we can draw the following picture in terms of Lie algebras.
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Kac-Moody
Lie Algebras

↗
Affine Lie Algebras
Loop Algebras

→ Linear Lie Algebras
over Coordinate Rings

⊃
Linear Lie Algebras
over Quantum Tori
with 2 Variables

↘
Extended Affine
Lie Algebras

⊃ Some EALA with
Nullity 2

Here, we will study the group version of this picture. That is, we will study some groups
defined by extended affine Lie algebras with nullity 2 as well as some linear groups over
quantum tori, and discuss the relationship among them.

In the above picture, one can find three kinds of topics as further development after affine
Lie algebras or loop algebras: namely one is the theory of Kac-Moody Lie algebras, another
is the theory of linear Lie algebras over rings, and the third is the theory of extended affine
Lie algebras. All of them are very interesting and important in Lie theory. There might be a
hidden new observation.

Part I: EALA Groups

We make a completion of some extended affine Lie algebra with nullity 2, and construct
and study the associated adjoint group. We suppose here that a field F is of characteristic 0.

1. Extended affine Lie algebras

Let L be an extended affine Lie algebra over a field, F , of characteristic 0, which is
studied in [2], [17], [18], for example, and called an EALA sometimes. That is:

(EALA1) L has a nondegenerate symmetric invariant bilinear form

b : L× L −→ F ,

(EALA2) L has a finite dimensional toral subalgebra H , consisting of diagonalizable
elements under the adjoint representation, with H �= 0 and CL(H) = H ,

(EALA3) adL(x) is locally nilpotent for all x ∈ Lα with α ∈ R×,
where R× is the set of nonisotropic roots of the root system R defined by (L,H), and where
Lα is the root subspace of L corresponding to α,

(EALA4) L is irreducible (in terms of the root system R).
We let Z denote the ring of rational integers, and Q the field of rational numbers. The

multiplicative group of F is denoted by F×, namely F× = F \{0}. The definition of extended
affine Lie algebras gives a natural generalization of affine Lie algebras (cf. [8], [10]). For each
α ∈ R×, let σα ∈ GL(H ∗) be the reflection defined by σα(µ) = µ−µ(hα)α for all µ ∈ H ∗,
where hα is the coroot of α ∈ R× defined by hα = 2tα/b(tα, tα) with tα ∈ H satisfying
b(h, tα) = α(h) for all h ∈ H . Then the Weyl group W is defined to be the subgroup of
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GL(H ∗) generated by σα for all α ∈ R×, that is, W = W(R) = 〈 σα | α ∈ R× 〉. Let V be

the Q-span of R, and V0 the Q-span of R0, where R0 = R \ R× is the set of isotropic roots
of R. Then the famous Kac-conjecture says that the induced bilinear form on V is positive
semi-definite after a certain neccessary scalar modification (cf. [2], [17]) and V0 is its radical.
Furthermore, the image R̄× of R× in V̄ = V/V0 is a (not neccessarily reduced) finite root

system (cf. [2], [4]). We choose a complete set, Φ, of representatives of R̄× in R×. In this
note, we suppose the following three conditions (ASS1) – (ASS3).

Assumption.
(ASS1) R0 = Zξ ⊕ Zη for some nonzero ξ, η ∈ R0.
(ASS2) R× = Φ + (Zξ ⊕ Zη).
(ASS3) Φ is a reduced (irreducible finite) root system.

2. Completed adjoint groups

We shall consider, as a formal infinite sum,

∞∑
i=k

sα+iη ,

where α ∈ R and sα+iη ∈ Lα+iη. We put Φa = Φ + Zξ . For a = α̇ +mξ ∈ Φa with α̇ ∈ Φ
and m ∈ Z, we put Γa = {∑∞i=k sa+iη | k ∈ Z, sa+iη ∈ La+iη}, and for m ∈ Z we put

Γmξ = {∑∞i=k smξ+iη | k ∈ Z, smξ+iη ∈ Lmξ+iη}. Then we define

L̂ =
( ⊕
a∈Φa

Γa

)
⊕

( ⊕
m∈Z

Γmξ

)
,

which naturally becomes a Lie algebra and is called the completion of L along with η. Also
we put Γ ′0 = {

∑∞
i=1 siη | siη ∈ Liη}. For each s ∈ Γa we define

xa(s) = exp ad(s) ∈ Aut(L̂) ,

and for each s′ ∈ Γ ′0 we define

x0(s
′) = exp ad(s′) ∈ Aut(L̂) .

Then we can construct G to be the subgroup of Aut(L̂) generated by xa(s) and x0(s
′) for

all a ∈ Φa and for all s ∈ Γa and s′ ∈ Γ ′0. One may symbolically call G an EALG or
an EALA group, otherwise one may call it the completed adjoint group defined by L. Let
Wa (= W(Φa) = Wa(Φ)) be the subgroup ofW(R) generated by σa for all a ∈ Φa , and then
Wa is called the affine Weyl group of Φ or the Weyl group of Φa (cf. [4], [17]).
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3. Some relations

We fix a simple system Π of Φ, and we let denote by Φ+ (resp. Φ−) the set of positive
(resp. negative) roots ofΦ with respect toΠ . Then we putΦ+a = (Φ++Z≥0ξ)∪(Φ−+Z>0ξ)

andΦ−a = (Φ++Z<0ξ)∪(Φ−+Z≤0ξ), and we setΠa = {α̇, −α̇0+ξ | α̇ ∈ Π}, where α̇0 is
the highest root of Φ relative to Π . For a = α̇+mξ ∈ Φa , we define Ua = 〈 xa(s) | s ∈ Γa〉.
For {±α} ⊂ R×, we choose elements eα ∈ Lα and e−α ∈ L−α such that {eα, hα, e−α} is an
sl2-triplet with [eα, e−α] = hα and [hα, e±α] = ±2e±α. If α ∈ R×, then Lα = Feα , since
dim Lα = 1. For α ∈ R× and for r ∈ F and t ∈ F×, we put

xα(r) = exp ad(reα) ,

wα(t) = xα(t)x−α(−t−1)xα(t) ,

hα(t) = wα(t)wα(−1) .

Then we have the following standard relations (cf. [2], [10], [21]):

(R1) wα(t)xβ(r)wα(−t) = xσαβ(ηαβt−β(hα)r),
(R2) wα(t)wβ(u)wα(−t) = wσαβ(ηαβt−β(hα)u),
(R3) wα(t)hβ(u)wα(−t) = hσαβ(u),
(R4) hα(t)xβ(r)hα(t)

−1 = xβ(tβ(hα)r),
(R5) hα(t)wβ(u)hα(t)

−1 = wβ(tβ(hα)u),
(R6) hα(t)hβ(u)hα(t)

−1 = hβ(u),
(R7) wα(t)xa(s)wα(−t) = xσαa(v),
(R8) wα(t)x0(s

′)wα(−t) = x0(v
′)

for all α, β ∈ R×, r ∈ F , t, u ∈ F×, a ∈ Φa , s ∈ Γa and s′ ∈ Γ ′0. Herewα(1)(eβ) = ηαβeσαβ
with ηαβ ∈ F×, and wα(t)(s) = v ∈ Γσαa and wα(t)(s′) = v′ ∈ Γ ′0.

4. Subgroups and Tits systems

For a ∈ Φa , i ∈ Z and t ∈ F×, we set

θa,i(t) = wa+iη(t)wa(−1) .

Then, we define

U± = 〈 Ua | a ∈ Φ±a 〉 ,
T0 = 〈 hα(t), θa,i(t), x0(s

′) |
α ∈ R×, t ∈ F× , a ∈ Φa, i ∈ Z, s′ ∈ Γ ′0〉 ,

B± = 〈 T0,U
±〉 ,

N = 〈 wa(t), T0 | a ∈ Φa, t ∈ F×〉
= 〈 wα(t), x0(s

′) | α ∈ R×, t ∈ F×, s′ ∈ Γ ′0〉 ,
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S = {wa(1) mod T0 | a ∈ Πa} .
Sometimes we identify S with {wa(1) | a ∈ Πa}. Also we put

Y±a = 〈 x±a(r)Ubx±a(−r) | b ∈ Φ±a \ {±a}, r ∈ F 〉
for each a ∈ Πa . Then we obtain the following (cf. [2], [7], [21]).

(Q1) wa(t)Ubwa(−t) = Uσa(b) for all a, b ∈ Φa and t ∈ F×:
this follows from the standard relations among the xα(r), wα(t) and hα(t).

(Q2) T0 normalizes Ua and T0Ua = UaT0 for all a ∈ Φa :
by the definitions of Ua and T0 together with (Q1), this can be obtained.

(Q3) B± = U±T0 = T0U
±, U± �B±:

by (Q2), we find that U± is normalized by T0, which implies that U± is a normal subgroup of
B±, hence B± is a product of both U± and T0.

(Q4) B± ∩N = T0 �N and N/T0 � Wa :
by the standard relations among the xα(r), wα(t) and hα(t), we have that T0 is normal in N.
Considering the action of N on the set Ω = {Γa | a ∈ Φa}, there is a natural homomorphism
of N onto Wa , and T0 acts on Ω trivially. Hence, it induces a homomorphism of N/T0 onto
Wa . On the other hand, the fact that Wa is a Coxeter group implies that N/T0 is isomorphic
to Wa . By the definitions of B± and N, we see B± ∩N ⊃ T0. If x ∈ B± ∩N, then x must
stabilize Ω± = {Γa | a ∈ Φ±a } and x̄ ∈ N/T0 is corresponding to 1 ∈ Wa . This means that
x ∈ T0, which shows that B± ∩N coincides with T0.

(Q5) Y±a � U± and U± = Y±aU±a = U±aY±a for all a ∈ Φa :
we see that Y±a is a normal subgroup of U by the definition of Y±a , which leads to the fact
that U± is a product of Y±a and U±a .

(Q6) w±a(t)Y±aw±a(−t) = Y±a for all a ∈ Πa and t ∈ F×:
this can be established (cf. [1], [6]).

Hence, using the standard argument, we can show the following theorem.

THEOREM 1. Notation is as above. Then, (G,B±,N,S) is a Tits system with the
corresponding affine Weyl group Wa .

PROOF OF THEOREM 1. We will show our result in case of B. For B−, the proof can
similarly be given. It is easy to show that G is generated by B and N, and the above (Q4) says
that T0 is a normal subgroup of N with B ∩ N = T0 and N/T0 is isomorphic to the affine
Weyl group,Wa , of Φ (cf. [4], [17], [12]). Also by (Q3) one can obtain that B is a product of
U and T0 satisfying that U is a normal subgroup of B. The main part of the proof should be
to prove:

wa(1)Bwa(−1) ⊂ B ∪Bwa(1)B

for all a ∈ Πa . Since wa(1)Bwa(−1) ⊂ U−aB, which can be established as in the standard
method using (Q1) – (Q6), as in [1], [6], [7], [21], it is enough to show

U−a ⊂ B ∪Bwa(1)B .
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Let x ∈ U−a . If x = 1, then x is in B. We suppose x �= 1. Then, we can write x = x−a(s)
for some s =∑∞

i=k s−a+iη ∈ Γ−a with s−a+kη = te−a+kη �= 0 for some t ∈ F×. Then there
is a suitable element s′ ∈ Γ ′0 such that

x0(s
′)(s−a+kη) = x0(s

′)(te−a+kη) = s .
Hence, we obtain

x = x−a(s)
= x0(s

′)x−a+kη(t)x0(−s′)
= x0(s

′)xa−kη(t−1)wa−kη(−t−1)xa−kη(t−1)x0(−s′)
= x0(s

′)xa−kη(t−1)(wa−kη(−t−1)wa(−1))wa(1)xa−kη(t−1)x0(−s′)
= x0(s

′)xa−kη(t−1)θa,−k(−t−1)wa(1)xa−kη(t−1)x0(−s′)
∈ T0UaT0wa(1)UaT0

⊂ Bwa(1)B .

Other remaining part of the proof can also be established easily. Q.E.D.

COROLLARY. Notation is as above. Then, we have:
(1) G =⋃

w∈Wa B±wB± (Bruhat decomposition),

(2) G =⋃
w∈Wa B±wB∓ (Birkhaff decomposition),

(3) G = U±U∓T0U
± (Gauss decomposition).

Part II: Groups over Quantum Tori

As a typical example, we can take a certain central extension of sln over a quantum torus
with some derivation part. Our idea in Part I can be applied to this example, which allows us
to consider, in a similar way, a linear group defined by sln over a quantum torus. According
to the story of Part I, one may expect to discuss several subgroups of PGLn. However here
we will choose and study GLn instead of PGLn. One can argue about PGLn in the same
way as in case of GLn. Here we suppose that F is a field of any characteristic.

5. Completed quantum tori

Let F be a field (of any characteristic). We fix an element q of F×. Let K = F((X1))

be the field of the formal power series in X1 over F , that is,

K =
{ ∞∑
j=m

ajX
j

1

∣∣∣∣m ∈ Z, aj ∈ F
}
,
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and let Kq = K[X2,X
−1
2 ] be the (not necessarily commutative) ring of Laurent polynomials

in X2 over K with X2X1 = qX1X2, that is,

Kq =
{ �∑
i=k

ai(X1)X
i
2

∣∣∣∣ k, � ∈ Z, k ≤ �, ai(X1) ∈ K
}
.

We call Kq the completed quantum torus associated with q ∈ F×. If a(X1) ∈ K and i ∈ Z,

then we have Xi2 a(X1) = a(qiX1) X
i
2. In general, we obtain

( �1∑
i=k1

ai(X1)X
i
2

)( �2∑
j=k2

bj (X1)X
j
2

)
=

�1∑
i=k1

�2∑
j=k2

ai(X1)bj (q
iX1)X

i+j
2

=
�1+�2∑

m=k1+k2

(m−k2∑
i=k1

ai(X1)bm−i(qiX1)

)
Xm2 .

Using the spread of degrees in X2, we find that Kq is a Euclidean ring and that Kq has no
(nonzero) zero-divisor.

6. General linear groups and Tits systems

Let M(n,Kq) be the ring of n × n matrices whose entries are in Kq , and we set

GL(n,Kq) = M(n,Kq)×, the multiplicative group of M(n,Kq).
Let Φ = {εi − εj | 1 ≤ i �= j ≤ n} be a root system of type An−1 in the sense of

[4], where the εi are an orthonormal basis of a certain Euclidean space with an inner product
(·, ·), and let Π = {α̇1, . . . , α̇n−1} be a simple system of Φ, where α̇i = εi − εi+1. We put
Φ+ = {α̇i + α̇i+1+· · ·+ α̇j | 1 ≤ i ≤ j ≤ n−1}, the set of positive roots, andΦ− = −Φ+,

the set of negative roots, and hence Φ = Φ+ ∪ Φ−. Then α0 = α̇1 + α̇2 + · · · + α̇n−1 is
the highest root of Φ with respect to Π . The associated abstruct affine (real) root system is
defined by Φa = Φ ×Z. As simple roots, we choose a1 = (α1, 0), a2 = (α2, 0), . . . , an−1 =
(αn−1, 0), an = (−α0, 1), that is, Πa = {a1, a2, . . . , an} is a simple system of Φa . Let
Φ+a = (Φ+ × Z≥0) ∪ (Φ− × Z>0) and Φ−a = (Φ+ × Z<0) ∪ (Φ− × Z≤0), which are called
positive roots and negative roots of Φa respectively. For each α̇ ∈ Φ, we define

eα̇ =
{
Ei,j+1 if α̇ = α̇i + α̇i+1 + · · · + α̇j ,
Ej+1,i if α̇ = −(α̇i + α̇i+1 + · · · + α̇j ) ,

whereEij is the matrix unit with 1 in the (i, j) position and 0 elsewhere. For α̇ = εi−εj ∈ Φ
and f ∈ Kq , we put

xα̇(f ) = xij (f ) = I + f eα̇ ,
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where I = E11 + E22 + · · · + Enn is the identity matrix. Then the elementary subgroup
E(n,Kq) is defined to be the subgroup of GL(n,Kq) generated by xα̇(f ) for all α̇ ∈ Φ and
f ∈ Kq .

In a standard way, the Weyl group Ẇ of Φ is generated by σα̇ for all α̇ ∈ Φ, where σα̇ is
the reflection along with α̇. Then the associated affine Weyl group Wa is generated by σa for
all a = (α̇,m) ∈ Φa , where

σa(b) =
(
σα̇β̇, �− 2(α̇, β̇)

(α̇, α̇)
m

)

for a = (α̇,m), b = (β̇, �) ∈ Φa . We call Wa (= Wa(Φ) = W(Φa)) the affine Weyl group
of Φ or the Weyl group of Φa . Usually Φ is identified with Φ × {0} in Φa .

For a = (α̇,m) ∈ Φa , r ∈ K and t ∈ K×, we define

xa(r) = xα̇(rXm2 ) ,
wa(t) = xa(t)x−a(−t−1)xa(t) ,

ha(t) = wa(t)wa(−1) .

Then we put

E = E(n,Kq) ,
Ua = 〈xa(r) | r ∈ K〉 ,
U± = 〈Ua | a ∈ Φ±a 〉 ,
T = 〈ha(t) | a ∈ Φa, t ∈ K×〉 ,
N = 〈wa(t) | a ∈ Φa, t ∈ K×〉 .

If h ∈ T is expressed as

h =



u1 0 · · · 0
0 u2 · · · 0
...

...
. . .

...

0 0 · · · un




with u, . . . , un ∈ K×q , then we define, for each i = 1, . . . , n,

degi (h) = deg(ui) = mi ,
where ui = tiXmi2 with ti ∈ K× and mi ∈ Z, Then we set:

T0 = 〈h | h ∈ T , degi (h) = 0 for all i = 1, . . . , n〉 ,
B± = 〈U±, T0〉 ,
S = {wa(1) mod T0 | a ∈ Πa} .



356 JUN MORITA AND HIDEYUKI SAKAGUCHI

Sometimes we identify S with {wa(1) | a ∈ Πa}. As one can imagine, we will establish the
following result.

THEOREM 2. Notation is as above. Then, (E,B±, N, S) is a Tits system with the
corresponding affine Weyl group Wa .

The proof is essentially the same as in [12]. The only difference is that our ring Kq is
not necessarily commutative. Hence, we sometimes need special relations in our group E in
the noncommutative case. For example,

(A) xα̇(f ) xα̇(g) = xα̇(f + g) ,

(B) [xα̇(f ), xβ̇(g)] =



xα̇+β̇ (f g) if α̇ + β̇ ∈ Φ, j = k ,
xα̇+β̇ (−gf ) if α̇ + β̇ ∈ Φ, i = � ,
1 otherwise ,

where f, g ∈ Kq and α̇, β̇ ∈ Φ satisfying that α̇ = εi − εj , β̇ = εk − ε� and α̇ + β̇ �= 0.
Furthermore, we put

wα̇(u) = xα̇(u)x−α̇(−u−1)xα̇(u) ,

hα̇(u) = wα̇(u)wα̇(−1)

for each u ∈ K×q . Then, we obtain:

(P1) wα̇(u)
−1 = wα̇(−u), wα̇(u) = w−α̇(−u−1) ,

(P2)




wα̇(u)x±α̇(f )wα̇(−u) = x∓α̇(−u∓1fu∓1) ,

wα̇(u)xβ̇(f )wα̇(−u) = xβ̇(f )
if (α̇, β̇) = 0 ,

wα̇(u)xβ̇(f )wα̇(−u) = xσα̇β̇ (uf )
if α̇ ± β̇ �= 0 , j = k ,

wα̇(u)xβ̇(f )wα̇(−u) = xσα̇β̇ (−fu)
if α̇ ± β̇ �= 0 , i = � ,

wα̇(u)xβ̇(f )wα̇(−u) = xσα̇β̇ (−u−1f )

if α̇ ± β̇ �= 0 , i = k ,
wα̇(u)xβ̇(f )wα̇(−u) = xσα̇β̇ (f u−1)

if α̇ ± β̇ �= 0 , j = � ,
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(P3)




wα̇(u)w±α̇(v)wα̇(−u) = w∓α̇(−u∓1vu∓1) ,

wα̇(u)wβ̇(v)wα̇(−u) = wβ̇(v)
if (α̇, β̇) = 0 ,

wα̇(u)wβ̇(v)wα̇(−u) = wσα̇β̇ (uv)
if α̇ ± β̇ �= 0 , j = k ,

wα̇(u)wβ̇(v)wα̇(−u) = wσα̇β̇ (−vu)
if α̇ ± β̇ �= 0 , i = � ,

wα̇(u)wβ̇(v)wα̇(−u) = wσα̇β̇ (−u−1v)

if α̇ ± β̇ �= 0 , i = k ,
wα̇(u)wβ̇(v)wα̇(−u) = wσα̇β̇ (vu−1)

if α̇ ± β̇ �= 0 , j = � ,
(P4) hα̇(u) = h−α̇ (u−1) = h−α̇(u)−1,

(P5)




wα̇(u)h±α̇(v)wα̇(−u) = h∓α̇ (u∓1vu∓1)h∓α̇(u±2) ,

wα̇(u)hβ̇(v)wα̇(−u) = hβ̇(v)
if (α̇, β̇) = 0 ,

wα̇(u)hβ̇(v)wα̇(−u) = hσα̇β̇ (uv)hσα̇ β̇ (u−1)

if α̇ ± β̇ �= 0 , j = k ,
wα̇(u)hβ̇(v)wα̇(−u) = hσα̇β̇ (vu)hσα̇ β̇ (u−1)

if α̇ ± β̇ �= 0 , i = � ,
wα̇(u)hβ̇(v)wα̇(−u) = hσα̇β̇ (u−1v)hσα̇ β̇ (u)

if α̇ ± β̇ �= 0 , i = k ,
wα̇(u)hβ̇(v)wα̇(−u) = hσα̇β̇ (vu−1)hσα̇β̇ (u)

if α̇ ± β̇ �= 0 , j = � ,

(P6)




hα̇(u)x±α̇(f )hα̇(u)−1 = x±α̇(u±1f u±1) ,

hα̇(u)xβ̇(f )hα̇(u)
−1 = xβ̇(f )

if (α̇, β̇) = 0 ,

hα̇(u)xβ̇(f )hα̇(u)
−1 = xβ̇(u−1f )

if α̇ ± β̇ �= 0 , j = k ,
hα̇(u)xβ̇(f )hα̇(u)

−1 = xβ̇(f u−1)

if α̇ ± β̇ �= 0 , i = � ,
hα̇(u)xβ̇(f )hα̇(u)

−1 = xβ̇(uf )
if α̇ ± β̇ �= 0 , i = k ,

hα̇(u)xβ̇(f )hα̇(u)
−1 = xβ̇(f u)

if α̇ ± β̇ �= 0 , j = � ,
for all α̇, β̇ ∈ Φ, and for all f ∈ Kq and u, v ∈ K×q , where α̇ and β̇ are written as
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α̇ = εi − εj and β̇ = εk − ε� .
As a special case, we have the following relation:

(B)′ wα̇(u)xα̇(f )wα̇(−u) = x−α̇(−u−1f u−1)

for all α̇ ∈ Φ and for all f ∈ Kq and u ∈ K×q . Then, using those relations, we can establish

the following lemma (cf. [1], [7], [12]).

LEMMA 3. Notation is as above. Then:
(1) B± = U± � T0.
(2) T �N and T0 �N .
(3) B± ∩N = T0.
(4) N/T0 � Wa .
(5) (N/T0, S) is a Coxeter system.

For our purpose, we need a little bit more explicit discussion. Put

Y±a = 〈x±a(r)Ubx±a(−r) | r ∈ K, b ∈ Φ±a \ {±a}〉
for each a ∈ Πa . Then, we obtain the following (cf. [1], [7], [10]).

PROPOSITION 4. Let a ∈ Πa . Then:
(1) U± = Y±a � U±a .
(2) w±a(t)Y±aw±a(−t) = Y±a for all t ∈ K×.
(3) B± ∪ B±wa(1)B± is a subgroup.
(4) sB±s �⊂ B± for all s ∈ S.

Hence, it is easy now to establish Theorem 2 in a standard way.

PROOF OF THEOREM 2. We should check the axiom of “Tits System.” We will con-
sider the case of B. We can easily confirm that E is generated by B and N . By Lemma 3
(2) and (3), we see B ∩ N = T0 � N . By Lemma 3 (5), we can find Wa = N/T0 = 〈S〉.
For w ∈ Wa , we define the length l(w) of w with respect to S as usual. If w ∈ Wa and
s = wa(1) ∈ S with l(w) < l(sw), then w(a) ∈ Φ+ and

wBs = wUaYaT0s

= (wUaw−1)ws(s−1Yas)(s
−1T0s)

= Uw(a)wsYaT0

⊂ BwsB .
If w ∈ Wa and s = wa(1) ∈ S with l(ws) < l(w), then w(a) ∈ Φ−a . Put w′ = ws. Then
l(w′) < l(w′′s) and

wBs = w′sBs
⊂ w′(B ∪ BsB)
= w′B ∪ w′BsB
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⊂ w′B ∪ Bw′sB
⊂ BwsB ∪ BwB .

In any case, we obtain

wBs ⊂ BwsB ∪ BwB .
By Proposition 4 (4), we have sBs �⊂ B for all s ∈ S. Q.E.D.

COROLLARY. Notation is as above. Then, we have:
(1) E =⋃

w∈Wa B
±wB± (Bruhat decomposition),

(2) E =⋃
w∈Wa B

∓wB± (Birkhoff decomposition),

(3) E = U±U∓T0U
± (Gauss decomposition).

7. Steinberg groups

Let St (n,Kq) be the Steinberg group of type (An−1) over Kq , which is defined by the
generators

x̂ij (f )

for all 1 ≤ i �= j ≤ n and f ∈ Kq and the defining relations

(A) x̂ij (f )x̂ij (g) = x̂ij (f + g)

(B)
[
x̂ij (f ), x̂k�(g)

] =


x̂i�(f g) if j = k ,
x̂kj (−gf ) if i = � ,
1 otherwise

for all 1 ≤ i �= j ≤ n and 1 ≤ k �= � ≤ n with (i, j) �= (�, k), and for all f, g ∈ Kq . Exactly
this definition is valid for n ≥ 3. If n = 2, then we should replace (B) by the following (B)′ :

(B)′ ŵij (u)x̂ij (f )ŵij (−u) = x̂j i(−u−1f u−1)

for all i, j with {i, j } = {1, 2} and for all f ∈ Kq and u ∈ K×q , where

ŵij (u) = x̂ij (u)x̂ji(−u−1)x̂ij (u) .

Then, there is a natural homomorphism of φ of St (n,Kq) onto E(n,Kq) with φ(x̂ij (f )) =
xij (f ) for all 1 ≤ i �= j ≤ n and f ∈ Kq . Similarly we put

ĥij (u) = ŵij (u)ŵij (−1) .

We note that (B)′ holds in St (n,Kq) for n ≥ 3. In fact, if we choose an index k different from
i, j , then

ŵij (u)x̂ij (f )ŵij (−u)
= x̂ij (u)x̂ji(−u−1)x̂ij (u)[x̂ik(1), x̂kj (f )]x̂ij (−u)x̂ji(u−1)x̂ij (−u)
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= x̂ij (u)x̂ji(−u−1)[x̂ik(1), x̂kj (f )]x̂j i(u−1)x̂ij (−u)
= x̂ij (u)[x̂jk(−u−1)x̂ik(1), x̂ki(f u−1)x̂kj (f )]x̂ij (−u)
= [x̂ik(−1)x̂jk(−u−1)x̂ik(1), x̂kj (−f )x̂ki(f u−1)x̂kj (f )]
= [x̂jk(−u−1), x̂ki(f u

−1)]
= x̂j i(−u−1f u−1) .

Here we also use the same idea of notation:

x̂α̇(f ) = x̂ij (f ) , ŵα̇(u) = ŵij (u) , ĥα̇(u) = ĥij (u)
if α̇ = εi − εj ∈ Φ. Then, in St (n,Kq) we observe the relations (P̂1) – (P̂6) similar to (P1)

– (P6), where x, w, h should be changed into x̂, ŵ, ĥ respectively. More precisely we need
to change a little bit, namely:

(P̂4) ĥα̇(u) = ĥ−α̇(u)−1 ,
and

(P̂5)




ŵα̇(u)ĥ±α̇(v)ŵα̇(−u) = ĥ∓α̇(−u∓1vu∓1)ĥ∓α̇(−u∓2)−1,

ŵα̇(u)ĥβ̇ (v)ŵα̇(−u) = ĥβ̇ (v)
if (α̇, β̇) = 0 ,

ŵα̇(u)ĥβ̇ (v)ŵα̇(−u) = ĥσα̇β̇ (uv)ĥσα̇ β̇ (u)−1

if α̇ ± β̇ �= 0 , j = k ,
ŵα̇(u)ĥβ̇ (v)ŵα̇(−u) = ĥσα̇β̇ (−vu)ĥσα̇ β̇ (−u)−1

if α̇ ± β̇ �= 0 , i = � ,
ŵα̇(u)ĥβ̇ (v)ŵα̇(−u) = ĥσα̇β̇ (−u−1v)ĥσα̇ β̇ (−u−1)−1

if α̇ ± β̇ �= 0 , i = k ,
ŵα̇(u)ĥβ̇ (v)ŵα̇(−u) = ĥσα̇β̇ (vu−1)ĥσα̇β̇ (u

−1)−1

if α̇ ± β̇ �= 0 , j = � ,
which are slightly different from (P4) and (P5).

Now we define the subgroups named N̂ and T̂ of St (n,Kq) by

N̂ = 〈ŵα̇(u) | α̇ ∈ Φ, u ∈ K×q 〉 ,
T̂ = 〈ĥα̇(u) | α̇ ∈ Φ, u ∈ K×q 〉 .

Then we put

T̂0 = 〈ĥ ∈ T̂ | degi (φ(ĥ)) = 0 for all i = 1, . . . , n〉 .
Then we shall define:

Ûa = 〈x̂α̇(rXm2 ) | r ∈ K〉 for a = (α̇,m) ∈ Φa ,
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Û± = 〈Ûa | a ∈ Φ±a 〉 ,
B̂± = 〈Û±, T̂0〉 ,
Ŝ = {ŵa(1) mod T̂0 | a ∈ Πa} .

Then, similarly we can show the following (cf. Lemma 3, [13]).

LEMMA 5. Notation is as above. Then:
(1) Û± � B̂± = Û±T̂0.

(2) T̂ � N̂ and T̂0 � N̂ .

(3) B̂± ∩ N̂ = T̂0.

(4) N̂/T̂0 � Wa .

(5) (N̂/T̂0, Ŝ) is a Coxeter system.

We put Ŷ±a = 〈xÛbx−1 | x ∈ Û±a, b ∈ Φ±a \ {±a}〉 for each a ∈ Πa . Then, we obtain
the following (cf. [1], [12], [21]).

PROPOSITION 6. Let a ∈ Πa . Then:
(1) Ŷ±a � Û± = Ŷ±aÛ±a .

(2) ŵ±a(t)Ŷ±aŵ±a(−t) = Ŷ±a for all t ∈ K×.

(3) B̂± ∪ B̂±ŵa(1)B̂± is a subgroup.

(4) ŝB̂±ŝ �⊂ B̂± for all ŝ ∈ Ŝ.

Hence, we can reach the next result, which is similar to the proof of Theorem 2.

THEOREM 7. Notation is as above. Then, (St (n,Kq), B̂±, N̂ , Ŝ) is a Tits system with
the corresponding affine Weyl group Wa .

COROLLARY. Notation is as above. Then, we have:
(1) St (n,Kq) =⋃

w∈Wa B̂
±wB̂± (Bruhat decomposition),

(2) St (n,Kq) =⋃
w∈Wa B̂

∓wB̂± (Birkhoff decomposition),

(3) St (n,Kq) = Û±Û∓T̂0Û
± (Gauss decomposition).

8. K2-groups and presentations (rank 1)

Here we suppose that n = 2, that is, the rank of Φ is 1 in the sense of root systems.
Namely we assume Φ = {±α̇}. Then we put K2(2,Kq) = Ker φ, where φ is the canonical

homomorphism of St (2,Kq) ontoE(2,Kq). Let Ẽ(2,Kq) be the group defined by generators
x̃ij (f ) for all {i, j } = {1, 2} and for all f ∈ Kq and the defining relations (A) and (B)′ together
with the following relation:

(C) c̃(u1, v1)c̃(u2, v2) · · · c̃(up, vp) = 1
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for all u1, . . . , up, v1, . . . , vp ∈ K×q satisfying

[u1, v1][u2, v2] · · · [up, vp] = 1 ,

where for u, v ∈ K×q we put

w̃ij (u) = x̃ij (u)x̃ji(−u−1)x̃ij (u) ,

h̃ij (u) = w̃ij (u)w̃ij (−1) ,

c̃(u, v) = h̃12(u)h̃12(v)h̃12(vu)
−1 ,

and where x,w in the relations (A) and (B)′ should be changed into x̃, w̃ respectively. Using
the above discussion, we obtain the following theorem.

THEOREM 8. Notation is as above. Then, we have Ẽ(2,Kq) � E(2,Kq).
PROOF OF THEOREM 8. The homomorphism φ : St (2,Kq)→ E(2,Kq) induces two

canonical homomorphisms called φ̂ and φ̃, that is,

φ̂ : St (2,Kq) → Ẽ(2,Kq) ,

φ̃ : Ẽ(2,Kq) → E(2,Kq) ,

which are defined by

φ̂(x̂ij (f )) = x̃ij (f ) and φ̃(x̃ij (f )) = xij (f )
with the following diagram.

φ̂
Ẽ(2,Kq) φ̃

↗ ↘
St (2,Kq) −→ E(2,Kq)

φ

We use the same notation of subgroups of Ẽ(2,Kq) as in St (2,Kq) changing ˆ into ,̃ namely

φ̂( ˆ ) = .̃ Then, we find two kinds of Bruhat decompositions:

Ẽ(2,Kq) =
⋃
w∈Wa

B̃wB̃ ⊃ B̃ = Ũ T̃0 ,−−→

−−→

E(2,Kq) =
⋃
w∈Wa

BwB ⊃ B = U � T0 .

Therefore, by these decompositions, we can obtain Ker φ̃ ⊂ B̃. We take an element x̃ ∈
Ker φ̃. Then, we write x̃ as x̃ = ỹz̃ for some ỹ ∈ Ũ and z̃ ∈ T̃0. Put y = φ̃(ỹ) and z = φ̃(z̃).
Since x̃ ∈ Ker φ̃, we have

1 = φ̃(x̃) = φ̃(ỹ)φ̃(z̃) = yz ∈ U � T0 ,
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which implies y = 1 and z = 1. Hence, in particular, ỹ and z̃ belong to Ker φ̃.

CLAIM 1. ỹ = 1.

PROOF OF CLAIM 1. Since ỹ ∈ T̃0 ⊂ T̃ , we can write ỹ as

ỹ = h̃12(u1)
±1h̃12(u2)

±1 · · · h̃12(up)
±1

for some u1, . . . , up ∈ K×q using the relation (P̂4). On the other hand, [u, u−1] = 1 for all u ∈
K×q implies 1 = c̃(u, u−1) = h̃12(u)h̃12(u

−1) by (C), which leads to h̃12(u)
−1 = h̃12(u

−1).

Hence, one can write

ỹ = h̃12(v1)h̃12(v2) · · · h̃12(vp)

for some v1, . . . , vp ∈ K×q . Since φ̃(ỹ) = 1, we see that

v1v2 · · · vp = v−1
1 v−1

2 · · · v−1
p = 1 .

Then, we can compute, by (C),

ỹ = c̃(v1, v2) h̃12(v2v1) h̃12(v3) · · · h̃12(vp)

= c̃(v1, v2) c̃(v2v1, v3) h̃12(v3v2v1) h̃12(v4) · · · h̃12(vp)

= c̃(v1, v2) c̃(v2v1, v3) · · · c̃(vp−1 · · · v2v1, vp) h̃12(vp · · · v1)

= c̃(v1, v2) c̃(v2v1, v3) · · · c̃(vp−1 · · · v2v1, vp)

and furthermore the last part of this equation should be 1 by (C), since

[v1, v2][v2v1, v3] · · · [vp−1 · · · v2v1, vp] = 1 .

CLAIM 2. z̃ = 1.
PROOF OF CLAIM 2. Using the degree map of K[X2] in X2, we can establish that U

is the free product of (
1 K[X2]
0 1

)
and

(
1 0

X2K[X2] 1

)
.

Hence, Ũ is isomorphic to U , and z̃ = 1.

Therefore, we just reached x̃ = 1, which implies that Ẽ(2,Kq) � E(2,Kq). Q.E.D.

We need to know a set of generators for K2(2,Kq), which we will use later, as follows.

PROPOSITION 9. Notation is as above. Then we have:
K2(2,Kq) = 〈ĉ(u1, v1)ĉ(u2, v2) · · · ĉ(uk, vk) | k ≥ 1 ,

u1, v1, . . . , uk, vk ∈ K×q , [u1, v1][u2, v2] · · · [uk, vk] = 1〉 ,
where ĉ(u, v) = ĥ12(u)ĥ12(v)ĥ12(vu)

−1, andK2(2,Kq) is a central subgroup of St (2,Kq).
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PROOF OF PROPOSITION 9. It is enough to confirm that

ĉ(u1, v1)ĉ(u2, v2) · · · ĉ(uk, vk)
is central if [u1, v1][u2, v2] · · · [uk, vk] = 1, which is easily checked by a direct computation:

{ĉ(u1,v1)ĉ(u2, v2) · · · ĉ(uk, vk)}x̂12(f ){ĉ(u1, v1)ĉ(u2, v2) · · · ĉ(uk, vk)}−1

= x̂12([u1, v1][u2, v2] · · · [uk, vk]f )
= x̂12(f )

and

{ĉ(u1,v1)ĉ(u2, v2) · · · ĉ(uk, vk)}x̂21(f ){ĉ(u1, v1)ĉ(u2, v2) · · · ĉ(uk, vk)}−1

= x̂21(f [vk, uk] · · · [v2, u2][v1, u1])
= x̂21(f {[u1, v1][u2, v2] · · · [uk, vk]}−1)

= x̂21(f )

for all f ∈ Kq . Q.E.D.

9. K2-groups and presentations (higher rank)

We suppose n ≥ 3. Put K2(n,Kq) = Ker φ. Then, in general, there exists a canonical
homomorphism of K2(2,Kq) into K2(n,Kq), which is induced from the following diagram
(cf. [9]):

1 −→ K2(2,Kq) −→ St (2,Kq) −→ E(2,Kq) −→ 1 (exact)
↓ ↓ ↓

1 −→ K2(n,Kq) −→ St (n,Kq) −→ E(n,Kq) −→ 1 (exact)

Since Kq is a Euclidean ring, the homomorphism of K2(2,Kq) into K2(n,Kq) is surjective
by [5]. Hence, we have the following.

THEOREM 10. Suppose n ≥ 3. Let Ẽ(n,Kq) be the group generated by x̃ij (f ) for all

1 ≤ i �= j ≤ n and f ∈ Kq with the defining relations (A), (B) and (C). Then, Ẽ(n,Kq) is
isomorphic to E(n,Kq).

On the other hand, by a similar computation appeared in the proof of Proposition 9, we
see that

ĉ(u1, v1)ĉ(u2, v2) · · · ĉ(uk, vk)
is central in St (n,Kq). Therefore, we obtain the following.

PROPOSITION 11. Suppose n ≥ 3. Then,

K2(n,Kq) = 〈 ĉ(u1, v1)ĉ(u2, v2) · · · ĉ(uk, vk) | k ≥ 1 ,
u1, v1, . . . , uk, vk ∈ K×q , [u1, v1][u2, v2] · · · [uk, vk ] = 1〉 ,
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where ĉ(u, v) = ĥ12(u)ĥ12(v)ĥ12(vu)
−1, andK2(n,Kq) is a central subgroup of St (n,Kq).

10. Universal central extensions

We first fix four central elements a∗, b∗, c∗, d∗ ∈ K× as follows. If |F | ≥ 4, then we

choose a∗ ∈ F× such that a∗2 − 1 �= 0, and put b∗ = 1/(a∗2 − 1) ∈ F×. In case of |F | ≤ 3,

we set a∗ = X2
1 ∈ K× and b∗ = 1/(a∗2 − 1) ∈ K×. Furthermore, we choose c∗, d∗ ∈ F×

such that

c∗ �= 0 , c∗ − 1 �= 0 , c∗2 − c∗ + 1 �= 0 , d∗3 − 1 �= 0

if |F | ≥ 5, and we define c∗ = d∗ = X6
1 ∈ K× if |F | ≤ 4.

We note that E(n,Kq) is perfect, since

[hij (a∗), xij (b∗f )] = xij (f )
for 1 ≤ i �= j ≤ n and f ∈ Kq . Hence, there is a (unique up to isomorphism) universal central
extension of E(n,Kq). We will establish that St (n,Kq) is a universal central extension of
E(n,Kq) for all n ≥ 2. By the same reason as in case of E(n,Kq), we can see that St (n,Kq)
is also perfect.

Let φ∗ : E∗ → E(n,Kq) be a central extension. For z ∈ E(n,Kq), we put

M(z) = {z∗ ∈ E∗ | φ∗(z∗) = z} = φ∗−1
(z) ,

and hence, in particular, we have M(1) = Ker φ∗. Then, for 1 ≤ i �= j ≤ n and f ∈ Kq , we
define

x∗ij (f ) =
[
h∗, x∗

] ∈ E∗ ,
where we choose h∗ ∈ M(hij (a∗)) and x∗ ∈ M(xij (b∗f )). This x∗ij (f ) is well-defined by

the so-called central trick. Also we put

w∗ij (u) = x∗ij (u)x∗ji(−u−1)x∗ij (u) ,

h∗ij (u) = w∗ij (u)w∗ij (−1) .

Then we obtain the following.

LEMMA 12. Let 1 ≤ i �= j ≤ n, and let f ∈ Kq and u ∈ K×q . Then:
(1) w∗ij (u)x∗ij (f )w∗ij (−u) = x∗ji(−u−1f u−1).

(2) h∗ij (u)x∗ij (f )h∗ij (u)−1 = x∗ji(uf u).
PROOF OF LEMMA 12. By the definition, we have

w∗ij (u)x∗ij (f )w∗ij (−u) = w∗ij (u)[h∗ij (a∗), x∗ij (b∗f )]w∗ij (−u)
= [w∗ij (u)h∗ij (a∗)w∗ij (−u),w∗ij (u)x∗ij (b∗f )w∗ij (−u)]
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= [h∗ji(a∗), x∗ji(−b∗u−1fu−1)]
= x∗ji(−u−1fu−1)

and

h∗ij (u)x∗ij (f )h∗ij (u)−1 = h∗ij (u)[h∗ij (a∗), x∗ij (b∗f )]h∗ij (u)−1

= [h∗ij (u)h∗ij (a∗)h∗ij (u)−1, h∗ij (u)x∗ij (b∗f )h∗ij (u)−1]
= [h∗ij (a∗), x∗ij (b∗ufu)]
= x∗ij (uf u) ,

which implies the lemma. Q.E.D.
We suppose (i, j) �= (�, k) with 1 ≤ i �= j ≤ n. For i, j, k, � and for f, g ∈ Kq , we

define π(f, g) = πi,j,k,�(f, g) by

π(f, g) = πi,j,k,�(f, g) =




[x∗ij (f ), x∗k�(g)]x∗i�(f g)−1 if j = k ,

[x∗ij (f ), x∗k�(g)]x∗kj (−gf )−1 if i = � ,

[x∗ij (f ), x∗k�(g)] otherwise .

Then we can show the following (cf. [21]).

LEMMA 13. Let f, f ′, g, g ′ ∈ Kq and 1 ≤ i �= j ≤ n with (i, j) �= (�, k). Then:
(1) πi,j,k,�(f + f ′, g) = πi,j,k,�(f, g)πi,j,k,�(f ′, g),
(2) πi,j,k,�(f, g + g ′) = πi,j,k,�(f, g)πi,j,k,�(f, g ′),
(3) πi,j,k,�(f, g) = 1,
(4) x∗ij (f )x∗ij (g) = x∗ij (f + g).

PROOF OF LEMMA 13. To prove (3), we need to show (1) and (2). We will proceed
dividing into three cases.

(Case 1) j �= k, i �= �: By the definition, we have

π(f + f ′, g) = [x∗ij (f + f ′), x∗k�(g)]
= [x∗ij (f )x∗ij (f ′), x∗k�(g)]
= x∗ij (f )x∗ij (f ′)x∗k�(g)x∗ij (f ′)−1x∗ij (f )−1x∗k�(g)−1

= x∗ij (f ){x∗ij (f ′)x∗k�(g)x∗ij (f ′)−1x∗k�(g)−1}
x∗k�(g)x∗ij (f )−1x∗k�(g)−1

= x∗ij (f )[x∗ij (f ′), x∗k�(g)]x∗k�(g)x∗ij (f )−1x∗k�(g)−1

= x∗ij (f )π(f ′, g)x∗k�(g)x∗ij (f )−1x∗k�(g)−1

= π(f, g)π(f ′, g)
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and

π(f, g + g ′) = [x∗ij (f ), x∗k�(g + g ′)]
= [x∗ij (f ), x∗ij (g)x∗k�(g ′)]
= x∗ij (f )x∗k�(g)x∗k�(g ′)x∗ij (f )−1x∗k�(g ′)−1x∗k�(g)−1

= x∗ij (f )x∗k�(g)x∗ij (f )−1

{x∗ij (f )x∗k�(g ′)x∗ij (f )−1x∗k�(g ′)−1}x∗k�(g)−1

= x∗ij (f )x∗k�(g)x∗ij (f )−1[x∗k�(f ), x∗k�(g ′)]x∗k�(g)−1

= x∗ij (f )x∗k�(g)x∗ij (f )−1π(f, g ′)x∗k�(g)−1

= π(f, g)π(f, g ′) .
If i �= k and j �= �, then

π(b∗f, g) = h∗ij (a∗)π(b∗f, g)h∗ij (a∗)−1

= h∗ij (a∗)[x∗ij (b∗f ), x∗k�(g)]h∗ij (a∗)−1

= [x∗ij (a∗2b∗f ), x∗k�(g)]
= π(a∗2b∗f, g)

and

π(f, g) = π(a∗2b∗f − b∗f, g)
= π(a∗2b∗f, g)π(b∗f, g)−1

= 1 .

If i = k and j �= �, then we obtain

π(f, g) = h∗ij (d∗)π(f, g)h∗ij (d∗)−1

= π(d∗2, d∗g)
and

π(f, g) = h∗�j (d∗)π(f, g)h∗�j (d∗)−1

= π(d∗f, d∗−1g) .

Therefore,

π(f, g) = π(d∗2f, d∗g) = π(d∗3f, g) ,
which implies π((d∗3 − 1)f, g) = 1 and π(f, g) = 1.
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If i �= k and j = �, we similarly obtain, using the same d∗,

π(f, g) = π(d∗2, d∗f ) = π(d∗3, g) ,
which gives π((d∗3 − 1)f, g) = 1 and π(f, g) = 1.

If i = k and j = �, then, by

π(f, g) = h∗ij (c∗)π(f, g)h∗ij (c∗)−1

= h∗ij (c∗)[x∗ij (f ), x∗ij (g)]h∗ij (c∗)−1

= [x∗ij (c∗2f ), x∗ij (c∗2g)]
= π(c∗2f, c∗2g) ,

we obtain

π(f, g) = π(c∗f + (1− c∗)f, g)
= π(c∗f, g)π((1 − c∗)f, g)
= π(f, g/c∗)π(f, g/(1 − c∗))
= π(f, (g/c∗)+ (g/(1− c∗)))
= π(f, g/{c∗(1− c∗)})
= π(c∗(1− c∗)f, g)

and

π((c∗2 − c∗ + 1)f, g) = 1 .

Therefore, we reached π(f, g) = 1 for all f, g ∈ Kq . In particular, we notice that

x∗ij (f )x∗ij (g) = x∗ij (g)x∗ij (f )
for all 1 ≤ i �= j ≤ n and f, g ∈ Kq .

Now, we put

τ (f, g) = τij (f, g) = x∗ij (f )x∗ij (g)x∗ij (f + g)−1

for each 1 ≤ i �= j ≤ n and f, g ∈ Kq . Then, we have

τ (b∗f, b∗g) = h∗ij (a∗)τ (b∗f, b∗g)h∗ij (a∗)−1

= h∗ij (a∗)x∗ij (b∗f )x∗ij (b∗g)x∗ij (b∗f + b∗g)−1h∗ij (a∗)−1

= [h∗ij (a∗), x∗ij (b∗f )]x∗ij (b∗f )
[h∗ij (a∗), x∗ij (b∗g)]x∗ij (b∗g)
[h∗ij (a∗), x∗ij (b∗f + b∗g)−1]x∗ij (b∗f + b∗g)−1

= x∗ij (f )x∗ij (b∗f )x∗ij (g)x∗ij(b∗g)
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x∗ij (f + g)−1x∗ij (b∗f + b∗g)−1

= τ (f, g)τ (b∗f, b∗g)

and τ (f, g) = 1, which implies (4). Hence, we see x∗ij (f )−1 = x∗ij (−f ).
(Case 2) j = k: By the definition π(f, g) = [x∗ij (f ), x∗j�(g)]x∗i�(−f g), we have

π(f + f ′, g) = [x∗ij (f + f ′), x∗j�(g)]x∗i�(−(f + f ′)g)
= x∗ij (f )x∗ij (f ′)x∗j�(g)x∗ij (−f ′)x∗ij (−f )x∗j�(−g)

x∗i�(−f g)x∗i�(−f ′g)
= x∗ij (f ){x∗ij (f ′)x∗j�(g)x∗ij (−f ′)x∗j�(−g)x∗i�(−f ′g)}

x∗j�(g)x∗ij (−f )x∗j�(−g)x∗i�(−f g)

= x∗ij (f )π(f ′, g)x∗j�(g)x∗ij (−f )x∗j�(−g)x∗i�(−f g)

= π(f, g)π(f ′, g)
and we similarly have

π(f, g + g ′) = [x∗ij (f ), x∗j�(g + g ′)]x∗i�(−f (g + g ′))

= x∗ij (f )x∗j�(g + g ′)x∗ij (−f )x∗j�(−g − g ′)x∗i�(−f g − f g ′)

= x∗ij (f )x∗j�(g)x∗ij (−f )
{x∗ij (f )x∗j�(g ′)x∗ij (−f )x∗j�(−g ′)x∗i�(−f g ′)}
x∗j�(−g)x∗i�(−f g)

= x∗ij (f )x∗j�(g)x∗ij (−f )π(f, g ′)x∗j�(−g)x∗i�(−f g)

= π(f, g)π(f, g ′) .
On the other hand, we obtain

π(f, g) = h∗ij (d∗)π(f, g)h∗ij (d∗)−1

= h∗ij (d∗)[x∗ij (f ), x∗j�(g)]x∗i�(−f g)h∗ij (d∗)−1

= [x∗ij (d∗2f ), x∗j�(d∗−1g)]x∗i�(−d∗f g)

= π(d∗2f, d∗−1g)

and

π(f, g) = h∗i�(d∗)π(f, g)h∗i�(d∗)−1

= h∗i�(d∗)[x∗ij (f ), x∗j�(g)]x∗i�(−f g)h∗i�(d∗)−1

= [x∗ij (d∗f ), x∗j�(d∗g)]x∗i�(−d∗2f g)
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= π(d∗f, d∗g) .
Therefore, we have

π(f, g) = π(d∗2f, d∗−1g) = π(d∗3f, g)
and

π((d∗3 − 1)f, g) = 1 .

Hence, we just showed π(f, g) = 1 for all f, g ∈ Kq .
(Case 3) i = �: By the definition π(f, g) = [x∗ij (f ), x∗ki(g)], we can similarly reach

π(f + f ′, g) = π(f, g)π(f ′, g) ,
π(f, g + g ′) = π(f, g)π(f, g ′) .

Using the same d∗, we can establish π(f, g) = 1 for all f, g ∈ Kq . Q.E.D.

THEOREM 14. Notation is as above. Then, St (n,Kq) is a universal central extension
of E(n,Kq).

PROOF OF THEOREM 14. Using a given central extension φ∗ : E∗ → E(n,Kq),
we constructed the elements x∗ij (f ) for all 1 ≤ i �= j ≤ n and f ∈ Kq . The relations

which we obtained above give a homomorphism, called φ̂∗, of St (n,Kq) into E∗ such that

φ̂∗(x̂ij (f )) = x∗ij (f ) for all 1 ≤ i �= j ≤ n and f ∈ Kq . This φ̂∗ is a desired homomorphism.

Q.E.D.

In case of q = 1, the group structure of K2(n,Kq) has been discussed in terms of Witt
rings (cf. [14], [15]). However, for general q , it might be rather difficult to determine its group
structure.

11. Normalities and K1-groups

Since Kq is a Euclidean ring, we see

GL(n,Kq) = 〈E(n,Kq), D(n,Kq)〉
= 〈E(n,Kq), D1(n,Kq)〉
� E(n,Kq) ,

where

D(n,Kq) =






u1 0 · · · 0

0 u2
. . .

...
...

. . .
. . . 0

0 · · · 0 un




∣∣∣∣∣∣∣∣∣∣
u1, . . . , un ∈ K×q



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andD1(n,Kq) = { d(u) | u ∈ K×q } with

d(u) =



u 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1


 .

We put K1(n,Kq) = GL(n,Kq)/E(n,Kq) as in [9]. Hence, we obtain

K1(n,Kq) = E(n,Kq)D1(n,Kq)/E(n,Kq)

� D1(n,Kq)/(E(n,Kq) ∩D1(n,Kq)) .

Using our Bruhat decomposition:

E(n,Kq) =
⋃
w∈Wa

BwB

as well as

BwB = UwT0U = Uẇ



X
m1
2 0 · · · 0

0 X
m2
2

. . .
...

...
. . .

. . . 0
0 · · · 0 X

mn
2


 T0U

for some ẇ ∈ Ẇ and for somem1,m2, . . . ,mn ∈ Z withm1+m2+· · ·+mn = 0, we obtain:

BwB ∩D1(n,Kq) �= ∅

�⇒ Uẇ



X
m1
2 0 · · · 0

0 X
m2
2

. . .
...

...
. . .

. . . 0
0 · · · 0 X

mn
2


 T0U ∩D1(n,Kq) �= ∅

�⇒ U ∩D1(n,Kq)UT0



X
−m1
2 0 · · · 0

0 X
−m2
2

. . .
...

...
. . .

. . . 0
0 · · · 0 X

−mn
2


 ẇ−1 �= ∅ .

If we set 

K× = K \ {0} ,
K≥0
q = K[X2] ,

K>0
q = K[X2]X2 ,



372 JUN MORITA AND HIDEYUKI SAKAGUCHI

then we have

U ⊂




1+K>0
q K≥0

q · · · K≥0
q

K>0
q 1+K>0

q

. . .
...

...
. . .

. . . K≥0
q

K>0
q · · · K>0

q 1+K>0
q


 .

We suppose BwB ∩ D1(n,Kq) �= ∅. Then, we take an element x = d(u)x+x0y0 with
d(u) ∈ D1(n,Kq), x+ ∈ U , x0 ∈ T0 and

y0 =



X
−m1
2 0 · · · 0

0 X
−m2
2

. . .
...

...
. . .

. . . 0
0 · · · 0 X

−mn
2




such that xẇ−1 lies in U and


tX
m−m1
2 (1+K>0

q ) X
m−m2
2 K≥0

q · · · X
m−mn
2 K≥0

q

X
−m1
2 K>0

q X
−m2
2 (1+K>0

q )
. . .

...

...
. . .

. . . X
−mn
2 K≥0

q

X
−m1
2 K>0

q · · · X
−mn−1
2 K>0

q X
−mn
2 (1+K>0

q )




ẇ−1 ,

where u = tXm2 ∈ K×q with t ∈ K× and m ∈ Z. If mi > 0 for some 2 ≤ i ≤ n, then

x has an entry with a negative power of X2. This is a contradiction. Therefore mi ≤ 0 for
all 2 ≤ i ≤ n. In particular, we have m1 ≥ 0. Now we suppose that as a permutation of

columns ẇ−1 takes j to 1. Then 2 ≤ ẇ−1(k) ≤ n for all 2 ≤ k ≤ n with k �= j . Since
every diagonal entry of x has a nonzero constant term, we have mk = 0 for all 2 ≤ k ≤ n
with k �= j . Furthermore ẇ−1(k) = k for all such k, which follows from the fact that ẇ−1(k)

cannot be not only greater than k but also less than k by checking the positions of 1 + K>0
q

and K>0
q . Hence, we just falled into two cases, namely the case when ẇ is the transposition

of the 1-st column and the j -th column with j �= 1 or the case when ẇ = 1. Suppose that

ẇ = (1, j) is a transposition with 1 �= j . Then, we have tXm−m1
2 (1+K>0

q )∩K≥0
q �= ∅ since

the 1-st column is going to the j -th column, which implies m −m1 ≥ 0. On the other hand,

we have X
m−mj
2 K≥0

q ∩ (1 + K≥0
q ) �= ∅ since the j -th column is going to the 1-st column,
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which implies m−mj ≤ 0. Combining these inequalities and m1 +mj = 0, we obtain

m ≤ mj = −m1 ≤ 0 ≤ m1 ≤ m ,
which leads to m = m1 = mj = 0. However, the 1 +K>0

q of the j -column can not move to

the 1-st column, since 1 + K>0
q ∩K>0

q = ∅. This is a contradiction. Therefore, ẇ = 1. We

just proved that BwB ∩D1(n,Kq) �= ∅ implies w = 1 and u ∈ K×, and we also showed

B ∩D1(n,Kq) ⊂






t 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1




∣∣∣∣∣∣∣∣∣∣
t ∈ K×



.

Thus,

E(n,Kq) ∩D1(n,Kq) = B ∩D1(n,Kq)

= (U � T0) ∩D1(n,Kq)

= T0 ∩D1(n,Kq)

⊂ T ∩D1(n,Kq) .

Since T = 〈hij (u) | 1 ≤ i �= j ≤ n, u ∈ K×q 〉, we find T = 〈h1j (u) | 2 ≤ j ≤ n, u ∈ K×q 〉
by the relation hij (u) = h1i(u

−1)h1j (u). Hence, any element h ∈ T ∩ D1(n,Kq) can be
expressed as

h = h1,�1(u1)h1,�2(u2) · · ·h1,�k (uk)

with 2 ≤ �1, . . . , �k ≤ n and u1, . . . , uk ∈ K×q satisfying∏
i∈∆j

u−1
i = 1 ,

where ∆j = {i | 1 ≤ i ≤ n, �i = j } for each 2 ≤ j ≤ n. We note {1, 2, . . . , k} =
∆2 ∪∆3 ∪ · · · ∪∆n. Then we put δj =∏

i∈∆j u
−1
�i

. By h ∈ D1(n,Kq), we see δj = 1 for all

2 ≤ j ≤ n. If we write

h =



u 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1




with u ∈ K×q , then we obtain

u = u1u2 · · · uk = u1u2 · · · ukδ2δ3 · · · δn .
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Therefore, we can rewrite u as

u = u1u2 · · · uku−1
i1
u−1
i2
· · · u−1

ik

with {1, 2, . . . , k} = {i1, i2, . . . , ik}. If i� = 1, then putting

v1 = u2 · · · uku−1
i1
· · · u−1

i�−1

we have

u = [u1, v1]v1u
−1
i�+1
· · · u−1

ik
.

If i�′ = 2, then putting

v2 = u3 · · ·uku−1
i1
· · · u−1

i�′−1
,

where u−1
i�

is missing in case of � < �′, we have

u = [u1, v1][u2, v2]v2u
−1
i�′+1
· · ·u−1

ik
,

where u−1
i�

is missing in case of � > �′. Continuing this we finally reach

u = [u1, v1][u2, v2] · · · [uk, vk]
for some v1, . . . , vk ∈ K×q . Thus, we have

T ∩D1(n,Kq) ⊂



[K×q ,K×q ] 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1


 .

On the other hand, we can see

[u, v] 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1


 = h12(u)h12(v)h12(u

−1v−1)

for all u, v ∈ K×q , which implies



[K×q ,K×q ] 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1


 ⊂ E(n,Kq) .
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Hence, we have

E(n,Kq) ∩D1(n,Kq) ⊂ T ∩D1(n,Kq)

⊂



[K×q ,K×q ] 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1




⊂ E(n,Kq) ∩D1(n,Kq)

and

E(n,Kq) ∩D1(n,Kq) =



[K×q ,K×q ] 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1


 .

Therefore, we obtain the following.

THEOREM 15. Notation is as above. Then, we have

K1(n,Kq) � K×q /[K×q ,K×q ]
for all n ≥ 2.

Part III: Homomorphisms and isomorphisms

We will discuss a relationship between the group G in Part I and the group E in Part II.
Here we suppose again that F is a field of characteristic 0.

12. Homomorphisms of Lie algebras

There is an EALA L such that the core Lc = 〈Lα | α ∈ R×〉, which is the subalgebra of
L generated by Lα for all α ∈ R×, is a universal central extension of

sln(Fq) =






f11 f12 · · · f1n

f21 f22
. . .

...
...

. . .
. . . fn−1,n

fn1 · · · fn,n−1 fnn




∣∣∣∣∣∣∣∣∣∣
f11 + f22 + · · · + fnn = 0




⊕ [
Fq, Fq

]
I ,

where Fq = F [X1,X2] is a quantum torus over F defined by the relation X2X1 = qX1X2.
That is, L = (sln(Fq)⊕z)⊕d, where sln(Fq)⊕z is a universal central extension of sln(Fq) and
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d gives a certain derivation part, and hence the core Lc of L just coincides with sln(Fq) ⊕ z.
Therefore, we have the following exact sequence:

0 −→ z −→ Lc
ψ−→ sln(Fq) −→ 0 .

Then, we can choose eα, e−α ∈ L for α ∈ R× satisfying

ψ(eα) = X�1Xm2 Eij ,
ψ(e−α) = X−m2 X−�1 Eji ,

where α = α̇ +mξ + �η with α̇ = εi − εj ∈ Φ+ and �,m ∈ Z. Then, for a = (α̇,m) ∈ Φa ,
we see that each

s =
∞∑
k=k0

rkeα̇+mξ+kη ∈ Γa

with rk ∈ F is corresponding to some

∞∑
k=k0

r ′kXk1X
m
2 Eij

with r ′k ∈ F . Hence, Γa is corresponding to

KXm2 Eij .

To establish a relation between Part I and Part II, from now on, we shall take the core Lc
instead of the full Lie algebra L. Even if we select Lc and make its completion L̂c, then we
use the same notation for groups and group elements. For example, we can define Γ ′0(Lc) for

Lc in the same way as in Part I. Then, Γ ′0(Lc) is corresponding to







∑∞
i=1 riX

i
1 0 · · · 0

0
∑∞
i=1 r

′
iX

i
1

. . .
...

...
. . .

. . . 0

0 · · · 0
∑∞
i=1 r

′′
i X

i
1



∈ sln(Kq)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ri , r
′
i , . . . , r

′′
i ∈ F




.

We note that as formal functions we have two bijective maps:

Exp−→
F [[X1]]X1 1+ F [[X1]]X1

Log←−
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between F [[X1]]X1 and 1 + F [[X1]]X1. Then the group G(L̂c) is generated by xa(s) and
x0(s

′) for all a ∈ Φa and for all s ∈ Γa(Lc) and s′ ∈ Γ ′0(Lc). We note that the same method

works for G(L̂c). Since the subalgebra L̂c is invariant under the action of G, by restriction

there is a natural homomorphism G→ G|
L̂c

, whose image G|
L̂c

contains G(L̂c).

13. Homomorphisms of groups

We discussed E(n,Kq) as a subgroup of GL(n,Kq). Now we need to consider the
center, Z(E(n,Kq)), of E(n,Kq). We note that every element of Z(E(n,Kq)) must be a

scalar matrix with diagonal entries in the center, Z(K×q ), of K×q (cf. Section 14). Usually

we put PE(n,Kq) = E(n,Kq)/Z(E(n,Kq)) and PGL(n,Kq) = GL(n,Kq)/Z, where
Z = Z(GL(n,Kq)). Since E(n,Kq) ∩ Z = Z(E(n,Kq)), there is a natural injection of
PE(n,Kq) into PGL(n,Kq). Then, the notion x mod Z for x ∈ E(n,Kq) makes sense
as an element of PE(n,Kq). Therefore, there exists a canonical surjective homomorphism,

called ψ̄ , of G(L̂c) onto PE(n,Kq) with

G(L̂c)
ψ̄−→ PE(n,Kq)

using the above central extension Lc
ψ−→ sln(Fq) and their completions. Hence, mod Z we

obtain the following correspondence:

xa(Γa(Lc)) −→ xa(K) mod Z;

x0(Γ
′

0(Lc)) −→
〈






r1 0 · · · 0

0 r2
. . .

...
...

. . .
. . . 0

0 · · · 0 rn




∣∣∣∣∣∣∣∣∣∣

r1, r2, . . . , rn

∈ (1+ F [[X1]]X1),

r1r2 · · · rn = 1




,






ef 0 · · · 0

0 ef
. . .

...
...

. . .
. . . 0

0 · · · 0 ef




∣∣∣∣∣∣∣∣∣∣

f = f (X1)

∈ (F [[X1]]X1 ∩ [Kq,Kq ]),

ef = Exp(f )




〉

mod Z ;
Ua −→ Ua mod Z ;

xα(F ) −→ xα̇(FX
�
1X

m
2 ) mod Z ;

wα(F
×) −→ wα̇(F

×X�1X
m
2 ) mod Z ;

hα(F
×) −→ hα̇(F

×) mod Z ;
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θa,i(F
×) −→ hα̇(F

×Xi1X
m
2 )hα̇(X

m
2 )
−1 mod Z ;

U±(L̂c) −→ U± mod Z ;
T0(L̂c) −→ T ′0 = ψ̄(T0(L̂c)) ⊂ T0 mod Z ;

B±(L̂c) −→ B ′± = ψ̄(B±(L̂c)) ⊂ B± mod Z ;
N(L̂c) −→ N ′ = ψ̄(N(L̂c)) ⊂ N mod Z ;
S(L̂c) −→ S mod Z ;

Y±a(L̂c) −→ Y±a mod Z .

We note that Z(E(n,Kq)) is contained in T0 (cf. Section 14). Using the following Bruhat
decompositions:

G(L̂c) =
⋃
w∈Wa

B±(L̂c)wB±(L̂c)

and

PE(n,Kq) =
⋃
w∈Wa

B±wB± mod Z ,

we observe the following:

(*)



T ′0 = T0

B ′± =B±
N ′ =N

modulo Z. To confirm this in another way, we will check the generators of T ′0 explicitly. We

need to write down the matrices of the generators of T0 under the homomorphism ψ̄ . That is,
T ′0 is generated by, modulo Z,


r1 0 · · · 0

0 r2
. . .

...
...

. . .
. . . 0

0 · · · 0 rn


 ,



ef 0 · · · 0

0 ef
. . .

...
...

. . .
. . . 0

0 · · · 0 ef


 ,



t1 0 · · · 0

0 t2
. . .

...
...

. . .
. . . 0

0 · · · 0 tn


 ,



X
m1
1 0 · · · 0

0 X
m2
1

. . .
...

...
. . .

. . . 0
0 · · · 0 X

mn
1


 ,



q�1 0 · · · 0

0 q�2
. . .

...
...

. . .
. . . 0

0 · · · 0 q�n




for all r1, r2, . . . , rn ∈ (1 + F [[X1]]X1) with r1r2 · · · rn = 1, for all f ∈ (F [[X1]]X1 ∩
[Kq,Kq ]) with ef = Exp(f ), for all t1, t2, . . . , tn ∈ F× with t1t2 · · · tn = 1, for all
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m1,m2, . . . ,mn ∈ Z with m1 + m2 + · · · + mn = 0, and for all �1, �2, . . . , �n ∈ Z. This
means that T ′0 is generated by, modulo Z,



u1 0 · · · 0

0 u2
. . .

...
...

. . .
. . . 0

0 · · · 0 un


 and



q�ef 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1




for all u1, u2, . . . , un ∈ K× with u1u2 · · · un = 1, for all � ∈ Z and for all f ∈ (F [[X1]]X1∩
[Kq,Kq ]). Then, we obtain

〈
q�ef

∣∣ � ∈ Z, f ∈ F [[X1]]X1 ∩ [Kq,Kq ]
〉

= 〈
q�, e[fXm2 ,gX

−m
2 ]

∣∣ �,m ∈ Z, f, g ∈ K, f g ∈ F [[X1]]
〉

=
〈
q�,

ef (X1)g(q
mX1)

eg(X1)f (q
−mX1)

∣∣∣∣∣ �,m ∈ Z, f (X1), g(X1) ∈ (1+ F [[X1]])
〉

=
〈
q�,

ef (X1)

ef (q
mX1)

∣∣∣∣∣ �,m ∈ Z, f (X1) ∈ (1+ F [[X1]])
〉

= [K×q ,K×q ] .

Therefore, T ′0 is generated by, modulo Z,



u1 0 · · · 0

0 u2
. . .

...
...

. . .
. . . 0

0 · · · 0 un


 and



v 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1




for all u1, u2, . . . , un ∈ K× with u1u2 · · · un = 1 and for all v ∈ [K×q ,K×q ]. This leads to

the fact that T ′0 coincides with T0 modulo Z, which implies a proof of (*) by direct matrix
computation without using Bruhat decompositions.

14. Remark on Z(E(n,Kq))

Let z = (zij ) ∈ Z(E(n,Kq)). Then, z commutes with xij (f ) for all 1 ≤ i �= j ≤ n and
for all f ∈ Kq , which means that z is a scalar matrix λI for some nonzero central element
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λ ∈ K×q ∩ Z(Kq). Then, we see

z = λI =



λn 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1


 h12(λ

−(n−1))h23(λ
−(n−2)) · · ·hn−1,n(λ

−1)

and 

λn 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1


 ∈ E(n,Kq) .

Therefore, by the same discussion as in Section 11, we have λn ∈ [K×q ,K×q ]. On the other

hand, by direct calculation, we obtain

[K×q ,K×q ] ⊂ 〈q〉 (1+ F [[X1]]X1) ⊂ K× .
If we write λ = fXm2 for some f ∈ K× and m ∈ Z, then λn = gXmn2 ∈ K× with g ∈ K×.
Hence,m = 0, which implies z ∈ T0, and

Z(E(n,Kq)) ⊂ T0 .

In particular, both Bruhat decompositions:

G(L̂c) =
⋃
w∈Wa

B±(L̂c)wB±(L̂c)

and

PE(n,Kq) =
⋃
w∈Wa

B̄wB̄

are compatible with the homomorphism ψ̄ , where B̄ = B modulo Z.

15. Isomorphisms of groups

We should confess first that we made some redundant discussion in the previous section.

It might be so usefull to understand an explicit relationship between both groups G(L̂c) and
PE(n,Kq), but we will show here that they are isomorphic.

From the following exact sequence

0 −→ z −→ Lc
ψ−→ sln(Fq) −→ 0 ,
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we constructed its completed version:

0 −→ ẑ −→ L̂c
ψ̂−→ sln(Kq) −→ 0 ,

which is also a central extension of Lie algebras over F . Then, the groups G(L̂c) and

PE(n,Kq) are subgroups of Aut(L̂c) and Aut(sln(Kq)) respectively. To study both sub-
groups, we need the next lemmas.

LEMMA 16. Notation is as above. Then, we have L̂c = [L̂c, L̂c].
PROOF OF LEMMA 16. The central extensionψ can be reduced to the following skew-

symmetric F -bilinear mapping (cf. [3], [16]):

{· , ·} : Fq × Fq → z ,

where z is given by

z = Fz(1)0 ⊕ Fz(2)0

if q is generic, that is, q is not a root of 1, and

z =
( ⊕
v∈(Zν)2

Fz(1)v

)
⊕ Fz(2)0

if q is singular, that is, q is a root of 1 with ν as the minimal positive power satisfying qν = 1,
and the definition of the mapping { , } is given by

{Xr11 X
r2
2 ,X

s1
1 X

s2
2 } =

{
r1z

(1)
0 + r2z(2)0 if r1 + s1 = r2 + s2 = 0

0 otherwise

if q is generic, and

{Xr11 X
r2
2 ,X

s1
1 X

s2
2 } =




r1z
(1)
0 + r2z(2)0 if r1 + s1 = r2 + s2 = 0

r2z
(1)
(r1+s1,0) if



r1 + s1 �= 0
r1 + s1 ≡ 0 (mod ν)
r2 + s2 = 0

r1s2 − s1r2
r2 + s2 z

(1)
(r1+s1,r2+s2) if



r1 + s1 ≡ 0 (mod ν)
r2 + s2 �= 0
r2 + s2 ≡ 0 (mod ν)

0 otherwise

if q is singular. Then, ẑ = ⊕m∈ZνΓmξ (z) and the above explicit construction of z imply that

L̂c is perfect. In fact, for example, we suppose that q is singular, and we take

ẑ =
∞∑
i=1

ciz
(1)
(iν,m) ∈ Γmξ (z) .
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Then we can compute in a standard way

[ ∞∑
i=1

ci

i · ν X
iν
1 hα̇ , X

m
2 hα̇

]
=
∞∑
i=1

ci

i · ν {X
iν
1 ,X

m
2 } = ẑ

if m �= 0, and

[ ∞∑
i=1

ciX
iν
1 X2hα̇ , X

−1
2 hα̇

]
=
∞∑
i=1

ci{Xiν1 X2,X
−1
2 } = ẑ

ifm = 0. Here we choose one α̇ ∈ Φ and hα̇ is identified with its image ψ(hα̇) by ψ . Hence,
the main infinite sum parts of elements belonging to Γmξ (z) can be written as elements of

[L̂c, L̂c]. We also see that the remaining finite sum parts can be expressed as elements of

[L̂c, L̂c]. Q.E.D.

Let

0 −→ Z −→ L µ−→ L′ −→ 0

be an exact sequence of Lie algebras with a characteristic ideal Z of L. Then, µ induces a
natural group homomorphism, µ̄, of Aut(L) into Aut(L′).

LEMMA 17. Notation is as above. Suppose that L = [L,L] and Z is the center of L.
Then, the homomorphism µ̄ is injective.

PROOF OF LEMMA 17. Let g ∈ Ker µ̄. Then, we note that for every x ∈ L there is a
central element z(x) ∈ Z such that g(x) = x + z(x). On the other hand, we can express x as

a finite linear combination:
∑k
i=1[xi, yi] with xi, yi ∈ L, since L = [L,L]. Hence we obtain

g(x) = x by

g([xi, yi ]) = [g(xi), g(yi)]
= [xi + z(xi), yi + z(yi)]
= [xi, yi] .

This means g = 1 and Ker µ̄ = 1. Q.E.D.

Then, using these lemmas, we obtain the following.

THEOREM 18. Notation is as above. Then, G(L̂c) is isomorphic to PE(n,Kq). In

particular, St (n,Kq) is a universal central extension of G(L̂c).
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