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Abstract: The authors assume the Deep Riemann Hypothesis to prove that a weighted

sum of Ramanujan’s �-function has a bias to being positive. This phenomenon is an analogue of

Chebyshev’s bias.
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1. Deep Riemann Hypothesis. Let MðpÞ
be a unitary matrix of degree r 2 N ¼ f1; 2; 3; . . .g
defined for each prime number p. Consider an

L-function expressed by the Euler product

Lðs;MÞ ¼
Y

p: prime

detð1�MðpÞp�sÞ�1:ð1Þ

The above is absolutely convergent in ReðsÞ > 1. It

is assumed in this paper that Lðs;MÞ has an

analytic continuation as an entire function on C

and that a functional equation holds with s$ 1� s.
Moreover, Lð12 ;MÞ 6¼ 0 is assumed for simplicity.

The following conjecture is an essential part of

the Deep Riemann Hypothesis named and proposed

by the second author in [9]:

Deep Riemann Hypothesis (DRH). The Euler

product (1) converges at s ¼ 1
2 with

lim
x!1

Y
p�x

detð1�MðpÞp�
1
2Þ�1 ¼

ffiffiffi
2
p �ðMÞ

Lð1
2
;MÞ;

where �ðMÞ ¼ ords¼1Lðs;M2Þ with ords¼1 signifying

the order of the pole at s ¼ 1.

Here the facter
ffiffiffi
2
p

in the right hand side was

discovered by Goldfeld [4], who proved the DRH

implies the GRH for the L-functions attached to

elliptic curves E and that the DRH implies m ¼
rankðEÞ.

Remark. Note that since

Lðs;M2Þ ¼
Y

p: prime

detð1�MðpÞ2p�sÞ�1

¼
Lðs;Sym2MÞ
Lðs;^2MÞ ;

it holds that

�ðMÞ ¼ ords¼1Lðs; Sym2MÞ � ords¼1Lðs;^2MÞ:

Here we do not suppose that M is a representation.

The square M2 is interpreted as the Adams

operation.

Example 1. When r ¼ 1 and M is the non-

principal Dirichlet character modulo 4, namely,

MðpÞ ¼ ð�1Þ
p�1

2 ¼ ��4ðpÞ for odd primes p, the

following holds.

Lðs;MÞ ¼ Lðs; ��4Þ and �ðMÞ ¼ 1:

Example 2. Put r ¼ 2 and let �ðpÞ 2 Z be

Ramanujan’s �-function defined for q ¼ e2�iz with

z 2 C and ImðzÞ > 0 by

�ðzÞ ¼ q
Y1
k¼1

ð1� qkÞ24 ¼
X1
n¼1

�ðnÞqn:

Denote MðpÞ ¼ ei�ðpÞ 0

0 e�i�ðpÞ

� �
, where �ðpÞ 2

½0; �� ¼� ConjðSUð2ÞÞ is defined as �ðpÞ ¼
2p

11
2 cosð�ðpÞÞ. It holds that

Lðs;MÞ ¼
Y
p

ð1� 2 cosð�ðpÞÞp�s þ p�2sÞ�1

and that �ðMÞ ¼ �1.

Remark. By conventional notation

Ramanujan’s L-function is defined as

Lðs;�Þ ¼
X1
n¼1

�ðnÞ
ns

;

which does not satisfy our assumption, since its

functional equation holds with s ! 12� s. How-

doi: 10.3792/pjaa.98.007
#2022 The Japan Academy

2020 Mathematics Subject Classification. Primary 11M41.
�Þ

Department of Biomedical Engineering, Toyo Universi-
ty, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan.
��Þ

Department of Mathematics, Tokyo Institute of Tech-
nology, Ookayama, Meguro-ku, Tokyo 152-8551, Japan.

No. 6] Proc. Japan Acad., 98, Ser. A (2022) 35

http://dx.doi.org/10.3792/pjaa.98.007


ever, a normalization �ðnÞ ¼ n�11
2 �ðnÞ leads to the

L-function

L sþ
11

2
;�

� �
¼
X1
n¼1

�ðnÞ
ns

which satisfies our assumption. Putting �ðpÞ ¼
2 cosð�ðpÞÞ for any prime p gives Lðs;MÞ ¼ Lðsþ
11
2 ;�Þ in Example 2.

Numerical evidence of DRH for various

Dirichlet characters is provided in [8]. It is known

by Conrad [3] that the DRH implies the Riemann

Hypothesis (RH). The logical relation between RH

and DRH is interpretable in terms of the error term

in the prime number theorem. Here, illustrate the

case that M ¼ � is a Dirichlet character.

Let Eðx; �Þ be the error term in the prime

number theorem. Namely,

Eðx; �Þ ¼  ðx; �Þ �
0 (� 6¼ 1)

x (� ¼ 1)

�
;

where the following is put

 ðx; �Þ ¼
X
n�x

�ðnÞ�ðnÞ

with

�ðnÞ ¼ log p ðn ¼ pkÞ
0 (otherwise)

�
:

The following table shows the estimates of Eðx; �Þ
which are implied by the region of convergence of

the Euler product (EP) of Lðs; �Þ. The estimate of

Eðx; �Þ is improved by extending the region.

The first row presents the classical prime

number theorem proved by Hadamard and

de la Vallée Poussin. The second and the third

rows represent basic theorems found in textbooks

in analytic number theory. The last row reflects

the fact that the DRH is equivalent to the bound

oð ffiffiffixp log xÞ, which is proved by Conrad [3].

To end this section, append a note on the DRH

for the Riemann zeta function �ðsÞ, which is the

case of r ¼ 1 and MðpÞ ¼ 1. It satisfies neither the

assumption of entireness nor the original form of the

DRH, since the pole at s ¼ 1 prevents the Euler

product from converging at any point in ReðsÞ < 1.

However, Akatsuka discovered an asymptotic be-

havior of the Euler product on the critical line

which exactly corresponds to the above bound

oð
ffiffiffi
x
p

log xÞ. Indeed he proved the following theo-

rem.

Akatsuka’s Theorem [1]. Let

�xðsÞ ¼
Y
p�x
ð1� p�sÞ�1

be the finite Euler product of the Riemann zeta

function over primes p � x. Then the following

conditions (i)–(iii) are equivalent.

(i) Let  ðxÞ :¼  ðx; 1Þ with 1 being the trivial

character. Then

 ðxÞ ¼ xþ oð
ffiffiffi
x
p

logxÞ ðx!1Þ:

(ii) There exists �0 2 R such that

lim
x!1

ðlogxÞm�xðs0Þ

exp

�
lim"#0

�Z x

1þ"

du

us0 logu
� log

1

"

��

converges to a nonzero limit, where m is the

order of the zero for �ðsÞ at s ¼ s0 ¼ 1
2 þ i�0.

(iii) The above limit exists and is nonzero for any

�0 2 R.

Here his condition (ii) is called the Deep Riemann

Hypothesis for �ðsÞ. Note that Akatsuka’s work

refines and reformulates the pioneering results of

Ramanujan [11].

2. Chebyshev’s Bias. The use of DRH

enables us to unveil the mystery of Chebyshev’s

bias. This section describes how it is achieved

according to Aoki-Koyama [2]. Recalling their

discussion will clarify the reason why our main

theorem on Ramanujan’s �-function is regarded as

an analogue of Chebyshev’s bias.

Chebyshev’s bias is the phenomenon that there

seem to be tending to be more primes of the form

4kþ 3 than of the form 4kþ 1 ðk 2 ZÞ. In fact

denoting by �ðx; q; aÞ the number of primes p � x
such that p � a ðmod qÞ, the inequality

�ðx; 4; 3Þ � �ðx; 4; 1Þð2Þ

holds for any x less than 26861, which is the first

prime number violating the inequality (2). How-

ever, the both sides draw equal at the next prime

Table. Convergence of EP and the error term of PNT

If EP converges in Then Eðx; �Þ is

ReðsÞ � 1 (classical) oðxÞ
ReðsÞ > 	 Oðx	ðlogxÞ2Þ
ReðsÞ > 1=2 (RH) Oð ffiffiffixp ðlog xÞ2Þ
ReðsÞ � 1=2 (DRH) oð

ffiffiffi
x
p

log xÞ
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26863, and �ðx; 4; 3Þ gets ahead again until 616841.

It is computed that more than ‘‘97% of x’’ satisfy

the inequality (2) in fx 2 R j 3 � x < 1011g.
Littlewood [10], however, proved that the

difference �ðx; 4; 3Þ � �ðx; 4; 1Þ changes its sign in-

finitely many times. In 1962 Knapowski and Turan

conjectured that the limit of the percentage in all

positive numbers of the set

AX ¼ fx < X j �ðx; 4; 3Þ � �ðx; 4; 1Þg

as X !1 would equal 100%, but now it is proved

in [5] under the Generalized Riemann Hypothesis

that the limit does not exist and that the conjecture

is false.

In place of such a naive density, the logarith-

mic density takes its place. Define the logarithmic

density of the set AX in ½2; X� by

�ðAXÞ ¼
1

logX

Z
t2AX

dt

t
:

Rubinstein and Sarnak [12] proved that the limit

limX!1 �ðAXÞ exists and equals 0:9959 . . . under the

assumption of the Generalized Riemann Hypothesis

and the Grand Simplicity Hypothesis for Lðs; �Þ,
which asserts linear independence over Q of the

imaginary parts of all nontrivial zeros of Lðs; �Þ in

the upper half plane.

It is known by Dirichlet’s prime number

theorem in arithmetic progressions that the number

of primes of the form 4kþ 3 and 4kþ 1 should

equal. Therefore, Chebyshev’s bias means that the

primes of the form 4kþ 3 appears ‘‘earlier’’ than

those of the form 4kþ 1. One of the reasons why

the logarithmic density is effective may be that it

treats contribution of smaller numbers as greater

ones with help of the factor 1=t in the integral.

Instead of considering the logarithmic density,

Aoki and Koyama [2] adopted a weighted counting

function

�sðx; q; aÞ ¼
X

p<x: prime
p�a ðmod qÞ

1

ps
ðs � 0Þ

generalizing �ðx; q; aÞ ¼ �0ðx; q; aÞ. Here the smaller

prime p allows higher contribution to �sðx; q; aÞ, as

long as we fix s > 0. The function �sðx; q; aÞ ðs > 0Þ
should be more appropriate than �ðx; q; aÞ to

represent the phenomenon, because it reflects the

size of primes which �ðx; q; aÞ ignores. Although the

natural density of the set

AðsÞ ¼ fx > 0 j �sðx; 4; 3Þ � �sðx; 4; 1Þ > 0g

does not exist when s ¼ 0, they showed under the

assumption of the DRH that it would exist and

equal to 1 when s ¼ 1
2, that is,

lim
X!1

1

X

Z
t2Að12Þ\½2;X�

dt ¼ 1:

Indeed, they reached a more precise form in [2]:

�1
2
ðx; 4; 3Þ � �1

2
ðx; 4; 1Þ �

1

2
log logxð3Þ

ðx!1Þ;

where fðxÞ � gðxÞ ðx!1Þ means lim
x!1

fðxÞ
gðxÞ ¼ 1.

Once assuming DRH for Lðs; ��4Þ, the proof

of (3) is simply illustrated as follows. By DRH the

limit

lim
x!1

Y
p�x
ð1� �ðpÞp�

1
2Þ�1

exists and is nonzero. Then it has a bounded

logarithm:X
p�x

logð1� �ðpÞp�
1
2Þ�1 ¼ Oð1Þ ðx!1Þ:

When we expand the left hand side asX1
k¼1

X
p�x

�ðpÞk

kp
k
2

;

the subseries over k � 3 is absolutely convergent as

x!1, because we estimate thatX
p�x

X1
k¼3

�ðpÞk

kp
k
2

�����
����� � 1

3

X
p�x

X1
k¼3

1

p
k
2

� �
3

2

� �

with the Riemann zeta function �ðsÞ by an easy

calculation X1
k¼3

1

p
k
2

¼
ffiffiffi
p
pffiffiffi
p
p � 1

1

p
3
2

�
3

p
3
2

for p � 3. On the other hand, the subseries over k ¼
2 satisfies by Euler’s theorem thatX
p�x

�ðpÞ2

2p
¼
X
p�x

1

2p
¼

1

2
log logxþOð1Þ ðx!1Þ:

Hence the behavior of the remaining part k ¼ 1 is

obtained:

X
p�x

�ðpÞffiffiffi
p
p ¼ �

1

2
log logxþOð1Þ ðx!1Þ:

This completes the proof of (3).
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In their original paper [2] Aoki and Koyama

find that the bias described by (3) is a special

case of the bias toward non-splitting primes in

abelian extensions, under the assumption of the

DRH for L-functions attached to algebraic Hecke

characters.

3. Results. The following theorem is a suit-

able generalization of (3) for the purpose of treating

�ðpÞ, which is the goal of this paper.

Theorem 1. Suppose DRH for Lðs;MÞ, then

lim
x!1

X
p�x

trðMðpÞÞffiffiffi
p
p

log logx
¼ � �ðMÞ

2
:

Proof. Put

IðxÞ ¼
X
p�x

trðMðpÞÞffiffiffi
p
p ;

IIðxÞ ¼
1

2

X
p�x

trðMðpÞ2Þ
p

;

and

IIIðxÞ ¼
X
k�3

1

k

X
p�x

trðMðpÞkÞ
pk=2

:

Then,

IðxÞ þ IIðxÞ þ IIIðxÞ ¼ log
Y
p�x

detð1�MðpÞp�
1
2Þ�1:

Hence DRH implies

IðxÞ þ IIðxÞ þ IIIðxÞ ¼ Oð1Þ ðx!1Þ:ð4Þ

The generalized Mertens theorem ([6]) says that

lim
x!1

IIðxÞ
log logx

¼
�ðMÞ

2
:ð5Þ

Moreover, it is easy to see that

IIIðxÞ ¼ Oð1Þ ðx!1Þ:ð6Þ

Thus (4) (5) and (6) give

lim
x!1

IðxÞ
log logx

¼ � �ðMÞ
2

:

�

Applying Theorem 1 to Example 1 restores (3). On

the other hand, Example 2 together with Theorem

1 leads us to our main theorem:

Theorem 2. Assume the DRH for Lðsþ 11
2 ;

�Þ. The following holds.

X
p�x

prime

�ðpÞ
p6
�

1

2
log log x ðx!1Þ:

Proof. By using the notation in Example 2, we

deduce from Theorem 1 thatX
p�x

prime

�ðpÞ
p6
¼
X
p�x

prime

2 cosð�ðpÞÞffiffiffi
p
p

¼
X
p�x

prime

trðMðpÞÞffiffiffi
p
p

�
1

2
log logx ðx!1Þ:

�

Theorem 2 asserts that the weighted sum of

Ramanujan’s �-function tends to be positive under

the DRH. Sarnak [13] also reached a similar

prediction under the assumption of the Generalized

Riemann Hypothesis as well as the Grand Simplic-

ity Hypothesis for Lðs;�Þ, which asserts linear

independence over Q of the imaginary parts of all

nontrivial zeros of Lðs;�Þ in the upper half plane.

He has pointed out that the sum

SðxÞ ¼
X
p�x

prime

�ðpÞ
p

11
2

has a bias to being positive, in the sense that the

mean of the measure 
 defined by

1

logX

Z X

2

f
logxffiffiffi
x
p SðxÞ

� �
dx

x
!
Z

R

fðxÞd
ðxÞ

ðx!1Þ
for f 2 CðRÞ is equal to 1. In the proof he closely

examines the logarithmic derivative of Lðs;�Þ to

find that the second term in its expansion is the

cause of the bias. While our above discussion deals

with the logarithm instead of its derivative, we have

also reached the point that the bias derives from

the second term in the expansion. Although our

conclusion has a common cause of the bias with

what is given in [13], our proof is straightforward

enough to simplify the proofs. Actually we have the

following concise result.

Corollary 1. The natural density of the set

A ¼ x > 0

�����
X
p�x

�ðpÞ
p6

> 0

( )
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exists and is equal to 1. More precisely,

lim
X!1

1

X

Z
t2A\½2;X�

dt ¼ 1:

Sarnak [13] also presented a prediction on the

tendency of the signature of aðpÞ ¼ pþ 1�#EðFpÞ
for an elliptic curve E over Q. Under the General-

ized Riemann Hypothesis and the Grand Simplicity

Hypothesis, he has observed that a weighted sum

of aðpÞ would have a bias to being negative for

rankðEÞ > 0 and positive for rankðEÞ ¼ 0.

Our method introduced in this paper would

provide evidence for this conjecture as well. Our

work on a bias for Satake parameters for GLðnÞ in

a more general framework will include it in addition

to a generalization of Theorem 2. This will be done

in a forthcoming paper [7].
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