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Abstract:

Let ' be a discontinuous group for the 3-dimensional anti-de Sitter space

AdS? ;= S0y(2,2)/S0¢(2,1). In this article, we discuss a growth rate of the counting of I'-orbits
at infinity and the discrete spectrum of the hyperbolic Laplacian of the complete anti-de Sitter

manifold T'\AdS®.
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1. Introduction. The 3-dimensional anti-de
Sitter space AdS® :=S0(2,2)/S0¢(2,1) is a Lor-
entzian manifold with constant sectional curvature
—1 of which the identity component of the isometry
group is the Lie group SOy(2,2). Discontinuous
groups for AdS® and their deformation theory
have been developed by renowned mathematicians,
William Goldman, Toshiyuki Kobayashi, and
Fanny Kassel, among others.

In this article, we discuss a growth rate of the
counting of orbits of a discontinuous group I' for
AdS? at infinity and the discrete spectrum of the
hyperbolic Laplacian of the complete anti-de Sitter
manifold T'\AdS®. Detailed proofs of the results
will appear elsewhere.

2. Relationship between the sharpness of
the I'-action and a growth rate of the count-
ing at infinity. In old days, the terminology
“discontinuous groups” was used to denote the
same meaning of discrete subgroups. Indeed, the
action of a discrete group of isometries is automati-
cally properly discontinuous in the Riemannian
setting. In his study of the action of discrete groups
beyond the Riemannian setting, Kobayashi [13]
advocated to make a difference of two terminolo-
gies: discontinuous groups for the property of
actions, and discrete subgroups for the property of
groups. Following this principle, we call a discrete
subgroup I' of a Lie group G a discontinuous group
for a homogeneous manifold G/H if the natural
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I-action on G/H from the left is properly discon-
tinuous and free [13,Def. 1.3]. Then any I'-orbit
meets a compact subset of G/H in at most finitely
many points, and thus we may consider the number
of the intersection points. Kassel-Kobayashi [6]
introduced a compact subset B(R) called a pseudo-
ball of radius R > 0 in any semisimple symmetric
space G/H, in particular, in AdS?, of which the
volume is of exponential growth as R — co. More-
over, they studied a growth rate of the counting

Nr(z, R) := #(T'z N B(R))

of the I'-orbit through = € G/H as R — oo.

When the metric tensor is indefinite as in the
anti-de Sitter space AdS?, an isotropy subgroup of
the isometry group is not necessarily compact and
an orbit of a discrete subgroup I' of isometries may
have accumulation points. In particular, I' may not
act on G/H properly discontinuously. Generalizing
a pioneering work of Kobayashi [10] on the proper-
ness criterion by means of the Cartan projection
for homogeneous manifolds of reductive type,
Kobayashi [11] and Benoist [1] established a crite-
rion for a general discrete subgroup I" of a reductive
Lie group G to act properly discontinuously on
G/H. As a slightly stronger condition than this
criterion, Kassel-Kobayashi [6] introduced the no-
tion of (¢, C)-sharpness (¢ > 0, C' > 0) of a discon-
tinuous group which quantifies proper discontinu-
ity. Loosely speaking, the parameter ¢ > 0 indicates
that the “degree of proper discontinuity” of the
I-action is weaker if ¢ approaches to 0. Then they
gave an upper estimate of the counting for
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(¢, C)-sharp discontinuous groups for any semi-
simple symmetric space G/H, in particular, for
AdS? by means of the two constants ¢ and C, and
proved that the counting Nr(z, R) is of exponential
growth uniformly with respect to =z € G/H as
R — o0:

Fact 1 (Kassel-Kobayashi [6, Lem. 4.6 (4)]).
There exists A > 0 such that for any ¢ >0, C' >0,
and torsion-free (¢, C)-sharp discontinuous group T’

for AdS?, one has

Vz € AdS®, VR > 0, Nr(z,R) < Aexp<4(R7jC)).

On the other hand, there has been no existing
literature about the counting for a non-sharp
discontinuous group (the case ¢=0) to the best
knowledge of the author. We find non-sharp dis-
continuous groups I' with various behaviors of the
counting of I'-orbits:

Theorem 2. There exists a non-sharp dis-

continuous group T' for AdS® such that
Ve € AdS®, VR > 0, Np(z, R) < 4%

In particular, Nr(x, R) is of exponential growth
uniformly with respect to x € AdS® as R — co.

Theorem 3. For any monotone increasing
function f:R — Reg and any x € AdS?, there exists
a discontinuous group I' =T’y for AdS? satisfying

NF(IE, R)

lim ——~ -~
R f(R)
For example, applying Theorem 3 to f(R) =
exp(eR)7 we can construct a discontinuous group I'
satisfying

#(Tz N B(R)) _
vol(B(R))

It should be noted that Eskin-Mcmullen [2] also
considered the counting of a I'-orbit I'z for a general
semisimple symmetric space G/H. They dealt with
the case where I is a lattice of G and x is a special
point in G/H, and thus their setting is completely
different from [6] and also from ours.

3. Construction of non-sharp discontinu-
ous groups. In this section, we describe how to
construct non-sharp discontinuous groups for AdS?
used in the proofs of Theorems 2 and 3. We note
that the product group SL(2,R) x SL(2,R) acts
isometrically on AdS® = S0(2,2)/SO00(2,1) via the
double covering SL(2,R) x SL(2,R) — SOy(2,2).

R—o0
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Fig. 1. Af and By in H2.

Generalizing a non-sharp example of Guéritaud-
Kassel [3,Sect. 10.1], we construct a family of
infinitely generated subgroups of SL(2,R) x
SL(2,R). Our subgroup has four sequences
(a—(k),ar(k),r(k), R(k)) N as parameters. We find
a properness criterion and a sharpness criterion for
the actions of our subgroups on AdS® using the
asymptotic behaviors of these sequences.

For a quadruple of real-valued sequences
(a—,a4,7, R), we define oy, B € SL(2,R) by
;L<M@>—w<mm%wwwﬁ>

R =

r(k) \ 1 "
O = L a+(k‘) —(a_(k)a+(k) 4 R(k‘)Z)
R(k)\ 1 0 (k) ,

and denote by T',(a_,a.,r, R) for sufficiently large
v €N the subgroup generated by (ax, k) €
SL(2,R) x SL(2,R) for all k =v,v+1,....

Let A} and Bj, for € € {+,—} be respectively
the half-disks in the upper half plane H? = {z € C |
Imz > 0} defined by

A = {ze H? | |2 — a (k)| < r(
B, :={2eH?||z—a(k)| <R
see Fig. 1. Then we note

ar(A;) c H2\ A}, B(By) c H?\ By,

k)},
(R)},

where SL(2,R) acts on H? as linear fractional
transformations. One can see by an elementary
argument of general topology called the ping-pong
argument that the subgroup T',(a_,ay,r,R) is
discrete and free if the half-disks AF, A%, ...
(resp. Bf, BE,,, ...) are disjoint.

Let p(x) be a real-valued monotone increasing
C?-function defined for sufficiently large x € R such
that lim,_,. p(z) = co and that the second deriva-
tive p”(x) is nowhere vanishing. In this article, for
simplicity, we assume that the pair of sequences
(as(k),a_(k)) can be expressed as
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(1) a () =pk), (@) =p(k+ ;)

for sufficiently large k € N. Moreover, we suppose
(3.2) R(k) > r(k),

) R(E) .

i min{p'(k — 1), p/(k+ 1)}

Then Bj, D Aj, holds and an easy calculation shows
that the half-disks B, BE, |, ... are disjoint for
sufficiently large v € N, see Fig. 2.

The following are a properness criterion and a
sharpness criterion for the action on AdS® of the
discrete subgroup I',(a_,a,,r, R):

Proposition 4. Let (a_,a;,r, R) be a quad-
ruple of sequences satisfying (3.1)—(3.3) as above.
The action on AdS® of the discrete subgroup
Ty(a—,as,r, R) for sufficiently large v € N is:

(1) properly discontinuous if and only if

. R(k)
lim = o0;
)

(2) sharp if and only if
a_<k)a+<k>>1 L0,

. (R(k)) <
liminflog| —= | { log
k—o00 T(k) T’(k)

Example 5. For the triples (p(z),r(k), R(k))
in TableI, we form the subgroups T, =
I'y(a—,as,r,R) with (3.1)-(3.3). Then Proposition
4 shows that I', are all discontinuous groups for
AdS? for sufficiently large v € N but not always
sharp as summarized in Table I.

4. Discrete spectrum of non-sharp anti-
de Sitter manifolds. Next we consider discrete
spectrum of the Laplacian of the noncompact anti-
de Sitter manifold I'\AdS® for a non-sharp discon-
tinuous group T.

Let us recall some basic notions. A pseudo-
Riemannian manifold is a C*°-manifold equipped
with a smooth non-degenerate symmetric bilinear
tensor of signature (p, q). It is called Riemannian if
q = 0 and Lorentzian if ¢ = 1. As in the Riemannian
case, [J=divograd defines a second order differ-

(3.3)
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Table I.  Sharpness of the T',-action on AdS®.

p(x) r(k) R(k) the I',-action
er e~ (k+K) e ¥ non-sharp
e’ 1 ek sharp

log > (K log k)™ k2 non-sharp

logx k=3 k72 sharp

ential operator (the Laplacian) on a pseudo-
Riemannian manifold. In contrast to the
Riemannian setting, the Laplacian on a Lorentzian
manifold is not an elliptic differential operator but
a hyperbolic differential operator, and its eigen-
function is not analytic in general.

We write L?(M) for the Hilbert space of square
integrable functions with respect to the volume
form induced by the pseudo-Riemannian structure
of M, and denote by L3(M) for A € C the space of
square integrable eigenfunctions

{f € L*(M) | Oy f = Af in the weak sense}.
Then the set of L%-eigenvalues
Specy(Oar) := {\ € C| Li(M) # 0}

is called the discrete spectrum of the Laplacian of
M.

We recall the theory of Kassel-Kobayashi [6]
on the discrete spectrum of “intrinsic” differential
operators on locally semisimple symmetric spaces
by limiting ourselves to the case AdS®. Let T be a
discontinuous group for AdS®. Then the quotient
space I'\AdS® is a C*-manifold and the quotient
map AdS? — I‘\AdS3 is a covering map of C*°-class.
The quotient manifold I'\AdS® admits a Lorentzian
structure with constant sectional curvature —1 via
this covering map. Kassel-Kobayashi [6] and
Kobayashi [14] initiated the study of spectral
analysis on locally symmetric spaces, in particular,
that of the discrete spectrum Specy(0J) of the
hyperbolic Laplacian [J on the anti-de Sitter mani-
fold T\ AdS®.

They introduced “the I'-averages of non-peri-
odic eigenfunctions” as a generalization of Poincaré
series to construct L%-eigenvalues. If an eigenfunc-
tion ¢ of the Laplacian on AdS? is integrable, then
the generalized Poincaré series

o' (Tz) = (v 'x)

yel’
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defines an integrable function on the anti-de Sitter
manifold T\AdS®, and is an eigenfunction of the
Laplacian with same eigenvalue. It is known that
the Laplacian on AdS® has the following L2-eigen-
values:

Am i=4m(m —1) (m € Z and m > 2).

As an application of an upper estimate of the
counting as in Fact 1, they proved L?-convergence
and non-vanishing of the generalized Poincaré
series of eigenfunctions for sufficiently large eigen-
value A, and obtained the following theorem:

Fact 6 [6]. For any sharp discontinuous group
T for AdS?, there exists a constant mo(T') > 0 such
that

Specy(Upyaqs) 2 {Am [ m € Z, m > mo(I)}

A natural question would be whether the
Laplacian on an anti-de Sitter manifold I'\AdS?
still has an L2-eigenvalue if the discontinuous group
I' is non-sharp. As an application of an upper
estimate of the counting as in Theorem 2, we see
that there exist countably many L?-eigenvalues
for some non-sharp I' by applying the machinery
developed in [6]:

Theorem 7. There exist a non-sharp dis-
continuous group T for AdS® and a constant
my(T) > 0 such that

Specy(Opyaas?) 2 {Am | m € Zy m > my (1)}

5. Multiplicity of the discrete spec-
trum. In the final section we discuss the multi-
plicity of the L’-eigenvalue A, of the Laplacian of
an anti-de Sitter manifold T\ AdS® constructed by
the generalized Poincaré series. Here, for a pseudo-
Riemannian manifold M,

Ny(N) := dime L3 (M) € N U {00}

is called the multiplicity of an L*-eigenvalue A. The
Laplacian on a Riemannian manifold is an elliptic
differential operator and the multiplicity of an
L?-eigenvalue is always finite if M is compact.
However, in the Lorentzian setting, the multiplicity
may be finite or may not even if M is compact
(e.g., [8,14]).

If a discontinuous group I for AdS® is standard
[6,Def. 1.4] and torsion-free, N, ,qq(Am) = 00
for sufficiently large m € N, which is derived from
the results in Kassel-Kobayashi [7,8]. On the other
hand, there exists a non-standard discontinuous
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group I'; for example a finitely generated discontin-
uous group I" which is Zariski-dense in the Lie group
S0O(2,2) [9,12]. However, it is not known whether
the multiplicities of the Laplacian are finite in this
case. We see that the multiplicities of the Laplacian
on the anti-de Sitter manifold T'\AdS® for such T’
are unbounded as follows:

Theorem 8. For any finitely generated dis-
continuous group I' for AdS?, there exists a constant
cr > 0 such that

(5.1) Nraast(Am) = loggm — cr.

In particular,
nllljrolc Nryaag (Am) = oo.

To prove this theorem, we use SO(2) x
SO(2)-finite L%-eigenfunctions of the Laplacian on
AdS? with eigenvalue )\, vanishing at the origin.
We note that such eigenfunctions decay more
rapidly at infinity than at the origin with respect
to geodesic parameters. We choose an L’-eigen-
function with eigenvalue )\, for each j=
0,1,...,k— 1 which decays at the origin as rapidly
as R* when a “pseudo-distance” R from the origin
tends to zero, and show the linear independence of
their generalized Poincaré series when m > 3F+er,
which proves (5.1).

Finally we discuss a lower bound of the multi-
plicities of L*-eigenvalues under a small deforma-
tion of a discrete subgroup. The general study of
local rigidity and stability of discontinuous groups
for non-Riemannian homogeneous manifolds was
initiated by Kobayashi [12] and Kobayashi-Nasrin
[15], and has been further developed by Kassel [5]
and others in specific settings. In our AdS® setting,
any cocompact discontinuous group is not locally
rigid and its proper discontinuity is stable under
any small deformation [9,12]. Moreover, Kassel-
Kobayashi [6] constructed infinitely many stable
L?-eigenvalues of the Laplacian of any compact
anti-de Sitter manifold T\AdS® under any small
deformation of I'. More specifically, for sufficiently
large m € N, one has

Am € ﬂ Spec(Dpaast)»
I‘I

where IV runs over a sufficiently small neighborhood
of I' in the compact-open topology [6, Cor. 9.10], see
(6, Def. 1.6] for the definition of stable eigenvalues
in a much more general setting. We introduce
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a function -K/F\Adsl‘: C - NU{oco} satisfying the
following for the multiplicities of stable eigenvalues:
® Npaag(A) #0 if and only if A is a stable

L*-eigenvalue of Dr\ AdS®S

® Ninaagt(A) = Npyagse (M) for any IV sufficiently

close to I'.

Theorem 9. For any cocompact discontinu-
ous group I for AdS?,

T%E%CNF\Adsla(AT’L) = Q.

The constant cr also plays a crucial role in
the proof of Theorem 9. Here recall (5.1). The
geometric constant cr is defined by using

e a growth rate of the counting Nr(z,R) as

R — o0;

e the “injective radius” of the anti-de Sitter

manifold T'\AdS?.

We control these two quantities simultaneously
using Lipschitz constants associated to I' intro-
duced in Kassel [4] and Kassel-Kobayashi [6], and
further investigated by Guéritaud-Kassel [3], and
show that cr depends “continuously” on a small
deformation of I'. We prove that the larger m € N
is, the more linearly independent L2-eigenfunctions
of the Laplacian of the compact anti-de Sitter
manifold I'\AdS?® can be constructed and that their
construction is stable under any small deformation
of .
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