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Rigidity of Euler products

By Shin-ya KOYAMA™ and Nobushige KUROKAWA™)

(Communicated by Masaki KASHIWARA, M.J.A., Nov. 12, 2021)

Abstract:

We report simple rigidity theorems for Euler products under deformations of

Euler factors. Certain products of the Riemann zeta function are rigid in the sense that there
exist no deformations which preserve the meromorphy on C.

Key words:

Introduction. For purely imaginary num-
bers a, b, ¢ € iR we study the meromorphy of the
associated Euler product

II a-e"+pp e +p2)"

p: prime

Zabc(s) _

in the family of Euler products
3% ={2"(s) | c € iR}.
This family 3% contains

((s —a){(s —b) =

which is a meromorphic function in all s € C (with
a functional equation under s «— 1+a+b— s).
We prove the converse:

Theorem A. If Z%(s) is meromorphic in all
s € C, we have a + b = c and

Z(s) = {(s — a)((s = b).

This shows rigidity of the Euler product ((s—
a)((s —b) in the family 3”° concerning the mero-
morphy on the entire C.

The next result gives a detailed meromorphy
for a+ b # c.

Theorem B. If a+b#c, then Z%(s) has
an analytic continuation to Re(s) >0 as a mero-
morphic  function with the natural boundary
Re(s) = 0. More precisely, each point on Re(s) =0
is a limit point of poles of Z%(s) in Re(s) > 0.

We notice generalizations in §4 in the text.
Our theorems follow from results of Kurokawa [4—6]
extending results of Estermann [1].

Zab(a+b) (S)
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We remark that our result characterizes ((s —
a)((s — b) by the meromorphy in all s € C only in
contrast to usual “converse theorems” originated by
Hamburger [2] and Hecke [3] where the functional
equation and the attached automorphic form are
important; {(s — a){(s — b) corresponds to a Maass
wave form studied by Maass [7].

1. Euler datum. We use the triple E =
(P,R, ), where P is the set of all prime numbers,
R denotes the real numbers, and « is the map « :
P — R given by «a(p) =logp. Such a triple is a
simple example of Euler datum studied in [4-6];
generalized FEuler data are treated there with
general “primes” P and general topological groups
G instead of R.

Let R(R) be the virtual character ring of R
defined as

R(R) = {Z m(a)x,

aciR

m(a) € Z,m(a) =0

except for finitely many a},

where x, is a (continuous) unitary character y, :
R — U(1) given by x.(z) = e** for z € R.
For a polynomial

H(T) = Z hnT™ € 14+ TR(R)[T]

m=0

we denote by L(s, E, H) the Euler product

L(s,E, H) IIH

peP
where

E:h

m=0

2)T™ € 1+ TC[T).

For example, let a, b, ¢ € R, then the polynomial
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Hab(:(T) =1- (Xa + Xb)T + X(1T2
in 1 + TR(R)[T] gives the Euler product

L(s, B, H") = [[(1 = (" +p")p~* +p2) !
peP

since
Hi =1 = (xa(logp) + x5 (logp))p~* + Xc(logp)p™™
=1— (" +p" )+
2. Unitariness and meromorphy. Let
E = (P,R,«) as in §1 and take a polynomial H(T')
in 1 + TR(R)[T] of degree n. We say that H(T) is

unitary when there exist functions 6; R — R sat-
isfying

HI(T) — (1 _ e’i91(.’E)T) e (]_ _ ei(‘?,,(az)T)

for all z.

The main theorem proved in [5] gives in this
particular situation the following result:

Theorem 1.

(1) If H(T) is unitary, then L(s,E,H) is mero-
morphic in all s € C.

(2) If H(T) is not unitary, then L(s,E,H) is
meromorphic in Re(s) >0 with the natural
boundary. Moreover, each point on Re(s) =0
is a limit point of poles of L(s,E,H) in
Re(s) > 0.

This theorem was proved in [5] (p. 45, §8, Theorem

1) since our E = (P, R, ) is nothing but E,(Q/Q)

there.

3. Proof of rigidity. After looking Theo-
rem 1 recalled in §2 we see that Theorems A and B
in Introduction are both derived from the following
result:

Theorem 2. Leta, b, c € iR and

Habc(T) =1= (th + Xb)T + XcT2 cl+ TR(R)[T]

Then the following conditions are equivalent.
(1) a+b=c.
(2) H(T) is unitary.
Proof. (1)=>(2): From a + b = ¢ we get
H™(T) =1~ (xa + x0)T + xaxT"
= (1= xD)(d = xT).
This gives
H"(T) = (1 = xa(2)T)(1 = xp(x)T)
= (1 —e™T)(1 - e*T)
for z € R. Hence H(T) is unitary, by

[Vol. 97(A),

le®| = |e?| = 1.
(2)==>(1): Assume that H®(T) is unitary, and set
H®(T) = (1 — "@T)(1 — ®E)T)
with 6; : R — R. Then comparing with
H®(T) =1 — (™ + ")T + e T?
we obtain

(3.1) et _|_eb:n
(3.2) o — (01 (@) +0:(2))

— 61',91(;16) + eir‘)z(m)7

Note that the complex conjugation of (3.1) gives
e 4 esz — efiﬂl(z) + e*ie?(l‘).

Since
e 9% | e—ba; _ e—(a+b)w(eaa: + ebw)

and

677191(.7:) +677202(m) _ e*i(ﬁl(m)+€2(m))(67161(:16) + 67}92(9:))

we obtain the equality

67(a+b)x(eaz + ebx) _ efcz(eaz + ebz)

by using (3.1) and (3.2).
Hence we get

(e(a+b—(i)w _ 1)(6”‘%‘ + eba:) =0

for all z € R. Especially

at+b—c)r __ 1

(
€ (eaz + ebz) =0

T

for all € R\ {0}. Thus letting 2 — 0 we obtain
the desired equality

a+b—c=0.

O

4. Generalizations. From the proof above
it would be easy to see that we have generalizations
of Theorems A and B by using results of [4-6].
Hence we notice simple results only.

(1) Dedekind case. Let (p(s) be the Dede-
kind zeta function of a finite extension field F' of the
rational number field Q. Let a, b, ¢ € iR and

Zge(s)= I  a-@@)"+ NP NP
PeSpecm(Op)

+ NPT

where P runs over the set Specm(Op) of maximal
ideals of the integer ring Op of F. Then we have
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exactly the same Theorems A and B chracterizing
(r(s — a)(r(s — b) among Z%¢(s) by using Theorem
1 of [5, §8] for Ey(F/F).

(2) Selberg case.

(or Ruelle) zeta function

Cu(s) = H

PePrim(M)

Let Cu(s) be the Selberg
(1-NP)™)™

of a compact Riemann surface M of genus g > 2,
where Prim(M) denotes the prime geodesics on M
with N(P) = exp(length(P)). Let a, b, ¢ € iR and

abc a b —s
Zies) =[] (- (N(P)"+N(P))N(P)
PePrim(M)
+ N(P)“ %)™
Then we have the same Theorems A and B

characterizing Cy(s — a)Cur(s —b) among  Z¢%(s)
by using Theorem 9 of [6, p. 232].

(3) More parameters. It is possible to gen-
eralize the situation with more parameters (or
representations). For example, let a, b, ¢, d € iR
and

z2%s)= I =" +p" +pp

p: prime
+ (pa+b +pb+(: + pc+a)p72s _ pdf&s)*l'

Then we have the following result by a similar
proof: Z%(s) is meromorphic in all s € C if and
only if a + b+ ¢ = d. This result characterizes {(s —
a)((s — b){(s — ¢) among Z%(s).

Moreover, we have the following Theorem C
generalizing Theorems A and B. This characterizes
C(s—ay) --C¢(s—ay) foray,...,a, € iR withn > 2.

Theorem C. For n>2 and ay,...,a,,b¢€
iR, let

25 =TI (@=p) (=)

p: prime
+ (=D (" —ptep )T

Then Z(s) has an analytic continuation to all s € C

as a meromorphic function if and only if a1 + -+ +

an, =b that is Z(s) =((s—a1)---((s —ay). When

a1+ -+ a, #0b, it holds that Z(s) is meromorphic

in Re(s) > 0 with the natural boundary Re(s) = 0.
Proof. The method is quite similar to the case

of n = 2 treated in the proofs of Theorems A and B.
We define

H(T) € 1+ TR(R)[T]
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H(T) = (1 — XalT) ce (]_ _ XanT)
+ (71)n(Xb - X(),1+.“+a")Tn
= 1= (Xas + o+ Xa)T + -+ (=1) 0T

Then it is sufficient to show the equivalence of
(1) a;+---+a, =9,

and
(2) H(T) is unitary.
()=(2): If a1 +---+a,="b, then H(T)=(1-

Xa, ) -+ (1 — Xq,T), which is unitary.
(2)==(1): Suppose that H(T) is unitary. Then, for
reR
H(T) = (1 —€"@7)... (1 - ™@71)
=1— (M@ 4. 4l 4.
+ (_1)nei(01(:zc)+~~~+€n(m))Tn
with 6, : R — R. By comparing with
HI(T) -1 (ealx R ea,,w)T N (_1)neben
we obtain the following identities for all x € R:

(4.1) " 4. e = @) Loy 6i971(ﬂ”)’

(An_1)  darsae y | et
i@ @)
+ ei(ﬁz(m)+~-+0n(a:))7
(4. n) eb:n — ei(%(:ﬂ)-&-m-&-@,,(a:)),

where (4. k) indicates the coefficients of T% in both
sides for k=1,n— 1,n.
Now, the complex conjugate of (4.1) gives

() e M 4.4 ™ = e @) 4 4 e a()
Dividing (4.n — 1) by (4.n) we get
e(a1+»~+an,17b)z 4t e(a2+<--+a,,,7b)x

= (2) L ... pmita(@)
that is
(ﬂ) 6(a1+...+an—b)x(e—alz 4ot efa"z)

= (@) ... 4 pmit(e),
Then (8) — («) implies
(e(a1+---+a,ﬁb)a: _ 1)(67(111 N efa,,w) =0

for all x € R. Hence we obtain

e(a1+~~+a,,—b)m _

(™4 +e ™) =0
x
for all z € R\ {0}. Thus, letting z — 0 we have

a1+...+an:b_ D
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