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Maximal L!-regularity for parabolic boundary value problems

with inhomogeneous data in the half-space
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Abstract:

June 12, 2020)

End-point maximal L!-regularity for the parabolic initial-boundary value

problem is considered in the half-space. For the inhomogeneous boundary data of both the
Dirichlet and the Neumann type, maximal L!-regularity for the initial-boundary value problem
of parabolic equation is established in time end-point case upon the Besov space as well as the
optimal trace estimates. We derive the almost orthogonal properties between the boundary
potentials of the Dirichlet and the Neumann boundary data and the Littlewood-Paley dyadic

decomposition of unity.
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1. Introduction. In this article,
concerned with maximal L!-regularity for the
initial-boundary value problem with inhomogene-
ous data of the parabolic equation in the half-space
RY.

Let X be a proper Banach space and A be a
closed linear operator in X with a dense domain
D(A). For an initial data uy € X and an external
force f e L(0,T;X) (1 < p < o0), let u be a solu-
tion to the abstract Cauchy problem:

we are

d
(1) Eu+Au—f,t>O u(0) = ug.
Then A has maximal L*-regularity if there exists a
d
unique solution u of (1) such that pr Au e
L?(0,T; X) satisfy the estimate
Lr(0,T;X)

<C(||uo||XD<A Al
L

under the restriction wg € (X,D(A)), Ly where
(X, 'D(A))1 1
between X and D(A), and C is a positive constant
independent of wy and f. Maximal regularity for

+ 1 Aul| oo 7x)

Lr(0 TX))

denotes the real 1nterpolat10n space
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Maximal L'-regularity; end-point estimate; initial-boundary value problem;

parabolic equations first developed by
Ladyzhenskaya-Solonnikov-Ural’tseva [12], then
studied by Da Prato-Grisvard [6] and Dore-Venni
[9], in the general framework on Banach spaces X
that satisfy the unconditional martingale differences
(called as UMD), well established especially by
Amann [1], [2], Denk-Hieber-Priiss [7], [8], Weis [21].
On the other hand, maximal regularity on non-
UMD Banach spaces, for instance non-reflexive
Banach space such as L' or L® requires independ-
ent arguments. For example, we have explicitly
proved maximal regularity on the homogenous
Banach spaces in [13]. Maximal L'-regularity for
the Cauchy problem is also shown by [4], [10], [11],
[14] in various non-UMD spaces.

2. The Dirichlet boundary condition
case. Let I =(0,7) with 0 <T < oco. Let u be a
solution of the initial-boundary value problem of
the second-order parabolic equation with variable
coefficients and the inhomogeneous Dirichlet boun-
dary condition in the half-space R’} = {z = (2/,z,);
¢ e Rz, >0}

n

Ofu — Z aij(t,x)0i0u = f, tel, v € R,

was

ij=1
(2) _ I / Rnfl
u|m":0 =g, tel, 2' € ,
U,y = uo, r e R,

where 0, and 0; := 0,, are partial derivatives with
respect to ¢t and x;, u = u(t, x) denotes the unknown
function, up = ug(x), f = f(t,x) and g = g(t,2') are
given initial, external force and boundary data,
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respectively. We assume that the coefficients
{aij(t, )}, <; j<, satisfy the following conditions:
Assumption: For 1<14,5<n,
(a) ay(t,z) = bij + bij(t, z),
(b) bij(t, @) = bji(t, z),
(c) there exists a constant ¢ > 0 such that for any
£eR”
Z aij(t7x)§i£j > C|£|2a (t,l‘) €lx Ri,
ij=1
(d) by € BUC(R.; B! (R)) for some 1 < g < oo,
where BUC denotes a set of all bounded
uniformly continuous functions.

For 1 <p<oco and a Banach space X, we
denote the Bochner-Lebesgue space L?(I; X) and
the inhomogeneous and homogeneous Bochner-
Sobolev spaces as W' (I; X), W'*(I; X), respec-
tively.

In this context, the following results have been
obtained by Weidemaier [20] and Denk-Hieber-
Priiss [8].

Proposition 1 (Dirichlet boundary condition,
[8],[20]). Letl<p,p<oo,l=(0,T)withT < .
Assume that the coefficients {aij}i<; <, satisfy
Assumption. Then the problem (2) admits a unique
solution

uwe WH (I, LP(RY)) N L°(I; W*P(RY))

if and only if

fe L’ (I;I’(RY)), uy€ BU VIR,

g € F, (I LPRY) 0 LA B VPR,
if 1 —1/(2p) > 1/p, then

UO(J?/, m”)|:v,,:0 = g(t’ x/)|t:0'

Besides there exists a constant Cp > 0 depending on
n, p, p, T such that the solution u is subject to the
inequality:

Oeuall Lo 1, mery) + ||V2U||Lp<1;Lv(R1))

< Or([luoll gea-ven gy + 1 Fll o120 ey )

Fllole3, v iz 19 oy vy

where |V2u| = (12 0, [0:05u’)?, LA(I; X)) de-
notes the p-th powered Bochner-Lebesgue space
upon a Banach space X and B%;,l/p(R"_l) and
F;y;l/%’(]; X) denote the interpolation spaces of the
Besov and Lizorkin-Triebel type, respectively.
Weidemaier [18] first obtained a trace theorem
for functions in anisotropic Sobolev spaces. Then he

[Vol. 96(A),

extended his result to a boundary trace of a solution
of parabolic equations in the Bochner space and
obtained the optimal trace estimate ([19], [20]) with
introducing the Lizorkin-Triebel space in the time
variable. In the proof of the results, he employed an
solution formula with respect to the time variable,
and the proof is involved the maximal function for a
test function and hence he imposed a restriction
2 < p < p < oo for exponents. Denk-Hieber-Priiss [8]
obtained the necessary and sufficient condition of
maximal regularity to the initial-boundary value
problem including higher order elliptic operators in
a domain Q2 C R" with a compact boundary. The
proof in [8] is based on the vector valued version of
Mikhlin’s Fourier multiplier theorem, and accord-
ingly the result is restricted in the cases 1 < p,p <
00. Their result is essentially a time local estimate
because the boundary conditions are limited in the
inhomogeneous real interpolation spaces.

In this article, we show time global mazimal
L'-regularity for the parabolic initial-boundary
value problem (2). Danchin-Mucha [5] obtained
time global maximal L'-regularity result for the
heat equation in the half-space with boundary data
g = 0. Therefore, it is essential to treat non-zero
boundary data g. We show the results and an
outline of the proof in this article. The full proof is
given in a paper elsewhere.

Since the global estimate requires the base
space for spatial variable x in the homogeneous
Besov space, we introduce the homogeneous Besov
space over R} (see for details Peetre [15], Triebel
16]).

Definition (The Besov and Lizorkin-Triebel
spaces). Let s€e R, 1 <p,0 < oo. Let {qﬁj}jez be
the Littlewood-Paley dyadic decomposition of unity
for € R", namely ¢(£) is the Fourier transform
of a smooth radial function ¢(z) with ¢(¢) >0,
supp¢ C {€ € R | 27! < |¢] <2}, and

6;(6) = 0(279), D9 =1
JEZ

forall £#0. For s€e Rand 1 < p,0 < oo, B;U(R”)
be the homogeneous Besov space with norm

1/c
(z 2y f||;§> C<oen

JEZ

171

Bp,u

sup 2%||¢; * f||;, o= 0.
jez

B';‘U(R”) denotes the inhomogeneous Besov space
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with a usual norm. For se R, 1 <p<ooand 1<
o<oo, I}, (R") be the homogeneous Lizorkin-
Triebel space with norm

1/c
(Z 27| f(‘)|o> ,

I, = P
., — 1< o< oo,
sup 2°9l6; + F)|| 0= .
jezZ »
We define the homogeneous Besov space Im(R”)

as the set of all measurable functions f in R
satisfying

11 ey = {17
f-~ — { f(.’IJ/,:Bn)

any extension

B';J‘U(R”') < 005

(xn, > 0) }}
(xn < 0) '
Definition (The Bochner-Lizorkin-Triebel spaces).
Let se R, 1 <p,0 <00 and X(R}) be a Banach
space on R, with the norm || - || x. Let {93} .5 be the
Littlewood-Paley dyadic decomposition of unity for
teR. ForseRand 1<p< oo, pg(R X) be the
Bochner-Lizorkin-Triebel space with norm

171

Es (R X)

1/c
(Z?”’“iwk*fa,-)n;'() :
_ keZ D(®R)
B 1 <o < o0,
su AL H , o = 00.
ap 2+ x|
Analogously above, we define the Bochner-

Lizorkin-Triebel spaces sz-,zr([; X) as the set of all
measurable functions f on X satisfying

11 0 = it { 17
J; _ { f(t,z)

any extension

Ey,(RX) < 0%

cemin b

We note that all the spaces of homogeneous type
are understood as the Banach spaces by introducing
the quotient spaces identifying all polynomial dif-
ferences.

The next theorems are our main results max-
imal L!-regularity for the problem (2).

Theorem 2 (The Dirichlet, constant coeffi-
cients case). Let 1 <p < oo and assume that the
coefficients {aij}lgi,jgn satisfy Assumption and be
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constants. Then the problem (2) admits a unique
solution

we WH (R BY, (D) N LRy B2 (RY))

if and only if the external, initial and boundary data
in (2) satisfies
feL'(Ry;B)(RY)), € B (R,
ge FI*I/ZP(R_'_; 20 (Rnfl))
NL' (R By, “P(R" ).

respectively. Besides the solution u satisfies the
following estimate for some constant C > 0 depend-
ing only on p and n
2
||atu||L1(R+;BS_1(R$)) +1IV u||L1(R+;B']‘]_1(R1))
< C'(||“0HB;;.,(R1) + ||f||L1(R+;BIL))J(Ri))
+ ||g||FIIVII/ZI)(R+;B'2.1(Rn—l))
gl oo y)-
Theorem 3 (The Dirichlet, variable coeffi-
clents case). Let 1 <p<oo. Assume that the
coefficients {aij},<; <, satisfy Assumption. For

any T < oo, let I =(0,T). Then the problem (2)
admits a unique solution

we W1 BY,(RL)) N L'(I; B2 | (RY))

if and only if the external force, the initial data and

the boundary data satisfy
VS Ll(I; Bgl(Ri))a up € Bgl(RfiL—)v
ge B B), (R N LU By PR,

respectively. Besides the solution u satisfies the
following estimate for some constant Cy =
C]\J(nap7 q, aij) >0

[[Osull 11 LB, (RL) T v ull LB (RY)
T
<Cur [ TN f(5)] 5,
0 .
g . ul
+ Cﬂf(l + 12?2(” ||blﬂ||L°°(I;B;L_/lq))e
(ol + ol - ey,

+ Hg”Ll(I;B;’II/P(Rn—I)));

where p = C3%log(1 + Cyy).
Remarks.

(a) Since 1-— % <1 for all 1 <p < oo, the com-
patibility condition
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UO(I/7 l'n)|;p,,:0 = g(t) z/)|t:0

holds in the trace sense and does not necessa-
rily hold in the point-wise sense.
(b) In Theorems 2 and 3, it holds that

u € Cy([0,00); BY, (RY)),
u € Cb([O, T)? 321(R:7L))a

respectively, where Cj is the set of all contin-

uous and bounded functions.

(¢) In Theorem 2, a similar estimate for the finite
time interval I = (0,7) with T < oo is also
available. In such a case the class of wug is
relaxed into Bgl(Ri) > BBJ(RTD and the
bound C can be estimated as C' = O(log T').

3. Outline of the proof. First we decom-
pose the problem (2) into the homogeneous and
inhomogeneous problems on the boundary condi-
tions. Let

u(ta ‘T) =u (t7 x)'a:,,>0 + u2(t, x) + U3(t, SC),

where each function solves the following decom-
posed equations:

8{&1 — Aul = 0, t> 0, xr € Rn,
3 up(2', T, >0
( ) U1|f:O: ()( ;/n); n 9 :EER”,
/ _UO(I ) _IT’)7 Ty < 07
Oyus — Auy = 0, t>0, xERi,
(4)q wal, o =9—wl,o=h, t>0, ¥ e R,
u2|t:0:07 IERZ,
(9tU3 — Z aij(t,x)&a,ug
1<i,5<n
=f+ > byt 2)0:0;(ur + u)
t>0, zeR],
ugl, _o =0, t>0, 2 eR",
’U,3|t:0 =0, oSS Ri

The problem (3) is considered by Chemin [3] and
Danchin [4]. The third problem (5) is a simple
extension by the odd reflection of the Cauchy
problem in the whole space which is analyzed by
Danchin [4] and authors [14]. Therefore we only
consider the initial-boundary problem of the
heat equation in the half-space (4) with non-zero
Dirichlet boundary data h. Applying the Laplace
transform with respect to time and the partial
Fourier transform with respect to z’, we obtain

[Vol. 96(A),

A+ €] = 02 Lu(N, €, 2,) =0,
Lu(X,€,0) = Lh(N,€).

Then it follows that
E’U,()\, 6/7 wn) = Eh(A7 5/)6_\/W17n7

where we use a branch such that Re /A + [¢/]* > 0.
Hence the solution of (4) is expressed by

Cn—1
t =
ut, z) 27
> / e/\t/ eif[;’-f/‘ch(A7é—/)ef\/)r‘rlf,‘zﬂindg/d)\’
T Rn—l

where ¢, 1 = (27r)7(n71)/2. By taking a limit proce-

dure, we take the path of integral I' = iR and \ =
iT. We set x,, =: 1 like a parameter and

\I/thn

th+w
= / / r
R!

Then it holds that

Sult, o', m) = L ire VITHEM) « n(t, ')
- niQ\IID(ta ‘Tla 77) * h(tv 'T/)'

e Vil uge ar.

Here we introduce {®,(z)},,c, as a Littlewood-
Palay dyadic decomposition for x = (2/,z,). For
m € Z, let ¢m(&,) be a smooth function such that
(n(&,) =1for 0 < |€,] < 2™ and = 0 for 2™ < €, ],
and set

8,,(6) == o (I€]) ® Cu1(6) + Cn(1€]) @ G (&)
Then

Y b =1, W=

meZ

(€',6:) € RL\ {0}

Using {®,,(x)},,cz, We obtain

Z ||q>m

meZ

1Beu(®)ll g0, ey 1720 p % h) ()| (e

Next we split the boundary data h as

h(t,z")
_Zz¢k W ¢m " ;)h(t,x’)
keZ meZ g
Z<Z+Z>wk *¢m ) *Ih(t,.’lj‘,)
keZ \2m<k 2m>k €

= hp(t,2') + hs(t, 2'),

where 9(t) and ¢, (2') are the Littlewood-Palay
decomposition of unity for ¢ and z’ respectively. The
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term hr(t,2') where summation with respect to m
runs 2m < k is time dominated and the term
hs(t,2’) where summation with respect to m runs
2m > k is space dominated. The following almost
orthogonality is the key to our argument.

Lemma 4 (Almost orthogonality). For any
nel =272, there exists C, > 0 such that

|wott.a’sm) =, wxlt) x oula)

L,
C,2"2(1 +2(n+2)(k721)) 672%“'*2“ 2
2k ()?’
< 2m < k,
< k
c, 92(m—1) (1 +2(n+2) (m— 2)) m-o 2 ,
2+(t)
2m >k
Applying Lemma 4, we obtain
> 1@+ (7 WD % b)) o mey
meZ L'(R)
< CHh”Fl 1R, BU (R
D @ * (772 # )| oy
meZ L'(R)
S OHh’”Ll(R B /P(Rn 1))

where constant C' > 0 is mdependent of h.

Finally, the necessity is obtained by the
following optimality trace.

Lemma 5 (The Dirichlet boundary trace).
Let 1 <p<oo. There exists a constant C >0
depending only on p and n such that for all func-
tionsu = u(t,x', x,) € WH (Ry; B0 {(R))NLY Ry
Bz,l(Ri)) with u(0,2) =0

xfgr%('lu(" Sl e, o)

+ ||u(, *y xn)||L1(R+;B;II/P<R7H)))
< C(||3tu||L1(R+;B;j_l(Rg)) + ||V2U||L1(R+;BBJ(RD))~

4. The Neumann boundary condition
case. Similar to the initial-boundary value prob-
lem with the Dirichlet condition, we consider the
initial-boundary value problem of the Neumann
boundary condition:
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oru — Z aij(t,x)0;0;u = f, tel, rcRl,
4j=1
(6)

tel, 2/ e R},
n
zeR].

a7lru’|ac,,:0 =9

uly_g = ug,

For the case of Neumann boundary problem (6), we
obtain maximal L!'-maximal regularity results in
the similar manner as in the proof of Dirichlet
boundary condition case.

Theorem 6 (The Neumann, constant coeffi-
cients case). Let 1 <p < oo and assume that the
coefficients {aij}i<; <, satisfy Assumption and be
constants. Then the problem (6) admits a unique
solution

uwe W (R BY (R})) N LY (Ry; B (RY))
if and only if
feL'(Ry;B)(RY)), wu€ By,
g€ B (R B (RMY))
NL'(R:: B, “p<R" H)

(RY),

respectively. Besides the solution u satisfies the
following estimate for some constant C > 0 depend-
ing only on p and n

19l gm0, ey + IVl gm0, ey
< C(HUOHBS’](R"_) Tl w0, @)

gl o)

+ ||g||L1(R+;Bll)]1/l'<Rn—1))) .

Theorem 7 (The Neumann, variable coeffi-
clents case). Let 1 <p < oo and assume that the
coefficients {aij},<; j<, satisfy Assumption. For any
T < oo, let I = (0,T). Then the problem (6) admits a
unique solution

(= Wl’l(]; 321(R1)) N LI BZl(Ri))
if and only if the external force, the initial data and
the boundary data satisfy

f € LY(I; By, (RY)),

Uy € Bol(Rn)
g BV B (R)

1-1 _
nLY(L B, PR,
respectively. Besides the solution u satisfies the

following estimate for some Cy =
CJ\J(”; D, q, aij) >0

constant
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2
Hatu”Ll(I;BS‘l(Ri)) + v uHLl(];ngl(R’i))
T
<Cur [ TN f(o)] 0,
0 P
- . wT
+Cu (1 + max b, ||LM(I;BZY/1Q)) e
x (Ihuoll o, + gl gz o oy

+ ||gHL1(I;BII))’|1/"(R"*1))) 5

where = C3%,log(1+ Cyy).

5. Further problems. It is possible to ex-
tend the results to more general domain €2 such as a
bounded domain with smooth boundary if B;M(Q) is
the restriction of By (R") (cf. Triebel [17]).
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