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New results on slowly varying functions in the Zygmund sense
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Abstract:

Very recently Seneta [15] has provided a characterization of slowly varying

functions L in the Zygmund sense by using the condition, for each y > 0,

" (Mo

L(x)

—1)—>0asx—>oo.

We extend this result by considering a wider class of functions and a more general condition than
(1). Further, a representation theorem for this wider class is provided.
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1. Introduction. The notion of ultimately
monotony introduced by Zygmund dates back to
works like [16, p. 237] and [17, p. 186]. It says that a
function U > 0 is slowly varying if for each € > 0
the function z°U(x) is ultimately increasing and
x~U(x) is ultimately decreasing. The class of this
type of functions is called the Zygmund class (ZSV).
A different kind of slowly varying functions was
defined by Karamata [6,7] known as simply the
class of slowly varying functions (KSV). It is known
that any ZSV function is a KSV function, see
[17,p. 186] and e.g. [14, p. 49].

A number of authors have analyzed general-
izations of the functions ZSV, by considering U(x)/
7% is increasing and U(z)/2" is decreasing, with
—o0<a<b<oo [3,4,11]. This type of functions
have applications in analysis, differential equations
and approximation theory [4,5,9,12]. Also, they are
related with the notion of quasi-convexity, leading
to applications in probability [8,13].

Very recently [15] has given an elegant char-
acterization of the ZSV functions in terms of the
condition (1).

In this paper, we extend this result by consid-
ering a wider notion of ultimately monotony than
that proposed by Zygmund. Consequently, a more
general limit than that involved in (1) is provided.
To this aim, we take into account functions related
to self-neglecting functions and to functions belong-
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ing to T'g(g). This type of functions have been deeply
studied in [10].

In what follows, a brief review of functions that
belong to the gamma class and related classes of
functions is shown. Next, the new class called
Z(g,a) is introduced and then a result of Zygmund
type. That section then presents an extension of
Theorem 2 in [15] and a characterization of the
members of Z(g,a).

2. Main Results.

2.1. Preliminaires. In Omey [10] the author
studied the following class of functions.

The positive and measurable function g is self-
neglecting (notation: g € SN) if it satisfies

g(z +yg(x))
g(x)
and locally uniformy in y.

The positive and measurable function a is in
the class T'y(g) if g € SN and if

a(z + yg(x))
a(z)
In [10] it is proved that this relation automatically
holds locally uniformly in y.

The positive and measurable function is in the
class ET,(g,a) if g € SN, a € T'y(g) and

f(@+yg(z)) — f(z)
a(z)
In [10] it is proved that this relation automati-
cally holds locally uniformly in y.

Note that if a(x)/f(xz) — 0, we find that f €
T'y(g) with a remainder term.

—1,VyeR

— e Vy € R.

— ay,Vy € R.
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In [10] the author proved that for g € SN and
a € T'y(g) we have f € ET(g,a) if and only if f is of
the form f(x) = A(G(x)), where A € II,(L) and G €
I'y(g) where L € RV, and g € SN.

In [10, Theorem 2.2] the author also showed
that for g € SN and a € T'y(g) we have f € ET,(g,a)
if and only if f can be represented as

fle)=C+W(z) + a/ @dt + V(x),
° g(t)
where V(x)/a(z) — 0 and W'(z)g(z)/a(z) — 0.

2.2. The class Z(g,a). In view of Zygmund
we consider the following class of functions. We
assume that g€ SN and a €I'y(g) and we also
assume that g(z) = o(a(x)). The positive and meas-
urable function U(zx) is in the class Z(g,a) if it
satisfies:

. a(z) (U(z +yg(x))
@ I < Ul)
(

From (2) it follows that U € I'y(g) and also that

o a(z)
®) 2 0@
so that U € ET(g,b), where b(x)=g(x)U(x)/
a(z) € To(g).

From (1) it also follows that

) Uz +yg(z))
@ e U(x)

so that logU(x) € ETy(g,b) where b(x)= g(x)/
a(x) € To(g)-

From the previous subsection we have that in
each of the relations (2)—(4), the relation holds l.u.
iny e R.

The representation result of the previous sub-
section (with a =0) shows that logU(x) can be
written as:

1) =0,Vy € R.

(U(z +yg(z) —U(x)) =0,Vy € R,

a(x)

log =0,Vy € R,

logU(z) = C + W(x) + V(x),

where V(2)a(z)/g(x) — 0 and W'(z)a(z) — 0.

2.3. Result of Zygmund type. A positive
and measurable function L is in the Zygmund class
of slowly varying functions if for any fixed ¢ > 0 and
any y > 0,

#°L(z) < (@ +y) L@+ )
and

rL(z) > (v +y) Lz +y).
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This class of functions is a subclass of the class of
slowly varying functions in the sense of Karamata.

Seneta [15] proved that L is in the Zygmund
class of SV functions if and only if

S

lim x
r—00

—1) =0,Vy € R.

In this section we generalize the result of
Seneta to the class Z(g,a). We prove the following
result:

Theorem 1. Assume that g€ SN, a € T'y(g)
and g(x) = o(a(z)). Lety > 0. The inequalities, for
large and € > 0,

z+yg(x)

U(x + yg(r)) x expe/ a”'(t)dt

> U(x) x expe/ ’a’l(t)dt

and
atyg(x)
U(x + yg(r)) x exp —e/ a t(t)dt

< U(z) X exp —e/‘ a”(t)dt,

hold if and only if U € Z(g,a).

Proof. Assume that U € Z(g,a). Let y > 0. We
consider for € € R the function V(z)=U(x) x
expe [ a”!(t)dt.

We then have

V(z +yg(x)) = V(z)

V(x)
U z+yg(x)
= Ule + yg(w)) expe/ a t(t)dt — 1
Ul(z) @
—[+1I,
where

I= (W — 1) exp e /:WQ(Z) a ' (t)dt,

z+yg(w)
I = expe/ a l(t)dt — 1.

In the second term we have (put ¢t = = + 0g(z))

wtygle) _glx) (Y alz)
/z a " (t)dt = a(m)/o a(z + Og(x)) 6.

Since a € T'y(g), we have

z+yg(x)
/ a ' (t)dt ~

and we obtain that

glx) V. g(@)
o M=
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%H — €y.

Now consider the first term. By assumption we have
o) (Ve i) )
- — 0.
g(x) Ul(x)
We conclude that

M(IJrH) — €y.

g(x)

Moreover, as we argued before, this relation holds
L.u. in y > 0. This implies that for z large enough,
the sign of I + II is the same as the sign of €. The
inequalities of the theorem then follow.

Now we prove a converse result.

Starting from the inequalities in the theorem,
for y > 0 and € > 0 we have

r+yg(z)
expe/ a ' (t)dt
x

U z+yg(x)
> w > exp _6/ ail(t)dt
U(z) @

with a and g as above. It follows that

e ()00 (M) )

Since € was arbitrary, we find that

a(w) (Ule+y0()
g<m>< Ux) 1) o

The theorem then follows. (]
Special Cases

(a) As a first case, we take g(z) =1 and a(z) = z,
2° = 1. In this case we find back the result of
Seneta as mentioned above.

(b) As a second case, we take g(z) =1 and a(z) =
Vv, 2° = 0. We find that

if and only if for z large and € > 0 we have
Tty
U(z +y) x exp e/ 2t
0

> U(x) x expe/ 12t
0

and
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Tty
U(z +y) x exp —e/ t12at
0

< U(z) x exp —e/ 1 2a,
0

or
Uz +y) x exp2e(z +y)"/* > U(z) x exp 2ex'/?

and

Uz +y) x exp —2¢(x + y)l/2

< U(z) x exp —2ex'/?,

(¢) Now we assume that g(z) =1 and a(x) € RV),
with 0 < A < 1. In the case we find that

/ L
e a(t) a(z)(1=N)’

where f(z) ~ g(z) means lim, . f(x)/g(x) =
1. Using this relationship, we can alter the
inequalities in the lemma to find

U(x+y) xexpeA(z +y) > U(z) x expeA(z)
and
U(x +y) x exp —eA(z + y)
< U(x) x exp —eA(x),
where A(z) = z/a(x) € RVi_).
(d) As a next example, we take V(z)=U(z) x
e ™. Clearly we have

if and only if

and the previous results can be applied.

2.4. A representation theorem for Z(g,a).
The following result is inspired by a result of
Bojanic and Karamata [2] on the Zygmund class,
see e.g. Theorem 1.5.5 in [1].

Theorem 2. Assume that g€ SN, a € Ty(g),
g(z) = o(a(x)) and g(xr) >0. Assume that U €
Z(g,a). Then, for some function [ and for x > A
for some A >0,
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U(x) =expc+ /Aw f(t)dt

where a(z) f(z) — 0.

Proof. Let U € Z(g,a). Then, by Theorem 1,
the inequalities in such a theorem hold. Taking
logarithms in such inequalities, denoting V(z) =
logU(x), gives for > z° for some 2° > 0 and ¢ > 0

r+yg(x)

V(z+yg(z)) + e/ a”l(t)dt

> V(x) +e/ .

x°

T

a”'(t)dt
and

atyg(w)
V(x4 yg(x)) — e/ a”'(t)dt

<V(z) - e/w a”'(t)dt.

o

Whence we have

z+yg(x)
Viz+ yg(z)) — V(z) > —c / (1)t

and

z+yg(x)
V@+w@»—wm5e/ o\ (),

and thus

z+yg(w)
Wu+wu»—wm$e[ o~ (t)dt.

We then have, put t = z + 6g(z),
glz) (v az)
G@XA a(z + 0g(z))

Since a € Ty(g), we have for x > z* for some
x* > 2° and for any 0 € [0, ]

a(x) .
a(z + bg(x)) slte

de.

V(z +yg(z)) - V(z)| <€

Thus we have, as x — o0,

g(x)
N
a(x)
This convergence is uniform on y € [0, 4) for
any A > 0. Moreover, V is ultimately absolutely
continuous, thus then V is ultimately differentiable
almost everywhere.

Therefore, we have,
A > max(z°, z*),

() V(z+uyg(x)) = V(z)| < (1+e)ey

for z>A for some
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Viz) =V(A4) + /: f(t)dt

where f is a measurable function satisfying f(z) =
V'(z) almost everywhere in (A,00). One may
redefine f(z) =0 where V'(x) does not exist. Also,
according to (5), we have, taking z = x + yg(x), for
x> A,

a(2)|V(2) = V(z)] < (1+€)e|z — .

Then, when y — 0, which implies that z — =,
we have, for x enough large such that V’(z) exists,

—(1+ee<al@)V'(z) < (1+e€)e

which implies that a(z)V'(z) — 0 as  — oo. Hence,
we have

U(x) =expV(z) =expV(4) + /Al' f(t)dt.

O
Remarks 3.
(a) It is easy to prove that the converse of
Theorem 2 holds.
(b) If L is slowly varying in the sense of Zygmund,
this function thus has the canonical represen-
tation given by, see e.g. [15],

L(z) =expc+ /1’ <)

—~dt,
st

for a constant ¢ and a bounded measurable
function e(z) which satisfies e(x) — 0 as = —
oo. Taking g(z) =1 and a(x) = x, these con-
ditions satisfy g € SN and g(z) = o(a(x)). We
then have a(x)(e(z)/z) — 0 as x — oo. The
previous remark thus implies that L € Z(g, a).
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