
New results on slowly varying functions in the Zygmund sense

By Edward OMEY
�Þ and Meitner CADENA

��Þ

(Communicated by Masaki KASHIWARA, M.J.A., June 12, 2020)

Abstract: Very recently Seneta [15] has provided a characterization of slowly varying

functions L in the Zygmund sense by using the condition, for each y > 0,

x
Lðxþ yÞ
LðxÞ � 1

� �
! 0 as x!1:ð1Þ

We extend this result by considering a wider class of functions and a more general condition than

(1). Further, a representation theorem for this wider class is provided.
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1. Introduction. The notion of ultimately

monotony introduced by Zygmund dates back to

works like [16, p. 237] and [17, p. 186]. It says that a

function U � 0 is slowly varying if for each � > 0
the function x�UðxÞ is ultimately increasing and

x��UðxÞ is ultimately decreasing. The class of this

type of functions is called the Zygmund class (ZSV).

A different kind of slowly varying functions was

defined by Karamata [6,7] known as simply the

class of slowly varying functions (KSV). It is known

that any ZSV function is a KSV function, see

[17, p. 186] and e.g. [14, p. 49].

A number of authors have analyzed general-

izations of the functions ZSV, by considering UðxÞ=
xa is increasing and UðxÞ=xb is decreasing, with

�1 < a � b <1 [3,4,11]. This type of functions

have applications in analysis, differential equations

and approximation theory [4,5,9,12]. Also, they are

related with the notion of quasi-convexity, leading

to applications in probability [8,13].

Very recently [15] has given an elegant char-

acterization of the ZSV functions in terms of the

condition (1).

In this paper, we extend this result by consid-

ering a wider notion of ultimately monotony than

that proposed by Zygmund. Consequently, a more

general limit than that involved in (1) is provided.

To this aim, we take into account functions related

to self-neglecting functions and to functions belong-

ing to �0ðgÞ. This type of functions have been deeply

studied in [10].

In what follows, a brief review of functions that

belong to the gamma class and related classes of

functions is shown. Next, the new class called

Zðg; aÞ is introduced and then a result of Zygmund

type. That section then presents an extension of

Theorem 2 in [15] and a characterization of the

members of Zðg; aÞ.
2. Main Results.

2.1. Preliminaires. In Omey [10] the author

studied the following class of functions.

The positive and measurable function g is self-

neglecting (notation: g 2 SN) if it satisfies

gðxþ ygðxÞÞ
gðxÞ

! 1; 8y 2 R

and locally uniformy in y.

The positive and measurable function a is in

the class ��ðgÞ if g 2 SN and if

aðxþ ygðxÞÞ
aðxÞ

! e�y; 8y 2 R:

In [10] it is proved that this relation automatically

holds locally uniformly in y.

The positive and measurable function is in the

class E��ðg; aÞ if g 2 SN , a 2 �0ðgÞ and

fðxþ ygðxÞÞ � fðxÞ
aðxÞ ! �y; 8y 2 R:

In [10] it is proved that this relation automati-

cally holds locally uniformly in y.

Note that if aðxÞ=fðxÞ ! 0, we find that f 2
�0ðgÞ with a remainder term.
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In [10] the author proved that for g 2 SN and

a 2 �0ðgÞ we have f 2 E��ðg; aÞ if and only if f is of

the form fðxÞ ¼ AðGðxÞÞ, where A 2 ��ðLÞ and G 2
�1ðgÞ where L 2 RV0 and g 2 SN .

In [10, Theorem 2.2] the author also showed

that for g 2 SN and a 2 �0ðgÞ we have f 2 E��ðg; aÞ
if and only if f can be represented as

fðxÞ ¼ C þW ðxÞ þ �
Z x

x�

aðtÞ
gðtÞ

dtþ V ðxÞ;

where V ðxÞ=aðxÞ ! 0 and W 0ðxÞgðxÞ=aðxÞ ! 0.

2.2. The class Zðg; aÞ. In view of Zygmund

we consider the following class of functions. We

assume that g 2 SN and a 2 �0ðgÞ and we also

assume that gðxÞ ¼ oðaðxÞÞ. The positive and meas-

urable function UðxÞ is in the class Zðg; aÞ if it

satisfies:

lim
x!1

aðxÞ
gðxÞ

Uðxþ ygðxÞÞ
UðxÞ � 1

� �
¼ 0; 8y 2 R:ð2Þ

From (2) it follows that U 2 �0ðgÞ and also that

lim
x!1

aðxÞ
gðxÞUðxÞ

ðUðxþ ygðxÞ � UðxÞÞ ¼ 0; 8y 2 R;ð3Þ

so that U 2 E�0ðg; bÞ, where bðxÞ ¼ gðxÞUðxÞ=
aðxÞ 2 �0ðgÞ.

From (1) it also follows that

lim
x!1

aðxÞ
gðxÞ

log
Uðxþ ygðxÞÞ

UðxÞ
¼ 0; 8y 2 R;ð4Þ

so that logUðxÞ 2 E�0ðg; bÞ where bðxÞ ¼ gðxÞ=
aðxÞ 2 �0ðgÞ.

From the previous subsection we have that in

each of the relations (2)–(4), the relation holds l.u.

in y 2 R.

The representation result of the previous sub-

section (with � ¼ 0) shows that logUðxÞ can be

written as:

logUðxÞ ¼ C þW ðxÞ þ V ðxÞ;

where V ðxÞaðxÞ=gðxÞ ! 0 and W 0ðxÞaðxÞ ! 0.

2.3. Result of Zygmund type. A positive

and measurable function L is in the Zygmund class

of slowly varying functions if for any fixed � > 0 and

any y > 0,

x�LðxÞ � ðxþ yÞ�Lðxþ yÞ

and

x��LðxÞ � ðxþ yÞ��Lðxþ yÞ:

This class of functions is a subclass of the class of

slowly varying functions in the sense of Karamata.

Seneta [15] proved that L is in the Zygmund

class of SV functions if and only if

lim
x!1

x
Lðxþ yÞ
LðxÞ � 1

� �
¼ 0; 8y 2 R:

In this section we generalize the result of

Seneta to the class Zðg; aÞ. We prove the following

result:

Theorem 1. Assume that g 2 SN , a 2 �0ðgÞ
and gðxÞ ¼ oðaðxÞÞ. Let y > 0. The inequalities, for x

large and � > 0,

Uðxþ ygðxÞÞ � exp �

Z xþygðxÞ

x�
a�1ðtÞdt

� UðxÞ � exp �

Z x

x�
a�1ðtÞdt

and

Uðxþ ygðxÞÞ � exp��
Z xþygðxÞ

x�
a�1ðtÞdt

� UðxÞ � exp��
Z x

x�
a�1ðtÞdt;

hold if and only if U 2 Zðg; aÞ.
Proof. Assume that U 2 Zðg; aÞ. Let y > 0. We

consider for � 2 R the function V ðxÞ ¼ UðxÞ �
exp �

R x
x� a

�1ðtÞdt.
We then have

V ðxþ ygðxÞÞ � V ðxÞ
V ðxÞ

¼ Uðxþ ygðxÞÞ
UðxÞ

exp �

Z xþygðxÞ

x

a�1ðtÞdt� 1

¼ I þ II ;

where

I ¼
Uðxþ ygðxÞÞ

UðxÞ � 1

� �
exp �

Z xþygðxÞ

x

a�1ðtÞdt;

II ¼ exp �

Z xþygðxÞ

x

a�1ðtÞdt� 1:

In the second term we have (put t ¼ xþ �gðxÞ)Z xþygðxÞ

x

a�1ðtÞdt ¼
gðxÞ
aðxÞ

Z y

0

aðxÞ
aðxþ �gðxÞÞ d�:

Since a 2 �0ðgÞ, we haveZ xþygðxÞ

x

a�1ðtÞdt �
gðxÞ
aðxÞ

Z y

0

1d� ¼
gðxÞ
aðxÞ

y

and we obtain that
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aðxÞ
gðxÞ

II ! �y:

Now consider the first term. By assumption we have

aðxÞ
gðxÞ

Uðxþ ygðxÞÞ
UðxÞ � 1

� �
! 0:

We conclude that

aðxÞ
gðxÞ ðI þ II Þ ! �y:

Moreover, as we argued before, this relation holds

l.u. in y > 0. This implies that for x large enough,

the sign of I þ II is the same as the sign of �. The

inequalities of the theorem then follow.

Now we prove a converse result.

Starting from the inequalities in the theorem,

for y > 0 and � > 0 we have

exp �

Z xþygðxÞ

x

a�1ðtÞdt

�
Uðxþ ygðxÞÞ

UðxÞ
� exp��

Z xþygðxÞ

x

a�1ðtÞdt

with a and g as above. It follows that

��y � lim
sup

inf

� �
aðxÞ
gðxÞ

Uðxþ ygðxÞÞ
UðxÞ � 1

� �
� �y:

Since � was arbitrary, we find that

aðxÞ
gðxÞ

Uðxþ ygðxÞÞ
UðxÞ

� 1

� �
! 0:

The theorem then follows. �

Special Cases

(a) As a first case, we take gðxÞ ¼ 1 and aðxÞ ¼ x,

x� ¼ 1. In this case we find back the result of

Seneta as mentioned above.

(b) As a second case, we take gðxÞ ¼ 1 and aðxÞ ¼ffiffiffi
x
p

; x� ¼ 0. We find that

ffiffiffi
x
p Uðxþ yÞ

UðxÞ � 1

� �
! 0

if and only if for x large and � > 0 we have

Uðxþ yÞ � exp �

Z xþy

0

t�1=2dt

� UðxÞ � exp �

Z x

0

t�1=2dt

and

Uðxþ yÞ � exp��
Z xþy

0

t�1=2dt

� UðxÞ � exp��
Z x

0

t�1=2dt;

or

Uðxþ yÞ � exp 2�ðxþ yÞ1=2 � UðxÞ � exp 2�x1=2

and

Uðxþ yÞ � exp�2�ðxþ yÞ1=2

� UðxÞ � exp�2�x1=2:

(c) Now we assume that gðxÞ ¼ 1 and aðxÞ 2 RV�
with 0 < � < 1. In the case we find thatZ x

x�

1

aðtÞ dt �
x

aðxÞð1� �Þ ;

where fðxÞ � gðxÞ means limx!1 fðxÞ=gðxÞ ¼
1. Using this relationship, we can alter the

inequalities in the lemma to find

Uðxþ yÞ � exp �Aðxþ yÞ � UðxÞ � exp �AðxÞ

and

Uðxþ yÞ � exp��Aðxþ yÞ
� UðxÞ � exp��AðxÞ;

where AðxÞ ¼ x=aðxÞ 2 RV1��.
(d) As a next example, we take V ðxÞ ¼ UðxÞ �

e��x. Clearly we have

Uðxþ yÞ
UðxÞ � e�y ¼ e�y

V ðxþ yÞ
V ðxÞ � 1

� �

and then,

bðxÞ Uðxþ yÞ
UðxÞ

� e�y
� �

! 0

if and only if

bðxÞ
V ðxþ yÞ
V ðxÞ � 1

� �
! 0;

and the previous results can be applied.

2.4. A representation theorem for Zðg; aÞ.
The following result is inspired by a result of

Bojanic and Karamata [2] on the Zygmund class,

see e.g. Theorem 1.5.5 in [1].

Theorem 2. Assume that g 2 SN , a 2 �0ðgÞ,
gðxÞ ¼ oðaðxÞÞ and gðxÞ > 0. Assume that U 2
Zðg; aÞ. Then, for some function f and for x � A
for some A > 0,
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UðxÞ ¼ exp cþ
Z x

A

fðtÞdt

where aðxÞfðxÞ ! 0.

Proof. Let U 2 Zðg; aÞ. Then, by Theorem 1,

the inequalities in such a theorem hold. Taking

logarithms in such inequalities, denoting V ðxÞ ¼
logUðxÞ, gives for x � x� for some x� > 0 and � > 0

V ðxþ ygðxÞÞ þ �
Z xþygðxÞ

x�
a�1ðtÞdt

� V ðxÞ þ �
Z x

x�
a�1ðtÞdt

and

V ðxþ ygðxÞÞ � �
Z xþygðxÞ

x�
a�1ðtÞdt

� V ðxÞ � �
Z x

x�
a�1ðtÞdt:

Whence we have

V ðxþ ygðxÞÞ � V ðxÞ � ��
Z xþygðxÞ

x

a�1ðtÞdt

and

V ðxþ ygðxÞÞ � V ðxÞ � �
Z xþygðxÞ

x

a�1ðtÞdt;

and thus

jV ðxþ ygðxÞÞ � V ðxÞj � �
Z xþygðxÞ

x

a�1ðtÞdt:

We then have, put t ¼ xþ �gðxÞ,

jV ðxþ ygðxÞÞ � V ðxÞj � �
gðxÞ
aðxÞ

Z y

0

aðxÞ
aðxþ �gðxÞÞ

d�:

Since a 2 �0ðgÞ, we have for x � x� for some

x� � x� and for any � 2 ½0; y	
aðxÞ

aðxþ �gðxÞÞ � 1þ �:

Thus we have, as x!1,

jV ðxþ ygðxÞÞ � V ðxÞj � ð1þ �Þ�y gðxÞ
aðxÞ

! 0:ð5Þ

This convergence is uniform on y 2 ½0; AÞ for

any A > 0. Moreover, V is ultimately absolutely

continuous, thus then V is ultimately differentiable

almost everywhere.

Therefore, we have, for x > A for some

A � maxðx�; x�Þ,

V ðxÞ ¼ V ðAÞ þ
Z x

A

fðtÞdt

where f is a measurable function satisfying fðxÞ ¼
V 0ðxÞ almost everywhere in ðA;1Þ. One may

redefine fðxÞ ¼ 0 where V 0ðxÞ does not exist. Also,

according to (5), we have, taking z ¼ xþ ygðxÞ, for

x � A,

aðxÞjV ðzÞ � V ðxÞj � ð1þ �Þ�jz� xj:

Then, when y! 0, which implies that z! x,

we have, for x enough large such that V 0ðxÞ exists,

�ð1þ �Þ� � aðxÞV 0ðxÞ � ð1þ �Þ�

which implies that aðxÞV 0ðxÞ ! 0 as x!1. Hence,

we have

UðxÞ ¼ expV ðxÞ ¼ expV ðAÞ þ
Z x

A

fðtÞdt:

�

Remarks 3.

(a) It is easy to prove that the converse of

Theorem 2 holds.

(b) If L is slowly varying in the sense of Zygmund,

this function thus has the canonical represen-

tation given by, see e.g. [15],

LðxÞ ¼ exp cþ
Z x

B

�ðtÞ
t
dt;

for a constant c and a bounded measurable

function �ðxÞ which satisfies �ðxÞ ! 0 as x!
1. Taking gðxÞ ¼ 1 and aðxÞ ¼ x, these con-

ditions satisfy g 2 SN and gðxÞ ¼ oðaðxÞÞ. We

then have aðxÞð�ðxÞ=xÞ ! 0 as x!1. The

previous remark thus implies that L 2 Zðg; aÞ.
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