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Abstract: In this paper, we study the geometry of two-torsion points of elliptic curves in

order to distinguish the embedded topology of reducible plane curves consisting of a smooth cubic

and its tangent lines. As a result, we obtain a new family of Zariski tuples consisting of such

curves.
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Introduction. Let ðB1;B2Þ be a pair of

reduced complex plane curves in P2. The pair

ðB1;B2Þ is said to be a Zariski pair if it satisfies the

following two conditons:

(i) both B1 and B2 have the same combinatorics

(see [2] for the details of the combinatorics of

curves),

(ii) ðP2;B1Þ is not homeomorphic to ðP2;B2Þ as a

pair of topological spaces.

In (ii) above, a homeomorphism of pairs of topo-

logical spaces h : ðP2;B1Þ ! ðP2;B2Þ is a homeo-

morphism h : P2 ! P2 such that hðB1Þ ¼ B2.

ðP2;B1Þ is not homeomorphic to ðP2;B2Þ if no

such homeomorphisms exist. An N-tuple of reduced

plane curves ðB1; . . . ;BNÞ is said to be a Zariski

N-tuple if ðBi;BjÞ ð1 � i < j � NÞ is a Zariski pair.

The first example of a Zariski pair is given by

Zariski in [14], and for these 25 years much progress

has been made. For example, see [2]. Also

see [3–8,13] for recent results on Zariski pairs for

the arrangements consisting of curves of low degree.

In particular, in [1,4,8,11], Zariski pairs for a

smooth curve and its tangent lines have been

studied. In this article, we continue to study such

objects: Zariski pairs for a smooth cubic and its

tangents.

Note that there exists no Zariski pair for a

smooth conic and its n tangent lines as such curves

are parametrized by an open set in Pn�1, the set of

effective divisors of degree n. Hence a smooth cubic

and its tangent lines is the first object to be studied.

In fact, in [1,4], Zariski pairs for a smooth cubic and

its inflectional tangent lines are studied. In this

note, we study Zariski pairs for a smooth cubic and

its 2n simple tangents. Let us explain the combina-

torics considered in this article as follows:

Choose distinct points P1; . . . ; Pn on a smooth

cubic, none of which is an inflection point. For each

Pi, there exist 4 lines LPi;j ( j ¼ 1; 2; 3; 4) through Pi
which are tangent to E at Qi;j ( j ¼ 1; 2; 3; 4),

respectively. Choose two of them, LPi;ji ; LPi;ki and

put

Lðji;kiÞPi
¼ LPi;ji þ LPi;ki and L ¼

Xn
i¼1

Lðji;kiÞPi
:

The combinatorics considered in this article is

the one given by E þ L such that no three lines are

concurrent. (See Lemma 3.1 for the existence of

such curves.) Now our result can be stated as

follows:

Theorem 1. For the combinatorics as above,

there exists a Zariski yðnÞ-tuple. Here yðnÞ is the

number of 3-partitions for n, i.e., it is given as

follows:

yðnÞ ¼

1

12
ðn2 þ 6nþ 12Þ n � 0 mod 6

1

12
ðnþ 1Þðnþ 5Þ n � �1 mod 6

1

12
ðnþ 2Þðnþ 4Þ n � �2 mod 6

1

12
ðnþ 3Þ2 n � 3 mod 6 :

8>>>>>>>>>><
>>>>>>>>>>:

In previous articles [1,4], inflection points

which are regarded as three-torsions play key roles.

On the other hand, in our proof, a description of

torsion points of order 2 on E plays an important
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role. More precisely we represent a two-torsion via

intersection points LPi;ji \ E, LPi;ki \ E given in

Section 1. This is the new feature in this article.

1. Preliminaries.

1.1. Splitting numbers. In [10], T. Shirane

introduced the notion of splitting numbers and used

it to distinguish the embedded topology of curves.

In this subsection, we restate the definition and

propositions concerning splitting numbers to fit our

setting and simplify the presentation.

Let B � P2 be a plane curve of even degree and

� : X ! P2 be the double cover of P2 branched

along B. Let C � P2 be an irreducible curve.

Definition 1.1. The number of irreducible

components of ��ðCÞ is called the splitting number

of C with respect to � and will be denoted by s�ðCÞ.
Note that since we are considering double

covers only, s�ðCÞ ¼ 1 or 2. Let B1; B2 � P2 be

two plane curves of even degree.

The following proposition allows us to distin-

guish the embedded topology of curves. For i ¼ 1; 2

let �i : Xi ! P2 be the double cover branched along

Bi. Furthermore, let C1; C2 � P2 be irreducible

curves.

Proposition 1.1. If there exists a homeo-

morphism of pairs h : ðP2; B1 þ C1Þ ! ðP2; B2 þ C2Þ
with hðB1Þ ¼ B2, hðC1Þ ¼ C2 then s�1

ðC1Þ ¼ s�2
ðC2Þ.

Proof. The statement follows directly from

[10, Corollary 1.4]. �

1.2. Pairs of tangents and two-torsion

points of E. Let E be a smooth cubic curve and

choose an inflection point O 2 E. It is well-known

that we can endow E with an abelian group

structure on E with O being the zero element

(see [9,12], for example). We denote the addition

and subtraction on E by _þ and _�. By definition, for

three points P;Q;R 2 E, P _þQ _þR ¼ O if they are

collinear. Let T ¼ fT1; T2; T3g be the set of non-

trivial two-torsion points of E. For a point P 2 E
which is not an inflection point, it is known that

there exists four lines that pass through P and is

tangent to E at a point distinct from P . Let, LP;i,

ði ¼ 1; . . . ; 4Þ be such four lines and let Qi be the

tangent points. By the geometric description of

the group law on E, we have

P _þ2Qi ¼ O:

Then, for fi; jg � f1; 2; 3; 4g we have

2ðP _þQi _þQjÞ ¼ ðP _þ2QiÞ _þðP _þ2QjÞ ¼ O;

hence P _þQi _þQj 2 T . Note that P;Qi;Qj cannot be

collinear.

Definition 1.2. For a pair Lði;jÞP ¼ LP;i þ
LP;j of tangent lines through P , the two-torsion

point T ¼ P _þQi _þQj is called the two-torsion point

associated to Lði;jÞP .

Lemma 1.1. Under the above setting,

P _þQ1 _þQ2 ¼ P _þQ3 _þQ4 ¼ T1

P _þQ1 _þQ3 ¼ P _þQ2 _þQ4 ¼ T2

P _þQ1 _þQ4 ¼ P _þQ2 _þQ3 ¼ T3

for a suitable choice of labels for Qi, ði ¼ 1; 2; 3; 4Þ.
Moreover, every non-trivial two-torsion point Ti of

E can be obtained as an associated two-torsion point

of Lði;jÞP for a suitable choice of pairs of tangent lines.

Proof. For fi; jg � f1; 2; 3; 4g we have

2ðQi _�QjÞ ¼ ðP _þ2QiÞ _�ðP _þ2QjÞ ¼ O;

hence Qi _�Qj also becomes a two-torsion point of E.

Since Q1 _�Q2, Q1 _�Q3, Q1 _�Q4 are distinct non-

trivial two-torsion points, we can assume that

Q1 _�Q2 ¼ T1; Q1 _�Q3 ¼ T2; Q1 _�Q4 ¼ T3

for a suitable choice of labels for Qi, ði ¼ 1; 2; 3; 4Þ.
Also, since the subgroup of two-torsion points is

isomorphic to ðZ=2ZÞ�2, we have Ti _þTj ¼ Tk for

fi; j; kg ¼ f1; 2; 3g. These combined with P _þ2Qi ¼
O give the desired equalities. �

2. The case of four tangent lines. In this

section we consider the fundamental case of a

smooth cubic and four of its tangent lines.

Let P1; P2 2 E, P1 6¼ P2 be non-inflection

points. Then for each Pi (i ¼ 1; 2), there exist four

lines LPi;j ðj ¼ 1; 2; 3; 4Þ passing through Pi and

tangent to E at Qi;j as in Section 1.2. We assume

that the points Qi;j are labeled so that at each point

Pi the equalities in Lemma 1.1 are satisfied. Let

Lði;jÞ;ðk;lÞ ¼ Lði;jÞP1
þ Lðk;lÞP2

¼ LP1;i þ LP1;j þ LP2;k þ LP2;l:

Furthermore, let �ði;jÞ;ðk;lÞ : S ! P2 be the double

cover of P2 branched along Lði;jÞ;ðk;lÞ. Then we have

the following lemma:

Lemma 2.1. Let T; T 0 be the two-torsion

points associated to Lði;jÞP1
;Lðk;lÞP2

respectively, and let

s be the splitting number of E with respect to

�ði;jÞ;ðk;lÞ. Then s ¼ 2 if and only if T ¼ T 0.
Proof. The statement follows from [10, Propo-

sition 2.5]. In our case, the divisor D0B;C in

[10, Proposition 2.5] coincides with T þ T 0. Then
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T ¼ T 0 if and only if the order of ½OÊðD0B;CÞ	 equals

1, which is equivalent to s ¼ 2 by [10, Propo-

sition 2.5]. �

Now, we consider two curves

B1 ¼ E þ Lði1;j1Þ;ðk1;l1Þ

and

B2 ¼ E þ Lði2;j2Þ;ðk2;l2Þ;

each consisting of E and four tangent lines. Note

that since P1; P2 are non-inflectional points, the

combinatorics of B1 and B2 are the same for any

choice of ði1; j1Þ, ðk1; l1Þ, ði2; k2Þ, ðj2; k2Þ � f1; 2;
3; 4g. For B1;B2 we have the following proposition:

Proposition 2.1. The pair ðB1;B2Þ is a

Zariski pair if the parity of

jfi1; j1g \ fk1; l1gj

and

jfi2; j2g \ fk2; l2gj

are distinct, assuming that the labeling of LPi;j
satisfy the equalities in Lemma 1.1.

Proof. Let, T; T 0 be the torsion sections asso-

ciated to Lði;jÞP1
;Lðk;lÞP2

respectively. Then by the

equalities in Lemma 1.1, T ¼ T 0 if and only if

jfi; jg \ fk; lgj is even. Now, if the parity of

jfi1; j1g \ fk1; l1gj and jfi2; j2g \ fk2; l2gj are dis-

tinct, this implies that the splitting number of E

with respect to �ði1;j1Þ;ðk;l1Þ and �ði2;j2Þ;ðk2;l2Þ are

distinct by Lemma 2.1. Hence, the pair ðB1;B2Þ is

a Zariski pair by [10, Corollary 1.4]. �

3. Proof of Theorem 1. First, we prove

the following lemma that assures the existence of

the curves E þ L with the desired combinatorics.

Let P1; . . . ; Pn 2 E, LPi;j ( j ¼ 1; 2; 3; 4) and Lðji;kiÞPi
be

as in the introduction.

Lemma 3.1. For any positive integer n,

there exist points P1; . . . ; Pn 2 E such that any three

of the lines in L ¼
P
Lðji;kiÞPi

are non-concurrent for

any choice of Lðji;kiÞPi
ði ¼ 1; . . . ; n, fji; kig � f1; 2;

3; 4gÞ.
Proof. We will prove this lemma by induction

on n. The case for n ¼ 1 is trivial. Suppose the

statement holds for P1; . . . ; Pk 2 E. Consider the

set of all intersection points of the lines LPi;j (i ¼
1; . . . ; k; j ¼ 1; . . . ; 4) which is a finite set. Then the

set of tangent lines of E passing through at least one

of these intersection points is also finite, since there

is only a finite number of tangent lines passing

through each intersection point. Then there exists

Pkþ1 2 E which is not an inflection point and that

does not lie on any of the above tangent lines. Then

P1; . . . ; Pkþ1 2 E will satisfy the desired condition.

�

Now, let T be as before and let Sub^ðE;LÞ be a

set of subarrangements given by

Sub^ðE;LÞ ¼ fE þ L
ðki;liÞ
Pi

j i ¼ 1; . . . ; ng:

Define a map

�L : Sub^ðE;LÞ ! T

by setting �LðE þ Lðki;liÞPi
Þ to be the two-torsion

associated to Lðki;liÞPi
. With �L, we have a 3-partition

of Sub^ðE;LÞ by
S
i ��1
L ðTiÞ. In the following we

denote the subarrangement E þ Lðki;liÞPi
by ½Pi; ki; li	

to simplify the notation.

Definition 3.1. Under the above settings,

the 3-partition ðm1;m2;m3Þ of n associated to E þ
L is defined to be a triple of non-negative integers

ðm1;m2;m3Þ such that m1 
 m2 
 m3 and

fm1;m2;m3g
¼ fj��1

L ðT1Þj; j��1
L ðT2Þj; j��1

L ðT3Þjg:

Note that in the above definition, m1 þm2 þ
m3 ¼ n. The integer mi need not be equal to

j��1
L ðTiÞj, the labels may be rearranged. Also,

Lemma 1.1 implies that every 3-partition

ðm1;m2;m3Þ of n can be obtained as a 3-partition

associated to E þ L by choosing Lðki;liÞPi
suitably.

Now, Theorem 1 follows from the following

proposition.

Proposition 3.1. Let

B1 ¼ E þ L; B2 ¼ E þ L0

and

ðm1;m2;m3Þ; ðm01;m02;m03Þ

be the associated 3-partitions of n respectively. If

there exists a homeomorphism of pairs h : ðP2;

B1Þ ! ðP2;B2Þ, then ðm1;m2;m3Þ ¼ ðm01;m02;m03Þ.
Proof. Suppose there exists a homeomorphism

of pairs h : ðP2;B1Þ ! ðP2;B2Þ. Then h naturally

induces a bijection

h\ : Sub^ðE;LÞ ! Sub^ðE;L0Þ:

Furthermore,

�Lð½Pi1 ; ki1 ; li1 	Þ ¼ �Lð½Pi2 ; ki2 ; li2 	Þ

if and only if
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�L0 ðh\ð½Pi1 ; ki1 ; li1 	ÞÞ ¼ �L0 ðh\ð½Pi2 ; ki2 ; li2 	ÞÞ
since the splitting number of E with respect to the

double cover branched along

LPi1 ;ki1 þ LPi1 ;li1 þ LPi2 ;ki2 þ LPi2 ;li2
and

hðLPi1 ;ki1 þ LPi1 ;li1 þ LPi2 ;ki2 þ LPi2 ;li2 Þ
must be equal by Proposition 1.1 and Lemma 2.1.

Moreover, h naturally induces a bijection h[ : T !
T such that the following diagram commutes.

Hence, we have ðm1;m2;m3Þ ¼ ðm01;m02;m03Þ. �
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