Termination of extremal rays of divisorial type for the power of étale endomorphisms

By Yoshio Fujimoto
Department of Mathematics, Faculty of Liberal Arts and Sciences, Nara Medical University, 840, Shijo-cho, Kashihara, Nara 634-8521, Japan

(Communicated by Shigefumi Mori, M.J.A., April 12, 2019)

Abstract

Let $f: X \rightarrow X$ be a non-isomorphic étale endomorphism of a smooth projective variety X. Suppose that there exists a K_{X}-negative extremal ray $R^{\prime} \subset \overline{\mathrm{NE}}(X)$ of fiber type. Then we give a sufficient condition for a K_{X}-negative extremal ray $R \subset \overline{\mathrm{NE}}(X)$ of divisorial type to terminate under a suitable power f^{k} of $k>0$.

Key words: Endomorphism; extremal ray; termination; divisorial contraction.

1. Introduction. The purpose of this note is to give a partial answer to the following question concerning termination of extremal rays of divisorial type on a smooth projective variety for the iteration of non-isomorphic étale endomorphisms.

Question. Let $f: X \rightarrow X$ be a non-isomorphic étale endomorphism of a smooth projective variety X. Suppose that there exists an extremal ray $R^{\prime} \subset \overline{\mathrm{NE}}(X)$ such that $K_{X} R^{\prime}<0$ and the associated contraction morphism $\varphi:=\operatorname{Cont}_{R^{\prime}}: X \rightarrow$ Y is a fibration to a lower dimensional variety Y. Then is it true that for any K_{X}-negative extremal ray $R \subset \overline{\mathrm{NE}}(X)$ of divisorial type, there exists a positive integer k such that $\left(f^{k}\right)_{*}(R)=R$ for the automorphism $\left(f^{k}\right)_{*}: \mathrm{N}_{1}(\mathrm{X}) \simeq \mathrm{N}_{1}(\mathrm{X})$ induced from the k-th power $f^{k}=f \circ \cdots \circ f$?

If we apply the minimal model program (MMP, for short, cf. [6]) to the study of non-isomorphic surjective endomorphisms of projective varieties, we sometimes encounter serious troubles: Let $f: X \rightarrow X$ be a non-isomorphic étale endomorphism. Then a K_{X}-negative extremal ray $R(\subset \overline{\mathrm{NE}}(X))$ is not necessarily preserved under a suitable power $\left(f^{k}\right)_{*}(k>0)$ of the push-foward mapping f_{*} : $N_{1}(X) \simeq N_{1}(X)$ (cf. [3]). Hence it is not at all clear that we can apply the MMP working compatibly with étale endomorphisms. Thus it is an interesting problem to give a sufficient condition for a $K_{X^{-}}$ negative extremal ray R to be preserved under a

[^0]suitable power of f. A special case of the Question was studied in [3, Theorems 1.4, 8.6 and 9.6], which gives an affirmative answer to the Question in the case where $\operatorname{dim} X=3$ and $\operatorname{dim} Y=2$. In this note, we shall give some generalization.

Theorem 1.1. The Question has an affirmative answer under the assumption that $\rho(Y)=2$.

If we drop the assumption that $\rho(Y)=2$, then the Question does not necessarily have an affirmative answer. In Section 4, we shall give an easy counterexample using a rational elliptic surface with infinitely many (-1)-curves.
2. Notations and preliminaries. In this paper, we work over the complex number field \mathbf{C}. A projective variety is a complex variety embedded in a projective space. By an endomorphism $f: X \rightarrow X$, we mean a morphism from a projective variety X to itself.

The following symbols are used for a variety X.
K_{X} : the canonical divisor of X.
$\operatorname{Aut}(X)$: the algebraic group of automorphisms of X.
$N_{1}(X):=(\{1$-cycles on $X\} / \equiv) \otimes_{\mathbf{z}} \mathbf{R}$, where \equiv means a numerical equivalence.
$N^{1}(X):=(\{$ Cartier divisors on $X\} / \equiv) \otimes_{\mathbf{Z}} \mathbf{R}$, where \equiv means a numerical equivalence.
$\mathrm{NE}(X)$: the smallest convex cone in $N_{1}(X)$ containing all effective 1-cycles.
$\overline{\mathrm{NE}}(X)$: the Kleiman-Mori cone of X, i.e., the closure of $\mathrm{NE}(X)$ in $N_{1}(X)$ for the metric topology.
$\rho(X):=\operatorname{dim}_{\mathbf{R}} N_{1}(X)$, the Picard number of X.
$[C]$: the numerical equivalence class of a $1-$ cycle C.
$\operatorname{cl}(D)$: the numerical equivalence class of a Cartier divisor D.
$\sim_{\mathbf{Q}}$: the \mathbf{Q}-linear equivalence of \mathbf{Q}-divisors of X.

For an endomorphism $f: X \rightarrow X$ and an integer $k>0, f^{k}$ stands for the k-times composite $f \circ \cdots \circ f$ of f.

Extremal rays. For a smooth projective variety X, an extremal ray R means a K_{X}-negative extremal ray of $\overline{\mathrm{NE}}(X)$, i.e., a 1-dimensional face of $\overline{\mathrm{NE}}(X)$ with $K_{X} R<0$. An extremal ray R defines a proper surjective morphism with connected fibers $\operatorname{Cont}_{R}: X \rightarrow Y$ such that, for an irreducible curve $C \subset X, \operatorname{Cont}_{R}(C)$ is a point if and only if $[C] \in R$. This is called the contraction morphism associated to R.

We recall the following fundamental result.
Lemma 2.1 (cf. [1, Propositions 4.2 and 4.12]). Let $f: Y \rightarrow X$ be a finite surjective morphism between smooth projective n-folds with $\rho(X)=$ $\rho(Y)$. Then the following hold.
(1) The push-forward map $f_{*}: N_{1}(Y) \rightarrow N_{1}(X)$ is an isomorphism and $f_{*} \overline{\mathrm{NE}}(Y)=\overline{\mathrm{NE}}(X)$.
(2) Let $f_{*}: N^{1}(Y) \rightarrow N^{1}(X)$ be the map induced from the push-forward map $D \mapsto f_{*} D$ of divisors. Then the dual map $f^{*}: N_{1}(X) \rightarrow N_{1}(Y)$ is an isomorphism and $f^{*} \overline{\mathrm{NE}}(X)=\overline{\mathrm{NE}}(Y)$.
(3) If f is étale and K_{X} is not nef, then f^{*} and f_{*} above give a one-to-one correspondence between the set of extremal rays of X and Y.
(4) Under the same assumption as in (3), for an extremal ray $R(\subset \overline{\mathrm{NE}}(Y))$, and for the contraction morphisms $\operatorname{Cont}_{R}: Y \rightarrow Y^{\prime}$ and Cont $_{f_{*} R}: X \rightarrow X^{\prime}$, there exists a finite surjective morphism $f^{\prime}: Y^{\prime} \rightarrow X^{\prime}$ such that $f^{\prime} \circ \operatorname{Cont}_{R}=$ Cont $_{f_{*} R} \circ f$.
The following theorem and some arguments used in its proof play another key role for proving our main Theorem 1.1.

Theorem 2.2 (cf. [7, Lemma 6.2]). Let X be a normal \mathbf{Q}-factorial projective variety with at most log-canonical singularities and $f: X \rightarrow X a$ surjective endomorphism. Let $R(\subset \overline{\mathrm{NE}}(X))$ be an extremal ray and $\pi:=\operatorname{Cont}_{R}: X \rightarrow Y$ the contraction morphism associated to R. Suppose that $E(\subset$ $X)$ be a subvariety such that $\operatorname{dim}(\pi(E))<\operatorname{dim}(E)$ and $f^{-1}(E)=E$. Then $\left(f^{k}\right)_{*}(R)=R$ for some positive integer k.

Remark 2.3. In [7, Lemma 6.2], the assumption that ' X is \mathbf{Q}-factorial' is missing.
3. Proof of Theorem 1.1. Let $f: X \rightarrow X$ be a non-isomorphic étale endomorphism of a smooth projective variety X. Suppose that there exists an extremal ray $R^{\prime} \subset \overline{\mathrm{NE}}(X)$ such that for the contraction morphism $\varphi:=\operatorname{Cont}_{R^{\prime}}: X \rightarrow Y$ associated to R^{\prime} is a Mori fiber space (i.e., $\operatorname{dim} Y<\operatorname{dim} X$). Then by [5, Lemma 5-1-5], Y is \mathbf{Q}-factorial. At first, we impose no restrictions on the Picard number $\boldsymbol{\rho}(\boldsymbol{Y})$ of \boldsymbol{Y}. Then by [2], there exists a positive integer k such that $\left(f^{k}\right)_{*} R^{\prime}=R^{\prime}$. Hence replacing f by its power f^{k}, we may assume from the beginning that $f_{*} R^{\prime}=R^{\prime}$. Hence there exists a surjective endomorphism $g: Y \rightarrow Y$ such that $\varphi \circ$ $f=g \circ \varphi$. Since φ is a Fano fibration, the general fiber of φ is simply-connected. Since f is étale, $X \xrightarrow{\varphi}$ $Y \xrightarrow{g} Y$ gives a Stein factorization of $\varphi \circ f: X \rightarrow Y$ and g is also a non-isomorphic étale endomorphism with $\operatorname{deg}(g)=\operatorname{deg}(f)$. Thus we have the following Cartesian diagram:

We take an arbitrary extremal ray $R(\subset \overline{\mathrm{NE}}(X))$ of divisorial type. We put $R_{n}:=\left(f^{n}\right)_{*} R$ for $n>0$ and $R_{0}:=R$. Then, by Lemma 2.1, $R_{n}(\subset \overline{\mathrm{NE}}(X))$ is also an extremal ray for any $n \geq 0$ and let $\psi_{n}:=$ Cont $_{R_{n}}: X \rightarrow Z_{n}$ be a divisorial contraction associated to R_{n}. Then, by Lemma 2.1, there is induced a non-isomorphic finite morphism $g_{n}: Z_{n} \rightarrow Z_{n+1}$ which is étale in codimension one such that $\psi_{n+1} \circ$ $f=g_{n} \circ \psi_{n}$ and $\operatorname{deg}\left(g_{n}\right)=\operatorname{deg}(f)$ for any $n \geq 0$. In summary, there exists another commutative diagram below:

This diagram is Cartesian over a non-singular locus Z_{n+1}^{0} of Z_{n+1}. Let $E_{n}:=\operatorname{Exc}\left(\psi_{n}\right)$ be the ψ_{n}-exceptional divisor. Then $f^{-1}\left(E_{n+1}\right)=E_{n}$ for any $n \geq 0$. Let $\gamma(\subset X)$ be an extremal rational curve whose numerical class $[\gamma]$ spans the extremal ray R^{\prime}. Then γ is contracted to a point by φ. Since each E_{n} is effective, the restriction of E_{n} to a general fiber of φ is also effective. Hence $\left(E_{n}, \gamma\right) \geq 0$ for any $n \geq 0$.

Lemma 3.1. We have two cases;
(1) $\left(E_{n}, \gamma\right)=0$ for any $n \geq 0$, or
(2) $\left(E_{n}, \gamma\right)>0$ for any $n \geq 0$

Proof. Since $f_{*} R^{\prime}=R^{\prime}$, we have $f_{*} \gamma \equiv a \gamma$ for a positive rational number a. If we set $E:=E_{0}$, then $E=\left(f^{n}\right)^{*} E_{n}$. Hence by the projection formula, we see that $(E, \gamma)=\left(E_{n},\left(f^{n}\right)_{*} \gamma\right)=a^{n}\left(E_{n}, \gamma\right)$ for any $n \geq 0$, which shows the claim.

We set $k:=\operatorname{dim} Y$. Let ℓ_{n} be an extremal rational curve whose numerical class $\left[\ell_{n}\right]$ spans the extremal ray R_{n}, i.e., $R_{n}=\mathbf{R}_{\geq 0}\left[\ell_{n}\right]$.

Case (1). First, we consider the case that $\left(E_{n}, \gamma\right)=0$ for any $n \geq 0$. Then by [4], we see that for any $n \geq 0$, there exists a Cartier divisor D_{n} on Y such that $E_{n} \sim \varphi^{*} D_{n}$. Since $E_{n}=f^{*} E_{n+1}$ and $\varphi \circ f=g \circ \varphi$, we see that $E_{n} \sim \varphi^{*} g^{*} D_{n+1}$. Hence $D_{n} \sim g^{*} D_{n+1}$ for any $n \geq 0$. We have the following easy lemma.

Lemma 3.2. D_{n} is not nef and $\left(D_{n}\right)^{k}=0$ for any $n \geq 0$.

Proof. Since $R_{n} \neq R^{\prime}, \varphi\left(\ell_{n}\right)$ is an irreducible curve on Y. Hence, by the projection formula, we see that $\left(D_{n}, \varphi_{*} \ell_{n}\right)=\left(\varphi^{*} D_{n}, \ell_{n}\right)=\left(E_{n}, \ell_{n}\right)<0$. Thus D_{n} is not nef. For the latter assertion, we may assume that $n=0$ without loss of generality. Since $D_{n} \sim g^{*} D_{n+1}$, we see that $\left(D_{n}\right)^{k}=\operatorname{deg}(g)\left(D_{n+1}\right)^{k}$ for any $n \geq 0$. Hence $\left(D_{0}\right)^{k}=(\operatorname{deg}(g))^{n}\left(D_{n}\right)^{k}$ for any $n \geq 0$. Suppose that $\left(D_{0}\right)^{k} \neq 0$. Since $\operatorname{deg}(g)=$ $\operatorname{deg}(f) \geq 2$, we see that $0<\left(D_{n}\right)^{k}<1$ for a sufficiently positive integer n. This contradicts the fact that $\left(D_{n}\right)^{k} \in \mathbf{Z}$. Thus $\left(D_{0}\right)^{k}=0$.

Case (2). Next, we consider the case that $\left(E_{n}, \gamma\right)>0$ for any $n \geq 0$. We begin with an easy lemma.

Lemma 3.3. We have $f_{*} \gamma \equiv \gamma$.
Proof. Since $f_{*} R^{\prime}=R^{\prime}$, we have $f_{*} \gamma \equiv a \gamma$ for a positive rational number a. We set $E:=E_{0}$. Then by the projection formula, we have $\left(\left(f^{n}\right)^{*} E, \gamma\right)=$ $\left(E,\left(f^{n}\right)_{*} \gamma\right)=a^{n}(E, \gamma)>0$ for any $n>0$. Hence, if $0<a<1$, then $0<\left(\left(f^{n}\right)^{*} E, \gamma\right)<1$ for a sufficiently positive integer n, which contradicts the fact that $\left(\left(f^{n}\right)^{*} E, \gamma\right) \in \mathbf{Z}$. Suppose that $a>1$. Then by the same argument as in the proof of Lemma 3.1, we have $(E, \gamma)=a^{n}\left(E_{n}, \gamma\right)$ for any $n>0$. Thus $0<$ $\left(E_{n}, \gamma\right)<1$ for a sufficiently positive integer n, which contradicts the fact that $\left(E_{n}, \gamma\right) \in \mathbf{Z}$. Hence $a=1$.

Lemma 3.4. There exists a positive rational number b such that $\left(K_{X}+b E_{n}, \gamma\right)=0$ for any $n \geq 0$.

Proof. Since $\left(K_{X}, \gamma\right)<0$ and $\left(E_{n}, \gamma\right)>0$, there exists a unique positive rational number b_{n} such
that $\left(K_{X}+b_{n} E_{n}, \gamma\right)=0$ for any $n \geq 0$. Combining Lemma 3.3 with the fact that $E_{n-1}=f^{*} E_{n}$, the projection formula shows that $\left(E_{n-1}, \gamma\right)=$ $\left(E_{n}, f_{*} \gamma\right)=\left(E_{n}, \gamma\right)$. Since

$$
b_{n}=\frac{\left(-K_{X}, \gamma\right)}{\left(E_{n}, \gamma\right)},
$$

we see that $b_{n-1}=b_{n}$ for any $n>0$. Thus $b_{n} \equiv b$ is indedependent of n.

Then by [4], for any $n \geq 0$, there exists a Q-Cartier \mathbf{Q}-divisor D_{n}^{\prime} on Y such that $K_{X}+$ $b E_{n} \sim_{\mathbf{Q}} \varphi^{*} D_{n}^{\prime}$.

Lemma 3.5. Each D_{n}^{\prime} is not nef and $D_{n-1}^{\prime} \sim_{\mathbf{Q}} g^{*} D_{n}^{\prime}$ for any $n>0$. In particular, D_{n}^{\prime} is not numerically trivial.

Proof. Since $\left(K_{X}, \ell_{n}\right)<0,\left(E_{n}, \ell_{n}\right)<0$ and $b>0$, we see by the projection formula that $\left(D_{n}^{\prime}, \varphi_{*} \ell_{n}\right)=\left(\varphi^{*} D_{n}^{\prime}, \ell_{n}\right)=\left(K_{X}, \ell_{n}\right)+b\left(E_{n}, \ell_{n}\right)<0$. Since $R_{n} \neq R^{\prime}, \varphi\left(\ell_{n}\right)$ is an irreducible rational curve on Y and thus each D_{n}^{\prime} is not nef. Since $K_{X} \sim f^{*} K_{X}$ and $f^{*} E_{n}=E_{n-1}$, we see that

$$
\begin{aligned}
& K_{X}+b E_{n-1} \sim_{\mathbf{Q}} f^{*}\left(K_{X}+b E_{n}\right) \sim_{\mathbf{Q}} f^{*} \varphi^{*} D_{n}^{\prime} \\
& \quad=\varphi^{*} g^{*} D_{n}^{\prime}
\end{aligned}
$$

Since $K_{X}+b E_{n-1} \sim_{\mathbf{Q}} \varphi^{*} D_{n-1}^{\prime}$, we have $D_{n-1}^{\prime} \sim_{\mathbf{Q}}$ $g^{*} D_{n}^{\prime}$ for any $n>0$.

Lemma 3.6. For any $n \geq 0$, the self-intersection number of D_{n}^{\prime} is zero, i.e., $\left(D_{n}^{\prime}\right)^{k}=0$.

Proof. By Lemma 3.4,

$$
b \equiv \frac{\left(-K_{X}, \gamma\right)}{\left(E_{n}, \gamma\right)}
$$

is independent of n. Hence a positive integer $\left(E_{n}, \gamma\right)$ is also independent of n. We set $d:=\left(E_{n}, \gamma\right)$ and let $\Gamma_{n}:=d\left(K_{X}+b E_{n}\right)$ be a Cartier divisor on X. Since $\left(\Gamma_{n}, \gamma\right)=0$, by [4], the Cartier divisor Γ_{n} is linearly equivalent to the pullback of some Cartier divisor on Y by φ. Hence for any $n \geq 0, \Delta_{n}:=d D_{n}^{\prime}$ is a Cartier divisor on Y and $\Gamma_{n} \sim \varphi^{*} \Delta_{n}$. Since $\Gamma_{n} \sim$ $f^{*} \Gamma_{n+1} \sim f^{*} \varphi^{*} \Delta_{n+1}=\varphi^{*} g^{*} \Delta_{n+1}, \quad$ we have $\Delta_{n} \sim$ $g^{*} \Delta_{n+1}$. Since $\operatorname{deg}(g)>1$, applying the same method as in the proof of Lemma 3.3 to the Cartier divisor Δ_{n} on Y, we see that $\left(\Delta_{n}\right)^{k}=0$. Hence $\left(D_{n}^{\prime}\right)^{k}=0$ for any $n \geq 0$.

Corollary 3.7. We have $\operatorname{dim} Y \geq 2$ and $\rho(Y) \geq 2$.

Proof. If $\operatorname{dim}(Y) \leq 1$, then by Lemma 3.6, D_{n}^{\prime} is numerically trivial, which contradicts Lemma 3.5. If $\rho(Y)=1$, then by Lemma 3.5, $-D_{n}^{\prime}$ is ample, which contradicts Lemma 3.6.

Proof of Theorem 1.1. Hereafter, we always assume that $\boldsymbol{\rho}(\boldsymbol{Y})=\mathbf{2}$. Let $N_{\mathbf{C}}^{1}(Y):=N^{1}(Y) \otimes_{\mathbf{R}}$ C be the complexification of the 2-dimensional R-vector space $N^{1}(Y)$. We set $H:=\{D \in$ $\left.N_{\mathrm{C}}^{1}(Y) \mid D^{k}=0\right\}$. Then H is an affine curve in $N_{\mathbf{C}}^{1}(Y) \simeq \mathbf{C}^{2}$.

Case (1). First, we consider the case where $\left(E_{n}, \gamma\right)=0$ for any $n \geq 0$. For each $n \geq 0$, let $L_{n}:=$ $\left\langle\operatorname{cl}\left(D_{n}\right)\right\rangle_{\mathbf{C}}$ be the 1-dimensional complex vector space spanned by $\operatorname{cl}\left(D_{n}\right)$. Then by Lemma 3.2, each affine line L_{n} is an irreducible component of H. The pull-back $g^{*}: N_{\mathbf{C}}^{1}(Y) \simeq N_{\mathbf{C}}^{1}(Y)$ induces an automorphism of H. Since $g^{*} D_{n} \sim D_{n-1}$, there is induced an isomorphism $\left.g^{*}\right|_{L_{n}}: L_{n} \simeq L_{n-1}$ for any $n>0$. We have the following commutative diagram:

where j : $H \hookrightarrow N_{\mathbf{C}}^{1}(Y), i_{n}: L_{n} \hookrightarrow H$ and $i_{n-1}: L_{n-1} \hookrightarrow$ H are all inclusions. The automorphism $\left.g^{*}\right|_{H}: H \simeq$ H induces a permutation of a finite number of irreducible components of H. Hence, replacing g (resp. f) by its suitable power $g^{k}(k>0)$ (resp. f^{k}), there exists some positive integer n such that $L_{n}=g^{*} L_{n}=L_{n-1}$. Pulling back by $\varphi: X \rightarrow Y$, we have $E_{n} \equiv \lambda E_{n-1}$ for some $\lambda \in \mathbf{Q}_{>0}$, since any E_{n} is a non-zero effective divisor. Since $\left(\ell_{n-1}, E_{n}\right)=$ $\lambda\left(\ell_{n-1}, E_{n-1}\right)<0$, we see that $\ell_{n-1} \subset E_{n}$. Since ℓ_{n-1} sweeps out E_{n-1}, we have $E_{n-1} \subset E_{n}$. Thus $E_{n-1}=$ E_{n}, since E_{n} is irreducible. Hence $f^{-1}\left(E_{n}\right)=E_{n-1}=$ E_{n} and we can apply Theorem 2.2 to the ψ_{n}-exceptional divisor E_{n}. There exists a positive integer p such that $\left(f^{p}\right)_{*} R_{n}=R_{n}$. Since $f_{*}: N_{1}(X) \simeq N_{1}(X)$ is an automorphism, we have $\left(f^{p}\right)_{*} R=R$.

Case (2). Next, we consider the case where $\left(E_{n}, \gamma\right)>0$ for any $n \geq 0$. For each $n \geq 0$, let $L_{n}^{\prime}:=$ $\left\langle\operatorname{cl}\left(D_{n}^{\prime}\right)\right\rangle_{\mathbf{C}}$ be the 1-dimensional complex vector space spanned by $\operatorname{cl}\left(D_{n}^{\prime}\right)$. Then by Lemma 3.6 , each affine line L_{n}^{\prime} is an irreducible component of the affine curve H. Since $f^{*}\left(K_{X}+b E_{n}\right) \sim_{\mathbf{Q}} K_{X}+b E_{n-1}$, we see that $g^{*}\left(D_{n}^{\prime}\right) \sim_{\mathbf{Q}} D_{n-1}^{\prime}$. Thus the automorphism $g^{*} \in \operatorname{Aut}\left(N^{1}(Y)_{\mathbf{C}}\right)$ induces an isomorphism $\left.g^{*}\right|_{L_{n}^{\prime}}: L_{n}^{\prime} \simeq L_{n-1}^{\prime}$ for each $n>0$. Then we can apply
the same argument as in the Case (1). After replacing g (resp. f) by its suitable power $g^{k}(k>0)$ (resp. f^{k}), there exists some positive integer n such that $L_{n}^{\prime}=g^{*} L_{n}^{\prime}=L_{n-1}^{\prime}$. Pulling back by $\varphi: X \rightarrow Y$, we have $K_{X}+b E_{n-1} \equiv \lambda\left(K_{X}+b E_{n}\right)$ for some $\lambda \in \mathbf{Q}$. We have $\lambda \neq 0$, since L_{n-1}^{\prime} is not numericall trivial by Lemma 3.5. If $\lambda<0$, then we replace f by f^{2}. Thus we may assume from the beginning that $\lambda>0$.

Lemma 3.8. We have $\lambda=1$.
Proof. Suppose that $0<\lambda<1$. Since $\lambda b E_{n} \equiv$ $(1-\lambda) K_{X}+b E_{n-1}$, we have
$\lambda b\left(E_{n}, \ell_{n-1}\right)=(1-\lambda)\left(K_{X}, \ell_{n-1}\right)+b\left(E_{n-1}, \ell_{n-1}\right)<0$.
Hence $\left(E_{n}, \ell_{n-1}\right)<0$ and ℓ_{n-1} is contained in E_{n}. Since ℓ_{n-1} sweeps out E_{n-1}, we have $E_{n-1} \subset E_{n}$. Thus $E_{n-1}=E_{n}$, since E_{n} is irreducible. Then $K_{X}+b E_{n} \equiv \lambda\left(K_{X}+b E_{n}\right)$, which shows that $K_{X}+$ $b E_{n} \equiv 0$. This contradicts Lemma 3.5. Next, suppose that $\lambda>1$. Since $b E_{n-1} \equiv(\lambda-1) K_{X}+b \lambda E_{n}$, we have

$$
b\left(E_{n-1}, \ell_{n}\right)=(\lambda-1)\left(K_{X}, \ell_{n}\right)+b \lambda\left(E_{n}, \ell_{n}\right)<0 .
$$

Hence $\left(E_{n-1}, \ell_{n}\right)<0$. By the same argument as above, we have $E_{n-1}=E_{n}$ and $K_{X}+b E_{n} \equiv 0$, which again contradicts Lemma 3.5.

By Lemma 3.8, we have $E_{n-1} \equiv E_{n}$. Then applying the same argument as in the Case (1), we see that $E_{n-1}=E_{n}$. Thus $E_{n}=E_{n-1}=f^{-1}\left(E_{n}\right)$. Hence we can apply Theorem 2.2 to the ψ_{n}-exceptional divisor E_{n}. By the same argument as in the Case (1), we have $\left(f^{p}\right)_{*} R=R$ for some integer $p>0$.
4. Counterexamples. The Question does not necessarily have an affirmative answer if we drop the assumption that $\rho(Y)=2$. We shall construct such an example (cf. [2], Remark A.9). Let S be a rational elliptic surface with global sections whose Mordell-Weil rank is positive. It is obtained as 9 -points blowing-up of \mathbf{P}^{2}. We regard S as an elliptic curve C_{K} defined over the function field K of the base curve C. Since S is relatively minimal, the translation mapping $C_{K} \rightarrow C_{K}$ given by the non-torsion section γ induces a relative automorphism $t: S \simeq S$ over C, which is of infinite order. Let $X:=S \times E \times \mathbf{P}^{1}$ be the product variety of S, an elliptic curve E and \mathbf{P}^{1}. We take a point $o \in E$ and a point $0 \in \mathbf{P}^{1}$. Since γ is a (-1)-curve on S, the curve $\gamma \times\{o\} \times\{0\}$ on X spans the extremal ray $R(\subset \overline{\mathrm{NE}}(X))$ of divisorial type. If we denote by
$\mu_{k}: E \rightarrow E$ multiplication by $k>1$, then the product mapping $f:=t \times \mu_{k} \times \operatorname{id}_{\mathbf{P}^{1}}: X \rightarrow X$ gives a non-isomorphic étale endomorphism of X. We set $Y:=S \times E$ and let $p_{1,2}: X \rightarrow Y$ and $p: Y \rightarrow S$ be natural projections. Then $p_{1,2}$ is a trivial \mathbf{P}^{1}-bundle, which is a Mori fiber space. Furthermore, the product mapping $g:=t \times \mu_{k}: Y \rightarrow Y$ also gives a non-isomorphic étale endomorphism of Y.

We have the following Cartesian diagram:

If $\left(f^{n}\right)_{*} R=R$ for some $n>0$, then $t^{n}(\gamma)=\gamma$. This is impossible, since $t \in \operatorname{Aut}(S / C)$ is of infinite order. Hence, $\left(f^{n}\right)_{*} R \neq R$ for any $n>0$. In this case, $\rho(S)=10$ and $\rho(Y) \geq 10$. Let $\psi:=\operatorname{Cont}_{R}$: $X \rightarrow Z$ be the extremal contraction associated to R and $\Delta:=\operatorname{Exc}(\psi)$ the ψ-exceptional divisor. Then $\Delta \simeq \gamma \times E \times \mathbf{P}^{1}$ does not intersect with the general fiber of $p_{1,2}$. Thus our counterexample corresponds to the Case (1) in Section 3.

Acknowledgement. The author wishes to
express sincere thanks to Prof. Noboru Nakayama for many useful discussions and to the referee for the careful reading of the manuscript.

References

[1] Y. Fujimoto, Endomorphisms of smooth projective 3 -folds with non-negative Kodaira dimension, Publ. Res. Inst. Math. Sci. 38 (2002), no. 1, 33-92.
[2] Y. Fujimoto and N. Nakayama, Appendix to D.-Q. Zhang's paper: Termination of extremal rays of fibration type for the iteration of surjective endomorphisms, Compos. Math. 146 (2010), no. 1, 164-168.
[3] Y. Fujimoto, Étale endomorphisms of 3 -folds. I, Osaka J. Math. 55 (2018), no. 2, 195-257.
[4] Y. Kawamata, The cone of curves of algebraic varieties, Ann. of Math. (2) 119 (1984), no. 3, 603-633.
[5] Y. Kawamata, K. Matsuda and K. Matsuki, Introduction to the minimal model problem, in Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987, pp. 283-360.
[6] J. Kollár and S. Mori, Birational geometry of algebraic varieties, translated from the 1998 Japanese original, Cambridge Tracts in Mathematics, 134, Cambridge University Press, Cambridge, 1998.
[7] S. Meng and D.-Q. Zhang, Building blocks of polarized endomorphisms of normal projective varieties, Adv. Math. 325 (2018), 243-273.

[^0]: 2010 Mathematics Subject Classification. Primary 14J15, 14J25, 14J30, 14J60; Secondary 32J17.

