Termination of extremal rays of divisorial type for the power of étale endomorphisms

By Yoshio FUJIMOTO

Department of Mathematics, Faculty of Liberal Arts and Sciences, Nara Medical University, 840, Shijo-cho, Kashihara, Nara 634-8521, Japan

(Communicated by Shigefumi MORI, M.J.A., April 12, 2019)

Abstract: Let $f: X \to X$ be a non-isomorphic étale endomorphism of a smooth projective variety X. Suppose that there exists a K_X -negative extremal ray $R' \subset \overline{NE}(X)$ of fiber type. Then we give a sufficient condition for a K_X -negative extremal ray $R \subset \overline{NE}(X)$ of divisorial type to terminate under a suitable power f^k of k > 0.

Key words: Endomorphism; extremal ray; termination; divisorial contraction.

1. Introduction. The purpose of this note is to give a partial answer to the following question concerning termination of extremal rays of divisorial type on a smooth projective variety for the iteration of non-isomorphic étale endomorphisms.

Question. Let $f: X \to X$ be a non-isomorphic étale endomorphism of a smooth projective variety X. Suppose that there exists an extremal ray $R' \subset \overline{NE}(X)$ such that $K_X R' < 0$ and the associated contraction morphism $\varphi := \operatorname{Cont}_{R'}: X \to Y$ is a fibration to a lower dimensional variety Y. Then is it true that for any K_X -negative extremal ray $R \subset \overline{NE}(X)$ of divisorial type, there exists a positive integer k such that $(f^k)_*(R) = R$ for the automorphism $(f^k)_*: N_1(X) \simeq N_1(X)$ induced from the k-th power $f^k = f \circ \cdots \circ f$?

If we apply the minimal model program (MMP, for short, cf. [6]) to the study of non-isomorphic surjective endomorphisms of projective varieties, we sometimes encounter serious troubles: Let $f: X \to X$ be a non-isomorphic étale endomorphism. Then a K_X -negative extremal ray $R(\subset \overline{NE}(X))$ is not necessarily preserved under a suitable power $(f^k)_*$ (k > 0) of the push-foward mapping f_* : $N_1(X) \simeq N_1(X)$ (cf. [3]). Hence it is not at all clear that we can apply the MMP working compatibly with étale endomorphisms. Thus it is an interesting problem to give a sufficient condition for a K_X negative extremal ray R to be preserved under a suitable power of f. A special case of the **Question** was studied in [3, Theorems 1.4, 8.6 and 9.6], which gives an affirmative answer to the **Question** in the case where dimX = 3 and dimY = 2. In this note, we shall give some generalization.

Theorem 1.1. The Question has an affirmative answer under the assumption that $\rho(Y) = 2$.

If we drop the assumption that $\rho(Y) = 2$, then the **Question** does not necessarily have an affirmative answer. In Section 4, we shall give an easy counterexample using a rational elliptic surface with infinitely many (-1)-curves.

2. Notations and preliminaries. In this paper, we work over the complex number field C. A projective variety is a complex variety embedded in a projective space. By an endomorphism $f: X \to X$, we mean a morphism from a projective variety X to itself.

The following symbols are used for a variety X. K_X : the canonical divisor of X.

 $\operatorname{Aut}(X)$: the algebraic group of automorphisms of X.

 $N_1(X) := (\{1 \text{-cycles on } X\} / \equiv) \otimes_{\mathbf{Z}} \mathbf{R}, \text{ where } \equiv \text{ means a numerical equivalence.}$

 $N^1(X) := (\{\text{Cartier divisors on } X\} / \equiv) \otimes_{\mathbf{Z}} \mathbf{R},$ where \equiv means a numerical equivalence.

NE(X): the smallest convex cone in $N_1(X)$ containing all effective 1-cycles.

 $\overline{\text{NE}}(X)$: the Kleiman-Mori cone of X, i.e., the closure of NE(X) in $N_1(X)$ for the metric topology.

 $\rho(X) := \dim_{\mathbf{R}} N_1(X),$ the Picard number of X.

[C]: the numerical equivalence class of a 1-cycle C.

²⁰¹⁰ Mathematics Subject Classification. Primary 14J15, 14J25, 14J30, 14J60; Secondary 32J17.

cl(D): the numerical equivalence class of a Cartier divisor D.

 $\sim_{\mathbf{Q}}$: the **Q**-linear equivalence of **Q**-divisors of X.

For an endomorphism $f: X \to X$ and an integer $k > 0, f^k$ stands for the k-times composite $f \circ \cdots \circ f$ of f.

Extremal rays. For a smooth projective variety X, an extremal ray R means a K_X -negative extremal ray of $\overline{NE}(X)$, i.e., a 1-dimensional face of $\overline{NE}(X)$ with $K_X R < 0$. An extremal ray R defines a proper surjective morphism with connected fibers $\operatorname{Cont}_R: X \to Y$ such that, for an irreducible curve $C \subset X$, $\operatorname{Cont}_R(C)$ is a point if and only if $[C] \in R$. This is called the contraction morphism associated to R.

We recall the following fundamental result.

Lemma 2.1 (cf. [1, Propositions 4.2 and 4.12]). Let $f: Y \to X$ be a finite surjective morphism between smooth projective n-folds with $\rho(X) = \rho(Y)$. Then the following hold.

- (1) The push-forward map $f_*: N_1(Y) \to N_1(X)$ is an isomorphism and $f_*\overline{NE}(Y) = \overline{NE}(X)$.
- (2) Let $f_*: N^1(Y) \to N^1(X)$ be the map induced from the push-forward map $D \mapsto f_*D$ of divisors. Then the dual map $f^*: N_1(X) \to N_1(Y)$ is an isomorphism and $f^*\overline{NE}(X) = \overline{NE}(Y)$.
- (3) If f is étale and K_X is not nef, then f^{*} and f_{*} above give a one-to-one correspondence between the set of extremal rays of X and Y.
- (4) Under the same assumption as in (3), for an extremal ray $R(\subset \overline{NE}(Y))$, and for the contraction morphisms $\operatorname{Cont}_R: Y \to Y'$ and $\operatorname{Cont}_{f_*R}: X \to X'$, there exists a finite surjective morphism $f': Y' \to X'$ such that $f' \circ \operatorname{Cont}_R =$ $\operatorname{Cont}_{f_*R} \circ f$.

The following theorem and some arguments used in its proof play another key role for proving our main Theorem 1.1.

Theorem 2.2 (cf. [7, Lemma 6.2]). Let X be a normal Q-factorial projective variety with at most log-canonical singularities and $f: X \to X$ a surjective endomorphism. Let $R(\subset \overline{NE}(X))$ be an extremal ray and $\pi := \operatorname{Cont}_R: X \to Y$ the contraction morphism associated to R. Suppose that $E(\subset X)$ be a subvariety such that $\dim(\pi(E)) < \dim(E)$ and $f^{-1}(E) = E$. Then $(f^k)_*(R) = R$ for some positive integer k.

Remark 2.3. In [7, Lemma 6.2], the assumption that 'X is **Q**-factorial' is missing.

3. Proof of Theorem 1.1. Let $f: X \to X$ be a non-isomorphic étale endomorphism of a smooth projective variety X. Suppose that there exists an extremal ray $R' \subset \overline{NE}(X)$ such that for the contraction morphism $\varphi := \operatorname{Cont}_{R'} : X \to Y$ associated to R' is a Mori fiber space (i.e., $\dim Y < \dim X$). Then by [5, Lemma 5-1-5], Y is Q-factorial. At first, we impose no restrictions on the Picard number $\rho(Y)$ of Y. Then by [2], there exists a positive integer k such that $(f^k)_*R' = R'$. Hence replacing f by its power f^k , we may assume from the beginning that $f_*R' = R'$. Hence there exists a surjective endomorphism $q: Y \to Y$ such that $\varphi \circ$ $f = g \circ \varphi$. Since φ is a Fano fibration, the general fiber of φ is simply-connected. Since f is étale, $X \xrightarrow{\varphi}$ $Y \xrightarrow{g} Y$ gives a Stein factorization of $\varphi \circ f: X \to Y$ and q is also a non-isomorphic étale endomorphism with $\deg(g) = \deg(f)$. Thus we have the following Cartesian diagram:

We take an arbitrary extremal ray $R(\subset \overline{NE}(X))$ of *divisorial* type. We put $R_n := (f^n)_*R$ for n > 0and $R_0 := R$. Then, by Lemma 2.1, $R_n(\subset \overline{NE}(X))$ is also an extremal ray for any $n \ge 0$ and let $\psi_n :=$ $\operatorname{Cont}_{R_n}: X \to Z_n$ be a divisorial contraction associated to R_n . Then, by Lemma 2.1, there is induced a non-isomorphic finite morphism $g_n: Z_n \to Z_{n+1}$ which is étale in codimension one such that $\psi_{n+1} \circ$ $f = g_n \circ \psi_n$ and $\operatorname{deg}(g_n) = \operatorname{deg}(f)$ for any $n \ge 0$. In summary, there exists another commutative diagram below:

$$\begin{array}{cccc} X & \stackrel{f}{\longrightarrow} & X \\ \psi_n & & & \downarrow \psi_{n+1} \\ Z_n & \stackrel{g_n}{\longrightarrow} & Z_{n+1}. \end{array}$$

This diagram is Cartesian over a non-singular locus Z_{n+1}^0 of Z_{n+1} . Let $E_n := \operatorname{Exc}(\psi_n)$ be the ψ_n -exceptional divisor. Then $f^{-1}(E_{n+1}) = E_n$ for any $n \ge 0$. Let $\gamma(\subset X)$ be an extremal rational curve whose numerical class $[\gamma]$ spans the extremal ray R'. Then γ is contracted to a point by φ . Since each E_n is effective, the restriction of E_n to a general fiber of φ is also effective. Hence $(E_n, \gamma) \ge 0$ for any $n \ge 0$.

Lemma 3.1. We have two cases; (1) $(E_n, \gamma) = 0$ for any $n \ge 0$, or No. 5]

(2) $(E_n, \gamma) > 0$ for any $n \ge 0$.

Proof. Since $f_*R' = R'$, we have $f_*\gamma \equiv a\gamma$ for a positive rational number a. If we set $E := E_0$, then $E = (f^n)^* E_n$. Hence by the projection formula, we see that $(E, \gamma) = (E_n, (f^n)_*\gamma) = a^n(E_n, \gamma)$ for any $n \geq 0$, which shows the claim.

We set $k := \dim Y$. Let ℓ_n be an extremal rational curve whose numerical class $[\ell_n]$ spans the extremal ray R_n , i.e., $R_n = \mathbf{R}_{\geq 0}[\ell_n]$.

Case (1). First, we consider the case that $(E_n, \gamma) = 0$ for any $n \ge 0$. Then by [4], we see that for any $n \ge 0$, there exists a Cartier divisor D_n on Y such that $E_n \sim \varphi^* D_n$. Since $E_n = f^* E_{n+1}$ and $\varphi \circ f = g \circ \varphi$, we see that $E_n \sim \varphi^* g^* D_{n+1}$. Hence $D_n \sim g^* D_{n+1}$ for any $n \ge 0$. We have the following easy lemma.

Lemma 3.2. D_n is not nef and $(D_n)^k = 0$ for any $n \ge 0$.

Proof. Since $R_n \neq R'$, $\varphi(\ell_n)$ is an irreducible curve on Y. Hence, by the projection formula, we see that $(D_n, \varphi_* \ell_n) = (\varphi^* D_n, \ell_n) = (E_n, \ell_n) < 0$. Thus D_n is not nef. For the latter assertion, we may assume that n = 0 without loss of generality. Since $D_n \sim g^* D_{n+1}$, we see that $(D_n)^k = \deg(g)(D_{n+1})^k$ for any $n \ge 0$. Hence $(D_0)^k = (\deg(g))^n (D_n)^k$ for any $n \ge 0$. Suppose that $(D_0)^k \ne 0$. Since $\deg(g) =$ $\deg(f) \ge 2$, we see that $0 < (D_n)^k < 1$ for a sufficiently positive integer n. This contradicts the fact that $(D_n)^k \in \mathbf{Z}$. Thus $(D_0)^k = 0$.

Case (2). Next, we consider the case that $(E_n, \gamma) > 0$ for any $n \ge 0$. We begin with an easy lemma.

Lemma 3.3. We have $f_*\gamma \equiv \gamma$.

Proof. Since $f_*R' = R'$, we have $f_*\gamma \equiv a\gamma$ for a positive rational number a. We set $E := E_0$. Then by the projection formula, we have $((f^n)^*E, \gamma) = (E, (f^n)_*\gamma) = a^n(E, \gamma) > 0$ for any n > 0. Hence, if 0 < a < 1, then $0 < ((f^n)^*E, \gamma) < 1$ for a sufficiently positive integer n, which contradicts the fact that $((f^n)^*E, \gamma) \in \mathbf{Z}$. Suppose that a > 1. Then by the same argument as in the proof of Lemma 3.1, we have $(E, \gamma) = a^n(E_n, \gamma)$ for any n > 0. Thus $0 < (E_n, \gamma) < 1$ for a sufficiently positive integer n, which contradicts the fact that $(E_n, \gamma) < 1$ for a sufficiently positive integer n, which contradicts the fact that $(E_n, \gamma) < 1$ for a sufficiently positive integer n.

Lemma 3.4. There exists a positive rational number b such that $(K_X + bE_n, \gamma) = 0$ for any $n \ge 0$.

Proof. Since $(K_X, \gamma) < 0$ and $(E_n, \gamma) > 0$, there exists a unique positive rational number b_n such

that $(K_X + b_n E_n, \gamma) = 0$ for any $n \ge 0$. Combining Lemma 3.3 with the fact that $E_{n-1} = f^* E_n$, the projection formula shows that $(E_{n-1}, \gamma) =$ $(E_n, f_*\gamma) = (E_n, \gamma)$. Since

$$b_n = \frac{(-K_X, \gamma)}{(E_n, \gamma)}$$

we see that $b_{n-1} = b_n$ for any n > 0. Thus $b_n \equiv b$ is indedependent of n.

Then by [4], for any $n \ge 0$, there exists a **Q**-Cartier **Q**-divisor D'_n on Y such that $K_X + bE_n \sim_{\mathbf{Q}} \varphi^* D'_n$.

Lemma 3.5. Each D'_n is not nef and $D'_{n-1} \sim_{\mathbf{Q}} g^* D'_n$ for any n > 0. In particular, D'_n is not numerically trivial.

Proof. Since $(K_X, \ell_n) < 0, (E_n, \ell_n) < 0$ and b > 0, we see by the projection formula that $(D'_n, \varphi_*\ell_n) = (\varphi^*D'_n, \ell_n) = (K_X, \ell_n) + b(E_n, \ell_n) < 0$. Since $R_n \neq R', \varphi(\ell_n)$ is an irreducible rational curve on Y and thus each D'_n is not nef. Since $K_X \sim f^*K_X$ and $f^*E_n = E_{n-1}$, we see that

$$K_X + bE_{n-1} \sim_{\mathbf{Q}} f^*(K_X + bE_n) \sim_{\mathbf{Q}} f^*\varphi^*D'_n$$

= $\varphi^*g^*D'_n$.

Since $K_X + bE_{n-1} \sim_{\mathbf{Q}} \varphi^* D'_{n-1}$, we have $D'_{n-1} \sim_{\mathbf{Q}} g^* D'_n$ for any n > 0.

Lemma 3.6. For any $n \ge 0$, the self-intersection number of D'_n is zero, i.e., $(D'_n)^k = 0$.

Proof. By Lemma 3.4,

$$b \equiv \frac{(-K_X, \gamma)}{(E_n, \gamma)}$$

is independent of n. Hence a positive integer (E_n, γ) is also independent of n. We set $d := (E_n, \gamma)$ and let $\Gamma_n := d(K_X + bE_n)$ be a Cartier divisor on X. Since $(\Gamma_n, \gamma) = 0$, by [4], the Cartier divisor Γ_n is linearly equivalent to the pullback of some Cartier divisor on Y by φ . Hence for any $n \ge 0$, $\Delta_n := dD'_n$ is a Cartier divisor on Y and $\Gamma_n \sim \varphi^* \Delta_n$. Since $\Gamma_n \sim$ $f^*\Gamma_{n+1} \sim f^* \varphi^* \Delta_{n+1} = \varphi^* g^* \Delta_{n+1}$, we have $\Delta_n \sim$ $g^* \Delta_{n+1}$. Since $\deg(g) > 1$, applying the same method as in the proof of Lemma 3.3 to the Cartier divisor Δ_n on Y, we see that $(\Delta_n)^k = 0$. Hence $(D'_n)^k = 0$ for any $n \ge 0$.

Corollary 3.7. We have $\dim Y \ge 2$ and $\rho(Y) \ge 2$.

Proof. If dim $(Y) \leq 1$, then by Lemma 3.6, D'_n is numerically trivial, which contradicts Lemma 3.5. If $\rho(Y) = 1$, then by Lemma 3.5, $-D'_n$ is ample, which contradicts Lemma 3.6.

Proof of Theorem 1.1. Hereafter, we always assume that $\rho(Y) = 2$. Let $N_{\mathbf{C}}^1(Y) := N^1(Y) \otimes_{\mathbf{R}}$ **C** be the complexification of the 2-dimensional **R**-vector space $N^1(Y)$. We set $H := \{D \in N_{\mathbf{C}}^1(Y) | D^k = 0\}$. Then H is an affine curve in $N_{\mathbf{C}}^1(Y) \simeq \mathbf{C}^2$.

Case (1). First, we consider the case where $(E_n, \gamma) = 0$ for any $n \ge 0$. For each $n \ge 0$, let $L_n := \langle cl(D_n) \rangle_{\mathbf{C}}$ be the 1-dimensional complex vector space spanned by $cl(D_n)$. Then by Lemma 3.2, each affine line L_n is an irreducible component of H. The pull-back $g^*: N^{1}_{\mathbf{C}}(Y) \simeq N^{1}_{\mathbf{C}}(Y)$ induces an automorphism of H. Since $g^*D_n \sim D_{n-1}$, there is induced an isomorphism $g^*|_{L_n}: L_n \simeq L_{n-1}$ for any n > 0. We have the following commutative diagram:

$$N^{1}_{\mathbf{C}}(Y) \xrightarrow{g^{*}} N^{1}_{\mathbf{C}}(Y)$$

$$\stackrel{j}{\uparrow} \qquad \qquad \uparrow^{j}$$

$$H \xrightarrow{g^{*}|_{H}} H$$

$$i_{n} \uparrow \qquad \qquad \uparrow^{i_{n-1}}$$

$$L_{n} \xrightarrow{g^{*}|_{L_{n}}} L_{n-1},$$

where $j: H \hookrightarrow N^1_{\mathbf{C}}(Y), i_n: L_n \hookrightarrow H$ and $i_{n-1}: L_{n-1} \hookrightarrow$ H are all inclusions. The automorphism $g^*|_H: H \simeq$ H induces a permutation of a finite number of irreducible components of H. Hence, replacing g(resp. f) by its suitable power $g^k(k > 0)$ (resp. f^k), there exists some positive integer n such that $L_n = g^* L_n = L_{n-1}$. Pulling back by $\varphi: X \to Y$, we have $E_n \equiv \lambda E_{n-1}$ for some $\lambda \in \mathbf{Q}_{>0}$, since any E_n is a non-zero effective divisor. Since $(\ell_{n-1}, E_n) =$ $\lambda(\ell_{n-1}, E_{n-1}) < 0$, we see that $\ell_{n-1} \subset E_n$. Since ℓ_{n-1} sweeps out E_{n-1} , we have $E_{n-1} \subset E_n$. Thus $E_{n-1} =$ E_n , since E_n is irreducible. Hence $f^{-1}(E_n) = E_{n-1} =$ E_n and we can apply Theorem 2.2 to the ψ_n -exceptional divisor E_n . There exists a positive integer psuch that $(f^p)_*R_n = R_n$. Since $f_*: N_1(X) \simeq N_1(X)$ is an automorphism, we have $(f^p)_*R = R$.

Case (2). Next, we consider the case where $(E_n, \gamma) > 0$ for any $n \ge 0$. For each $n \ge 0$, let $L'_n := \langle cl(D'_n) \rangle_{\mathbf{C}}$ be the 1-dimensional complex vector space spanned by $cl(D'_n)$. Then by Lemma 3.6, each affine line L'_n is an irreducible component of the affine curve H. Since $f^*(K_X + bE_n) \sim_{\mathbf{Q}} K_X + bE_{n-1}$, we see that $g^*(D'_n) \sim_{\mathbf{Q}} D'_{n-1}$. Thus the automorphism $g^* \in \operatorname{Aut}(N^1(Y)_{\mathbf{C}})$ induces an isomorphism $g^*|_{L'_n} : L'_n \simeq L'_{n-1}$ for each n > 0. Then we can apply

the same argument as in the **Case (1)**. After replacing g (resp. f) by its suitable power g^k (k > 0) (resp. f^k), there exists some positive integer n such that $L'_n = g^*L'_n = L'_{n-1}$. Pulling back by $\varphi: X \to Y$, we have $K_X + bE_{n-1} \equiv \lambda(K_X + bE_n)$ for some $\lambda \in \mathbf{Q}$. We have $\lambda \neq 0$, since L'_{n-1} is not numericall trivial by Lemma 3.5. If $\lambda < 0$, then we replace f by f^2 . Thus we may assume from the beginning that $\lambda > 0$.

Lemma 3.8. We have $\lambda = 1$.

Proof. Suppose that $0 < \lambda < 1$. Since $\lambda b E_n \equiv (1 - \lambda)K_X + bE_{n-1}$, we have

$$\lambda b(E_n, \ell_{n-1}) = (1 - \lambda)(K_X, \ell_{n-1}) + b(E_{n-1}, \ell_{n-1}) < 0.$$

Hence $(E_n, \ell_{n-1}) < 0$ and ℓ_{n-1} is contained in E_n . Since ℓ_{n-1} sweeps out E_{n-1} , we have $E_{n-1} \subset E_n$. Thus $E_{n-1} = E_n$, since E_n is irreducible. Then $K_X + bE_n \equiv \lambda(K_X + bE_n)$, which shows that $K_X + bE_n \equiv 0$. This contradicts Lemma 3.5. Next, suppose that $\lambda > 1$. Since $bE_{n-1} \equiv (\lambda - 1)K_X + b\lambda E_n$, we have

$$b(E_{n-1}, \ell_n) = (\lambda - 1)(K_X, \ell_n) + b\lambda(E_n, \ell_n) < 0.$$

Hence $(E_{n-1}, \ell_n) < 0$. By the same argument as above, we have $E_{n-1} = E_n$ and $K_X + bE_n \equiv 0$, which again contradicts Lemma 3.5.

By Lemma 3.8, we have $E_{n-1} \equiv E_n$. Then applying the same argument as in the **Case (1)**, we see that $E_{n-1} = E_n$. Thus $E_n = E_{n-1} = f^{-1}(E_n)$. Hence we can apply Theorem 2.2 to the ψ_n -exceptional divisor E_n . By the same argument as in the **Case (1)**, we have $(f^p)_*R = R$ for some integer p > 0.

4. Counterexamples. The Question does not necessarily have an affirmative answer if we drop the assumption that $\rho(Y) = 2$. We shall construct such an example (cf. [2], Remark A.9). Let S be a rational elliptic surface with global sections whose Mordell-Weil rank is positive. It is obtained as 9-points blowing-up of \mathbf{P}^2 . We regard S as an elliptic curve C_K defined over the function field K of the base curve C. Since S is relatively minimal, the translation mapping $C_K \to C_K$ given by the non-torsion section γ induces a relative automorphism $t: S \simeq S$ over C, which is of infinite order. Let $X := S \times E \times \mathbf{P}^1$ be the product variety of S, an elliptic curve E and \mathbf{P}^1 . We take a point $o \in E$ and a point $0 \in \mathbf{P}^1$. Since γ is a (-1)-curve on S, the curve $\gamma \times \{o\} \times \{0\}$ on X spans the extremal ray $R(\subset \overline{NE}(X))$ of divisorial type. If we denote by $\mu_k: E \to E$ multiplication by k > 1, then the product mapping $f := t \times \mu_k \times \operatorname{id}_{\mathbf{P}^1}: X \to X$ gives a non-isomorphic étale endomorphism of X. We set $Y := S \times E$ and let $p_{1,2}: X \to Y$ and $p: Y \to S$ be natural projections. Then $p_{1,2}$ is a trivial \mathbf{P}^1 -bundle, which is a Mori fiber space. Furthermore, the product mapping $g := t \times \mu_k: Y \to Y$ also gives a non-isomorphic étale endomorphism of Y.

We have the following Cartesian diagram:

$$\begin{array}{cccc} X & \stackrel{f}{\longrightarrow} & X \\ p_{1,2} \downarrow & & \downarrow p_{1,2} \\ Y & \stackrel{g}{\longrightarrow} & Y \\ p \downarrow & & \downarrow p \\ S & \stackrel{t}{\longrightarrow} & S. \end{array}$$

If $(f^n)_*R = R$ for some n > 0, then $t^n(\gamma) = \gamma$. This is impossible, since $t \in \operatorname{Aut}(S/C)$ is of infinite order. Hence, $(f^n)_*R \neq R$ for any n > 0. In this case, $\rho(S) = 10$ and $\rho(Y) \ge 10$. Let $\psi := \operatorname{Cont}_R$: $X \to Z$ be the extremal contraction associated to Rand $\Delta := \operatorname{Exc}(\psi)$ the ψ -exceptional divisor. Then $\Delta \simeq \gamma \times E \times \mathbf{P}^1$ does not intersect with the general fiber of $p_{1,2}$. Thus our counterexample corresponds to the **Case (1)** in Section 3.

Acknowledgement. The author wishes to

express sincere thanks to Prof. Noboru Nakayama for many useful discussions and to the referee for the careful reading of the manuscript.

References

- Y. Fujimoto, Endomorphisms of smooth projective 3-folds with non-negative Kodaira dimension, Publ. Res. Inst. Math. Sci. 38 (2002), no. 1, 33–92.
- Y. Fujimoto and N. Nakayama, Appendix to D.-Q. Zhang's paper: Termination of extremal rays of fibration type for the iteration of surjective endomorphisms, Compos. Math. 146 (2010), p.o. 1, 164–168.
- [3] Y. Fujimoto, Étale endomorphisms of 3-folds. I, Osaka J. Math. 55 (2018), no. 2, 195–257.
- Y. Kawamata, The cone of curves of algebraic varieties, Ann. of Math. (2) **119** (1984), no. 3, 603–633.
- [5] Y. Kawamata, K. Matsuda and K. Matsuki, Introduction to the minimal model problem, in *Algebraic geometry, Sendai, 1985*, Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987, pp. 283–360.
- [6] J. Kollár and S. Mori, Birational geometry of algebraic varieties, translated from the 1998 Japanese original, Cambridge Tracts in Mathematics, 134, Cambridge University Press, Cambridge, 1998.
- [7] S. Meng and D.-Q. Zhang, Building blocks of polarized endomorphisms of normal projective varieties, Adv. Math. **325** (2018), 243–273.