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Abstract: Let f:X ! X be a non-isomorphic étale endomorphism of a smooth projective

variety X. Suppose that there exists a KX-negative extremal ray R0 � NEðXÞ of fiber type. Then

we give a sufficient condition for a KX-negative extremal ray R � NEðXÞ of divisorial type to

terminate under a suitable power fk of k > 0.
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1. Introduction. The purpose of this note

is to give a partial answer to the following ques-

tion concerning termination of extremal rays of

divisorial type on a smooth projective variety for

the iteration of non-isomorphic étale endomor-

phisms.

Question. Let f :X ! X be a non-isomor-

phic étale endomorphism of a smooth projective

variety X. Suppose that there exists an extremal

ray R0 � NEðXÞ such that KXR
0 < 0 and the

associated contraction morphism ’ :¼ ContR0 :X !
Y is a fibration to a lower dimensional variety Y .

Then is it true that for any KX-negative extremal

ray R � NEðXÞ of divisorial type, there exists a

positive integer k such that ðfkÞ�ðRÞ ¼ R for the

automorphism ðfkÞ�: N1ðXÞ ’ N1ðXÞ induced from

the k-th power fk ¼ f � � � � � f?

If we apply the minimal model program (MMP,

for short, cf. [6]) to the study of non-isomorphic

surjective endomorphisms of projective varieties,

we sometimes encounter serious troubles: Let

f:X ! X be a non-isomorphic étale endomorphism.

Then a KX-negative extremal ray Rð� NEðXÞÞ is

not necessarily preserved under a suitable power

ðfkÞ� ðk > 0Þ of the push-foward mapping f�:
N1ðXÞ ’ N1ðXÞ (cf. [3]). Hence it is not at all clear

that we can apply the MMP working compatibly

with étale endomorphisms. Thus it is an interesting

problem to give a sufficient condition for a KX-

negative extremal ray R to be preserved under a

suitable power of f . A special case of the Question

was studied in [3, Theorems 1.4, 8.6 and 9.6], which

gives an affirmative answer to the Question in the

case where dimX ¼ 3 and dimY ¼ 2. In this note,

we shall give some generalization.

Theorem 1.1. The Question has an affir-

mative answer under the assumption that �ðY Þ ¼ 2.

If we drop the assumption that �ðY Þ ¼ 2, then

the Question does not necessarily have an affir-

mative answer. In Section 4, we shall give an easy

counterexample using a rational elliptic surface

with infinitely many ð�1Þ-curves.

2. Notations and preliminaries. In this

paper, we work over the complex number field C. A

projective variety is a complex variety embedded in

a projective space. By an endomorphism f:X ! X,

we mean a morphism from a projective variety X

to itself.

The following symbols are used for a variety X.

KX: the canonical divisor of X.

AutðXÞ: the algebraic group of automorphisms

of X.

N1ðXÞ :¼ ðf1-cycles on Xg=�Þ �Z R, where �
means a numerical equivalence.

N1ðXÞ :¼ ðfCartier divisors on Xg=�Þ �Z R,

where � means a numerical equivalence.

NEðXÞ: the smallest convex cone in N1ðXÞ
containing all effective 1-cycles.

NEðXÞ: the Kleiman-Mori cone of X, i.e., the

closure of NEðXÞ in N1ðXÞ for the metric topology.

�ðXÞ :¼ dimR N1ðXÞ, the Picard number of X.

½C 	: the numerical equivalence class of a 1-

cycle C.
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clðDÞ: the numerical equivalence class of a

Cartier divisor D.


Q: the Q-linear equivalence of Q-divisors

of X.

For an endomorphism f:X ! X and an integer

k > 0, fk stands for the k-times composite f � � � � � f
of f .

Extremal rays. For a smooth projective vari-

ety X, an extremal ray R means a KX-negative

extremal ray of NEðXÞ, i.e., a 1-dimensional face of

NEðXÞ with KXR < 0. An extremal ray R defines a

proper surjective morphism with connected fibers

ContR:X ! Y such that, for an irreducible curve

C � X, ContRðCÞ is a point if and only if ½C 	 2 R.

This is called the contraction morphism associated

to R.

We recall the following fundamental result.

Lemma 2.1 (cf. [1, Propositions 4.2 and 4.12]).
Let f :Y ! X be a finite surjective morphism

between smooth projective n-folds with �ðXÞ ¼
�ðY Þ. Then the following hold.

(1) The push-forward map f�:N1ðY Þ ! N1ðXÞ is

an isomorphism and f�NEðY Þ ¼ NEðXÞ.
(2) Let f�:N

1ðY Þ ! N1ðXÞ be the map induced

from the push-forward map D 7! f�D of divi-

sors. Then the dual map f�:N1ðXÞ ! N1ðY Þ is

an isomorphism and f�NEðXÞ ¼ NEðY Þ.
(3) If f is étale and KX is not nef, then f� and f�

above give a one-to-one correspondence be-

tween the set of extremal rays of X and Y .

(4) Under the same assumption as in (3), for

an extremal ray Rð� NEðY ÞÞ, and for the

contraction morphisms ContR:Y ! Y 0 and

Contf�R:X ! X0, there exists a finite surjective

morphism f 0:Y 0 ! X0 such that f 0 � ContR ¼
Contf�R � f.

The following theorem and some arguments

used in its proof play another key role for proving

our main Theorem 1.1.

Theorem 2.2 (cf. [7, Lemma 6.2]). Let X be

a normal Q-factorial projective variety with at

most log-canonical singularities and f :X ! X a

surjective endomorphism. Let Rð� NEðXÞÞ be an

extremal ray and � :¼ ContR:X ! Y the contrac-

tion morphism associated to R. Suppose that Eð�
XÞ be a subvariety such that dimð�ðEÞÞ < dimðEÞ
and f�1ðEÞ ¼ E. Then ðfkÞ�ðRÞ ¼ R for some posi-

tive integer k.

Remark 2.3. In [7, Lemma 6.2], the as-

sumption that ‘X is Q-factorial’ is missing.

3. Proof of Theorem 1.1. Let f :X ! X be

a non-isomorphic étale endomorphism of a smooth

projective variety X. Suppose that there exists an

extremal ray R0 � NEðXÞ such that for the con-

traction morphism ’ :¼ ContR0 :X ! Y associated

to R0 is a Mori fiber space (i.e., dimY < dimX).

Then by [5, Lemma 5-1-5], Y is Q-factorial. At

first, we impose no restrictions on the Picard

number �ðY Þ of Y . Then by [2], there exists a

positive integer k such that ðfkÞ�R0 ¼ R0. Hence

replacing f by its power fk, we may assume from

the beginning that f�R
0 ¼ R0. Hence there exists a

surjective endomorphism g:Y ! Y such that ’ �
f ¼ g � ’. Since ’ is a Fano fibration, the general

fiber of ’ is simply-connected. Since f is étale, X !’

Y !g Y gives a Stein factorization of ’ � f :X ! Y

and g is also a non-isomorphic étale endomorphism

with degðgÞ ¼ degðfÞ. Thus we have the following

Cartesian diagram:

:

We take an arbitrary extremal ray Rð� NEðXÞÞ
of divisorial type. We put Rn :¼ ðfnÞ�R for n > 0

and R0 :¼ R. Then, by Lemma 2.1, Rnð� NEðXÞÞ is

also an extremal ray for any n � 0 and let  n :¼
ContRn

:X ! Zn be a divisorial contraction associ-

ated to Rn. Then, by Lemma 2.1, there is induced

a non-isomorphic finite morphism gn:Zn ! Znþ1

which is étale in codimension one such that  nþ1 �
f ¼ gn �  n and degðgnÞ ¼ degðfÞ for any n � 0. In

summary, there exists another commutative dia-

gram below:

:

This diagram is Cartesian over a non-singular locus

Z0
nþ1 of Znþ1. Let En :¼ Excð nÞ be the  n-excep-

tional divisor. Then f�1ðEnþ1Þ ¼ En for any n � 0.

Let �ð� XÞ be an extremal rational curve whose

numerical class ½�	 spans the extremal ray R0. Then

� is contracted to a point by ’. Since each En is

effective, the restriction of En to a general fiber of ’

is also effective. Hence ðEn; �Þ � 0 for any n � 0.

Lemma 3.1. We have two cases;

(1) ðEn; �Þ ¼ 0 for any n � 0, or
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(2) ðEn; �Þ > 0 for any n � 0.

Proof. Since f�R
0 ¼ R0, we have f�� � a� for a

positive rational number a. If we set E :¼ E0, then

E ¼ ðfnÞ�En. Hence by the projection formula, we

see that ðE; �Þ ¼ ðEn; ðfnÞ��Þ ¼ anðEn; �Þ for any

n � 0, which shows the claim. �

We set k :¼ dimY . Let ‘n be an extremal

rational curve whose numerical class ½‘n	 spans the

extremal ray Rn, i.e., Rn ¼ R�0½‘n	.
Case (1). First, we consider the case that

ðEn; �Þ ¼ 0 for any n � 0. Then by [4], we see that

for any n � 0, there exists a Cartier divisor Dn on

Y such that En 
 ’�Dn. Since En ¼ f�Enþ1 and

’ � f ¼ g � ’, we see that En 
 ’�g�Dnþ1. Hence

Dn 
 g�Dnþ1 for any n � 0. We have the following

easy lemma.

Lemma 3.2. Dn is not nef and ðDnÞk ¼ 0 for

any n � 0.

Proof. Since Rn 6¼ R0, ’ð‘nÞ is an irreducible

curve on Y . Hence, by the projection formula,

we see that ðDn; ’�‘nÞ ¼ ð’�Dn; ‘nÞ ¼ ðEn; ‘nÞ < 0.

Thus Dn is not nef. For the latter assertion, we may

assume that n ¼ 0 without loss of generality. Since

Dn 
 g�Dnþ1, we see that ðDnÞk ¼ degðgÞðDnþ1Þk for

any n � 0. Hence ðD0Þk ¼ ðdegðgÞÞnðDnÞk for any

n � 0. Suppose that ðD0Þk 6¼ 0. Since degðgÞ ¼
degðfÞ � 2, we see that 0 < ðDnÞk < 1 for a suffi-

ciently positive integer n. This contradicts the fact

that ðDnÞk 2 Z. Thus ðD0Þk ¼ 0. �

Case (2). Next, we consider the case that

ðEn; �Þ > 0 for any n � 0. We begin with an easy

lemma.

Lemma 3.3. We have f�� � �.

Proof. Since f�R
0 ¼ R0, we have f�� � a� for a

positive rational number a. We set E :¼ E0. Then

by the projection formula, we have ððfnÞ�E; �Þ ¼
ðE; ðfnÞ��Þ ¼ anðE; �Þ > 0 for any n > 0. Hence, if

0 < a < 1, then 0 < ððfnÞ�E; �Þ < 1 for a sufficiently

positive integer n, which contradicts the fact that

ððfnÞ�E; �Þ 2 Z. Suppose that a > 1. Then by the

same argument as in the proof of Lemma 3.1, we

have ðE; �Þ ¼ anðEn; �Þ for any n > 0. Thus 0 <

ðEn; �Þ < 1 for a sufficiently positive integer n,

which contradicts the fact that ðEn; �Þ 2 Z. Hence

a ¼ 1. �

Lemma 3.4. There exists a positive ration-

al number b such that ðKX þ bEn; �Þ ¼ 0 for any

n � 0.

Proof. Since ðKX; �Þ < 0 and ðEn; �Þ > 0, there

exists a unique positive rational number bn such

that ðKX þ bnEn; �Þ ¼ 0 for any n � 0. Combining

Lemma 3.3 with the fact that En�1 ¼ f�En, the

projection formula shows that ðEn�1; �Þ ¼
ðEn; f��Þ ¼ ðEn; �Þ. Since

bn ¼
ð�KX; �Þ
ðEn; �Þ

;

we see that bn�1 ¼ bn for any n > 0. Thus bn � b is

indedependent of n. �

Then by [4], for any n � 0, there exists a

Q-Cartier Q-divisor D0n on Y such that KX þ
bEn 
Q ’�D0n.

Lemma 3.5. Each D0n is not nef and

D0n�1 
Q g�D0n for any n > 0. In particular, D0n is

not numerically trivial.

Proof. Since ðKX; ‘nÞ < 0; ðEn; ‘nÞ < 0 and

b > 0, we see by the projection formula that

ðD0n; ’�‘nÞ ¼ ð’�D0n; ‘nÞ ¼ ðKX; ‘nÞ þ bðEn; ‘nÞ < 0.

Since Rn 6¼ R0, ’ð‘nÞ is an irreducible rational curve

on Y and thus each D0n is not nef. Since KX 
 f�KX

and f�En ¼ En�1, we see that

KX þ bEn�1 
Q f�ðKX þ bEnÞ 
Q f�’�D0n
¼ ’�g�D0n:

Since KX þ bEn�1 
Q ’�D0n�1, we have D0n�1 
Q

g�D0n for any n > 0. �

Lemma 3.6. For any n � 0, the self-inter-

section number of D0n is zero, i.e., ðD0nÞ
k ¼ 0.

Proof. By Lemma 3.4,

b � ð�KX; �Þ
ðEn; �Þ

is independent of n. Hence a positive integer ðEn; �Þ
is also independent of n. We set d :¼ ðEn; �Þ and let

�n :¼ dðKX þ bEnÞ be a Cartier divisor on X. Since

ð�n; �Þ ¼ 0, by [4], the Cartier divisor �n is linearly

equivalent to the pullback of some Cartier divisor

on Y by ’. Hence for any n � 0, �n :¼ dD0n is a

Cartier divisor on Y and �n 
 ’��n. Since �n 

f��nþ1 
 f�’��nþ1 ¼ ’�g��nþ1, we have �n 

g��nþ1. Since degðgÞ > 1, applying the same meth-

od as in the proof of Lemma 3.3 to the Cartier

divisor �n on Y , we see that ð�nÞk ¼ 0. Hence

ðD0nÞ
k ¼ 0 for any n � 0. �

Corollary 3.7. We have dimY � 2 and

�ðY Þ � 2.

Proof. If dimðY Þ � 1, then by Lemma 3.6, D0n
is numerically trivial, which contradicts Lemma

3.5. If �ðY Þ ¼ 1, then by Lemma 3.5, �D0n is ample,

which contradicts Lemma 3.6. �
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Proof of Theorem 1.1. Hereafter, we always

assume that �ðY Þ ¼ 2. Let N1
CðY Þ :¼ N1ðY Þ �R

C be the complexification of the 2-dimensional

R-vector space N1ðY Þ. We set H :¼ fD 2
N1

CðY ÞjDk ¼ 0g. Then H is an affine curve in

N1
CðY Þ ’ C2.

Case (1). First, we consider the case where

ðEn; �Þ ¼ 0 for any n � 0. For each n � 0, let Ln :¼
hclðDnÞiC be the 1-dimensional complex vector

space spanned by clðDnÞ. Then by Lemma 3.2,

each affine line Ln is an irreducible component of

H. The pull-back g�:N1
CðY Þ ’ N1

CðY Þ induces an

automorphism of H. Since g�Dn 
 Dn�1, there

is induced an isomorphism g�jLn :Ln ’ Ln�1 for

any n > 0. We have the following commutative

diagram:

where j:H ,! N1
CðY Þ, in:Ln ,! H and in�1:Ln�1 ,!

H are all inclusions. The automorphism g�jH :H ’
H induces a permutation of a finite number of

irreducible components of H. Hence, replacing g

(resp. f) by its suitable power gkðk > 0Þ (resp. fk),

there exists some positive integer n such that

Ln ¼ g�Ln ¼ Ln�1. Pulling back by ’:X ! Y , we

have En � �En�1 for some � 2 Q>0, since any En

is a non-zero effective divisor. Since ð‘n�1; EnÞ ¼
�ð‘n�1; En�1Þ < 0, we see that ‘n�1 � En. Since ‘n�1

sweeps out En�1, we have En�1 � En. Thus En�1 ¼
En, since En is irreducible. Hence f�1ðEnÞ ¼ En�1 ¼
En and we can apply Theorem 2.2 to the  n-excep-

tional divisor En. There exists a positive integer p

such that ðfpÞ�Rn ¼ Rn. Since f�:N1ðXÞ ’ N1ðXÞ is

an automorphism, we have ðfpÞ�R ¼ R.

Case (2). Next, we consider the case where

ðEn; �Þ > 0 for any n � 0. For each n � 0, let L0n:¼
hclðD0nÞiC be the 1-dimensional complex vector

space spanned by clðD0nÞ. Then by Lemma 3.6, each

affine line L0n is an irreducible component of the

affine curve H. Since f�ðKX þ bEnÞ 
Q KX þ bEn�1,

we see that g�ðD0nÞ 
Q D0n�1. Thus the automor-

phism g� 2 AutðN1ðY ÞCÞ induces an isomorphism

g�jL0n :L
0
n ’ L0n�1 for each n > 0. Then we can apply

the same argument as in the Case (1). After

replacing g (resp. f) by its suitable power gk ðk > 0Þ
(resp. fk), there exists some positive integer n such

that L0n ¼ g�L0n ¼ L0n�1. Pulling back by ’:X ! Y ,

we have KX þ bEn�1 � �ðKX þ bEnÞ for some

� 2 Q. We have � 6¼ 0, since L0n�1 is not numericall

trivial by Lemma 3.5. If � < 0, then we replace f by

f2. Thus we may assume from the beginning that

� > 0.

Lemma 3.8. We have � ¼ 1.

Proof. Suppose that 0 < � < 1. Since �bEn �
ð1� �ÞKX þ bEn�1, we have

�bðEn; ‘n�1Þ ¼ ð1� �ÞðKX; ‘n�1Þ þ bðEn�1; ‘n�1Þ < 0:

Hence ðEn; ‘n�1Þ < 0 and ‘n�1 is contained in En.

Since ‘n�1 sweeps out En�1, we have En�1 � En.

Thus En�1 ¼ En, since En is irreducible. Then

KX þ bEn � �ðKX þ bEnÞ, which shows that KX þ
bEn � 0. This contradicts Lemma 3.5. Next, sup-

pose that � > 1. Since bEn�1 � ð�� 1ÞKX þ b�En,

we have

bðEn�1; ‘nÞ ¼ ð�� 1ÞðKX; ‘nÞ þ b�ðEn; ‘nÞ < 0:

Hence ðEn�1; ‘nÞ < 0. By the same argument as

above, we have En�1 ¼ En and KX þ bEn � 0,

which again contradicts Lemma 3.5. �

By Lemma 3.8, we have En�1 � En. Then

applying the same argument as in the Case (1),

we see that En�1 ¼ En. Thus En ¼ En�1 ¼ f�1ðEnÞ.
Hence we can apply Theorem 2.2 to the  n-excep-

tional divisor En. By the same argument as in the

Case (1), we have ðfpÞ�R ¼ R for some integer

p > 0. �

4. Counterexamples. The Question does

not necessarily have an affirmative answer if we

drop the assumption that �ðY Þ ¼ 2. We shall

construct such an example (cf. [2], Remark A:9).

Let S be a rational elliptic surface with global

sections whose Mordell-Weil rank is positive. It is

obtained as 9-points blowing-up of P2. We regard S

as an elliptic curve CK defined over the function

field K of the base curve C. Since S is relatively

minimal, the translation mapping CK ! CK given

by the non-torsion section � induces a relative

automorphism t:S ’ S over C, which is of infinite

order. Let X :¼ S 
 E 
P1 be the product variety

of S, an elliptic curve E and P1. We take a point

o 2 E and a point 0 2 P1. Since � is a ð�1Þ-curve on

S, the curve � 
 fog 
 f0g on X spans the extremal

ray Rð� NEðXÞÞ of divisorial type. If we denote by
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�k:E ! E multiplication by k > 1, then the prod-

uct mapping f :¼ t
 �k 
 idP1 :X ! X gives a

non-isomorphic étale endomorphism of X. We set

Y :¼ S 
 E and let p1;2:X ! Y and p:Y ! S be

natural projections. Then p1;2 is a trivial P1-bundle,

which is a Mori fiber space. Furthermore, the

product mapping g :¼ t
 �k:Y ! Y also gives a

non-isomorphic étale endomorphism of Y .

We have the following Cartesian diagram:

:

If ðfnÞ�R ¼ R for some n > 0, then tnð�Þ ¼ �.

This is impossible, since t 2 AutðS=CÞ is of infinite

order. Hence, ðfnÞ�R 6¼ R for any n > 0. In this

case, �ðSÞ ¼ 10 and �ðY Þ � 10. Let  :¼ ContR:

X ! Z be the extremal contraction associated to R

and � :¼ Excð Þ the  -exceptional divisor. Then

� ’ � 
 E 
P1 does not intersect with the general

fiber of p1;2. Thus our counterexample corresponds

to the Case (1) in Section 3.
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