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Abstract: We formulate the notion of an isomorphism of GKM graphs. We then show

that two GKM graphs have isomorphic graph equivariant cohomology algebras if and only if the

graphs are isomorphic.
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1. Introduction. In [3, Thm. 7.2], Goresky–

Kottwitz–MacPherson found a remarkable combi-

natorial description of the equivariant cohomology,

with complex coefficients, of a complex projective

variety with an algebraic torus action having only

finitely many 1-dimensional orbits. Subsequently,

Guillemin–Zara [4, §1.6] generalized their work to

a wide class of closed T -manifolds, where T is a

compact torus. Nowadays, a manifold appearing in

this class is called a GKM manifold.

A GKM manifold X determines an edge-

labeled graph GX that encodes the structure of the

equivariant 1-skeleton of X and the weights of the

tangential real representations. Using these data

one can define the graph equivariant cohomology

H�T ðGXÞ in a purely combinatorial way. It is a sub

graded H�ðBTÞ-algebra of the algebra of functions

from the fixed point set XT to H�ðBTÞ.
The theorem of Goresky–Kottwitz–MacPherson

and of Guillemin–Zara mentioned above asserts

that if the equivariant cohomology of a GKM

manifold X is free over H�ðBTÞ, then H�T ðXÞ is

canonically isomorphic to H�T ðGXÞ as an H�ðBTÞ-
algebra. This holds for complex coefficients, and

also for integral coefficients provided that all

isotropy groups in X are connected, see Remark 2.4

below.

The work of Guillemin–Zara has another

important aspect: they established an axiomatic

formulation of the framework above by introducing

the notion of an abstract GKM graph G and its

graph equivariant cohomology H�T ðGÞ with integral

coefficients, which is a graded algebra over the

integral cohomology H�ðBTÞ.
Toric manifolds are important examples of

GKM manifolds. In [6, Thm. 1.1] Masuda proved

that the equivariant isomorphism type of a toric

manifold, considered as a complex algebraic variety

with an algebraic torus action, is completely

determined by its torus equivariant cohomology

algebra with integral coefficients. This work has led

to a classification problem in toric topology which

is nowadays called the cohomological rigidity prob-

lem. The aim of the present note is to generalize

Masuda’s result to arbitrary GKM graphs.

Let G and G0 be two abstract GKM graphs

defined for the same torus T (see Definition 2.3).

We denote by H�T ðGÞ and H�T ðG0Þ the corresponding

graph equivariant cohomology of G and G0, respec-

tively (see Definition 2.5). In Definition 2.6 we will

introduce the notion of an isomorphism ’:G0 ! G.
Our main theorem is the following

Theorem 1.1. H�T ðGÞ and H�T ðG0Þ are iso-

morphic as H�ðBTÞ-algebras if and only if G and G0
are isomorphic as GKM graphs.

For a toric manifold X, the GKM graph GX and

the fan �X are essentially the same object. Since

isotropy groups in toric varieties are connected,

Theorem 1.1 generalizes Masuda’s equivariant ri-

gidity theorem to abstract GKM graphs.

Throughout this note, we fix a compact torus T

of rank r as well as positive integers n and n0. Note

that H�ðBTÞ can be regarded as the polynomial

ring Z½x1; . . . ; xr� with the grading degxi ¼ 2. In

particular, it is a unique factorization domain. For

two polynomials P;Q 2 H�ðBTÞ, we write P j Q if

Q ¼ RP for some R 2 H�ðBTÞ. We denote by jSj
the number of elements of a finite set S.
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2. Graph equivariant cohomology. In

this section we recall the notion of an abstract

GKM graph and its graph equivariant cohomology.

The original paper is [4]. We also introduce the

notion of an isomorphism of GKM graphs.

Let G be a finite n-valent undirected graph

(multi-edges are allowed, but loops are not) with

vertex set V. We denote by E the set of directed

edges of G. (Note that E is not the set of edges of G;
the cardinality of E is twice that of the edge set.)

For each e 2 E, we denote by e the directed edge

obtained by reversing the direction of e. Let iðeÞ and

tðeÞ be the initial and terminal point of a directed

edge e, respectively. We also use the following

notation for vertices p and q:

Ep :¼ fe 2 E j iðeÞ ¼ pg;
Epq :¼ fe 2 E j iðeÞ ¼ p; tðeÞ ¼ qg:

Definition 2.1. A map �: E ! H2ðBTÞ is

called an axial function on G if it satisfies the

following three conditions for all e, e0 2 E:
(i) �ðeÞ ¼ ��ðeÞ.

(ii) (GKM condition) �ðeÞ and �ðe0Þ are linearly

independent over Z if e 6¼ e0 and iðeÞ ¼ iðe0Þ.
(iii) (Primitivity) The greatest common divisor of

the coefficients of �ðeÞ is 1.

Definition 2.2. Let � be an axial function

on G. A parallel transport of ðG; �Þ is a family P ¼
fPege2E of bijections Pe: EiðeÞ ! EtðeÞ satisfying the

following conditions for all e 2 E and all e0 2 EiðeÞ:
(i) Pe ¼ P�1

e .

(ii) PeðeÞ ¼ e.
(iii) �ðPeðe0ÞÞ � �ðe0Þ 2 Z�ðeÞ.

Definition 2.3. An abstract GKM graph (or

simply GKM graph) of type ðr; nÞ is a pair ðG; �Þ
having at least one parallel transport.

Remark 2.4. The above notation and ter-

minology are somewhat different from the usual

ones. Let us explain the differences.

(i) Condition (i) in Definition 2.1 is weaker than

the usual requirement �ðeÞ ¼ ��ðeÞ. Our def-

inition is motivated by the notion of a torus

graph introduced in [5, §3], and is more natural

from the point of view of real manifolds.

(ii) Condition (iii) in Definition 2.1 is related to

our choice of integers as the coefficient ring for

graph equivariant cohomology. For complex

coefficients, it would hold trivially. If we want

the theorem of Goresky–Kottwitz–MacPherson

and of Guillemin–Zara to hold in the case of

integral coefficients, we have to put further

assumptions on the GKM manifold X. One

possible condition is the connectedness of

the stabilizer group Tx for any x 2 X, see

[1, Thm. 1.1] or [2, Thm. 2.1]. The primitivity

condition reflects the connectedness of the

stabilizer groups for the equivariant 1-skeleton

in a purely algebraic fashion. Many known

GKM manifolds with effective torus action

satisfy it.

(iii) The family P is usually called a connection on

ðG; �Þ. As well-explained in [4], this terminol-

ogy owes its origin to the ‘‘fiber bundle’’

picture for GKM graphs, see [4, §1.7]. How-

ever, it seems more appropriate to call it a

parallel transport since each bijection Pe
corresponds to an identification of fibers.

Definition 2.5. The graph equivariant coho-

mology of a GKM graph ðG; �Þ is defined to be

H�T ðGÞ ¼
n
f :V ! H�ðBTÞ

���
�ðeÞ j ðfðiðeÞÞ � fðtðeÞÞÞ ðe 2 EÞ

o
;

it is a sub graded H�ðBTÞ-algebra of the algebra of

all functions V ! H�ðBTÞ. We denote by H2i
T ðGÞ its

degree 2i component where f 2 H�T ðGÞ is of degree

2i if fðpÞ is so for any p 2 V.

We now introduce the notion of an isomor-

phism of GKM graphs. For p 6¼ q 2 V, we set

Ppq :¼
Y
e2Epq

�ðeÞ:

Note that Ppq 6¼ 1 if and only if p and q are adjacent.

Let ðG0; �0Þ be a GKM graph of type ðr; n0Þ.
Definition 2.6. An isomorphism ’:G0 ! G

of GKM graphs is a bijection ’V :V0 ! V such that

for all p0, q0 2 V0 one has P’Vðp0Þ’Vðq0Þ ¼ �Pp0q0 .
This implies that p0 and q0 are adjacent if and

only if ’Vðp0Þ and ’Vðq0Þ are so. Two GKM graphs G,
G0 are said to be isomorphic if there exists an

isomorphism G0 ! G of GKM graphs.

In light of the primitivity condition, the

criterion stated in Definition 2.6 can be para-

phrased as follows:

For any two vertices p0, q0 of G0 there exists

a bijection ’E: E’Vðp0Þ’Vðq0Þ ! Ep0q0 such that

�0ð’EðeÞÞ ¼ ��ðeÞ. Here we are using that each

weight �ðeÞ is a prime element of the UFD H�ðBTÞ
by the primitivity condition.

Remark 2.7. The preceding reformulation
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implies that any isomorphism ’:G0 ! G induces a

graded H�ðBTÞ-algebra isomorphism ’�:H�T ðGÞ !
H�T ðG0Þ defined by ð’�ðfÞÞðp0Þ :¼ fð’Vðp0ÞÞ. The

assignment is functorial in the sense that id�G ¼
idH�

T
ðGÞ and ð � ’Þ� ¼ ’� �  � for isomorphisms

’:G00 ! G0,  :G0 ! G.
3. Equivariant Thom classes. Following

Guillemin–Zara [4, §2.3], we introduce the equivar-

iant Thom class corresponding to a vertex of a

GKM graph ðG; �Þ.
Definition 3.1. For any p 2 V, we define a

map �p:V ! H�ðBTÞ by

�pðqÞ :¼

Y
e2Ep

�ðeÞ if q ¼ p,

0 if q 6¼ p.

8<
:

The map �p is called the equivariant Thom class

associated with p; it is an element of H2n
T ðGÞ.

Remark 3.2. Assume that G is the GKM

graph of a toric manifold X given by a complete fan

�. Then each p 2 XT ¼ V is the transverse inter-

section of n invariant divisors Xi1 ; . . . ; Xin . Our �p
corresponds to the Thom class �i1 � � � �in 2 H2n

T ðXÞ of

p in X. The Thom class �i of Xi (cf. [6, p. 2007]) is

represented by the function �i:V ! H�ðBTÞ given

by

�iðpÞ ¼
�ðeÞ if p 2 Xi,

0 otherwise

�

where e 2 E is the unique edge from p to a q =2 Xi,

see [7, §6.2].

Lemma 3.3. Let F be a subset of H�T ðGÞ n f0g
such that fg ¼ 0 for all distinct f, g 2 F . Then

jF j � jVj. Equality holds if and only if each f is

supported at a single vertex and each vertex occurs

as the support of some f 2 F .

Proof. Let Vf :¼ fp 2 V j fðpÞ 6¼ 0g be the

support of f 2 V. The assumptions imply Vf 6¼ ;
and Vf \ Vg ¼ ; for distinct f, g. Thus the inequal-

ity holds. The equality is attained if and only if

each Vf is a singleton and V is the union of the

Vf ’s. �

The following result gives a ring-theoretic

characterization of the set of equivariant Thom

classes f�pgp2V , up to sign.

Proposition 3.4. The set F ¼ f�p j p 2 Vg is

a maximal collection of elements as in Lemma 3.3,

and each other maximal collection is obtained by

scaling each equivariant Thom class by some

element in H�ðBTÞ. These properties characterize

F up to signs.

Proof. This follows from Lemma 3.3 and the

definition of H�T ðGÞ. �

4. Key lemma. Throughout this section,

we fix vertices p 6¼ q of G. We then introduce the

following polynomials:

P :¼
Y

e2EpnEpq
�ðeÞ; Q :¼

Y
e2EqnEqp

�ðeÞ:

For any e 2 Epq we set

cðeÞ :¼ jfe0 2 Epq j e0 6¼ e; �ðe0Þ ¼ ��ðe0Þgj:

The following is the key lemma in our proof.

For its proof the existence of a parallel transport on

G is essential.

Lemma 4.1. For any e 2 Epq, the polynomial

P � ð�1ÞcðeÞQ is divisible by �ðeÞ.
Proof. Let P be a parallel transport over G. By

condition (iii) in Definition 2.2, there exist integers

fde;e0 ge02Ep satisfying

�ðPeðe0ÞÞ � �ðe0Þ ¼ de;e0�ðeÞ

for any e0 2 Ep. Using these relations, we have

P �
Y
e02Epq
e0 6¼e

�ðe0Þ ¼
Y
e02Ep
e0 6¼e

�ðe0Þ

¼
Y
e02Ep
e0 6¼e

ð�ðPeðe0ÞÞ � de;e0�ðeÞÞ

	
Y
e02Ep
e0 6¼e

�ðPeðe0ÞÞ ¼
Y
e002Eq
e00 6¼e

�ðe00Þ

¼ Q �
Y
e002Eqp
e00 6¼e

�ðe00Þ ¼ Q � ð�1ÞcðeÞ
Y
e02Epq
e0 6¼e

�ðe0Þ;

here ‘‘	’’ means equality modulo �ðeÞ (in other

words, equality in the quotient ring H�ðBTÞ=
h�ðeÞi).

Thus

ðP � ð�1ÞcðeÞQÞ
Y
e02Epq
e0 6¼e

�ðe0Þ

is divisible by �ðeÞ as �ðeÞ is a prime element in

H�ðBTÞ. Since �ðe0Þ ðe0 2 Epq, e0 6¼ eÞ and �ðeÞ are

coprime by the GKM condition, the proof is now

complete. �

We set

E :¼ fe 2 Epq j cðeÞ is eveng;
O :¼ fe 2 Epq j cðeÞ is oddg:

No. 10] Graph equivariant cohomological rigidity for GKM graphs 109



Notice that Epq is the disjoint union of E and O.

Lemma 4.1 immediately implies the following

Corollary 4.2. The polynomials P �Q and

P þQ are divisible by
Y
e2E

�ðeÞ and
Y
e2O

�ðeÞ, respec-

tively.

5. Proof of the main theorem. Now we

are in the position to prove our main theorem:

Theorem 5.1. H�T ðGÞ and H�T ðG0Þ are iso-

morphic as H�ðBTÞ-algebras if and only if G and G0
are isomorphic as GKM graphs.

Proof. The ‘‘if’’ part follows from Remark 2.7.

We have seen in Proposition 3.4 that from the

H�ðBTÞ-algebra H�T ðGÞ we can recover the equiv-

ariant Thom classes, up to sign, and in particular

the vertex set. We show that one can also recover

the polynomials Ppq. This will prove the claim.

Let p, q be distinct vertices. We define a map

f:V ! H�ðBTÞ by

fðvÞ :¼
P 2 if v ¼ p,

Q2 if v ¼ q,
0 otherwise.

8<
:

We first check that f is in H�T ðGÞ.
By Corollary 4.2, fðpÞ � fðqÞ ¼ ðP þQÞðP �QÞ

is divisible byY
e2E

�ðeÞ
 !

�
Y
e2O

�ðeÞ
 !

¼ Ppq:

Together with the definition of P and Q, this

implies that f is an element of H�T ðGÞ.
We note that the identity P 2

pqf ¼ �2
p þ �2

q holds.

In the rest of the proof, we show that the degree of

Ppq and this identity characterize �Ppq.
Assume that an element R 2 H�ðBTÞ satisfies

the identity R2g ¼ �2
p þ �2

q for some g 2 H�T ðGÞ.
Then gðvÞ ¼ 0 for all v 2 V n fp; qg, and gðpÞ is

divisible by P . Since gðpÞ ¼ ð�pðpÞ=RÞ2 and P is

square-free, we see that gðpÞ is even divisible by P 2.

Because P 2
pqP

2 ¼ P 2
pqfðpÞ ¼ R2gðpÞ, it follows that

Ppq is divisible by R. In conclusion, �Ppq is char-

acterized as such an R of maximal degree. �

Remark 5.2. Our proof of Theorem 5.1 is in

a sense dual to Masuda’s [6, §3]. In our notation,

Masuda starts by essentially characterizing the

Thom classes �i (see Remark 3.2) corresponding to

invariant divisors as the non-zero elements of

H2
T ðGÞ with minimal support. He then reconstructs

the fan � by checking which products among the

�i’s are non-zero. In the absence of a fan inducing

the graph G, we instead look at elements of H�T ðGÞ
supported at single vertices, which correspond to

fixed points.
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