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Abstract: The Stieltjes constants �nðKÞ of a number field K are the coefficients of the

Laurent expansion of the Dedekind zeta function �KðsÞ at its pole s ¼ 1. In this paper, we

establish a similar expression of �nðKÞ as Stieltjes obtained in 1885 for �nðQÞ. We also study

the signs of �nðKÞ.
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1. Introduction. Let K be a number field

and OK be its ring of integers. Define for <s > 1 the

Dedekind zeta function

�KðsÞ ¼
X

a

1

Nas
¼
Y
p

1

1�Np�s
;

where a runs over non-zero ideals in OK , p runs over

the prime ideals in OK and Na is the norm of a. It is

known that �KðsÞ can be analytically continued to

C� f1g, and that at s ¼ 1 it has a simple pole, with

residue ��1ðKÞ, given by the analytic class number

formula:

��1ðKÞ ¼
2r1ð2�Þr2hðKÞRðKÞ
!ðKÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jDðKÞj

p ;

where r1 denotes the number of real embeddings of

K, r2 is the number of complex embeddings of K,

hðKÞ is the class number of K, RðKÞ is the regulator

of K, !ðKÞ is the number of roots of unity contained

in K and DðKÞ is the discriminant of the extension

K=Q. The Laurent expansion of �KðsÞ at s ¼ 1 is

�KðsÞ ¼
��1ðKÞ
s� 1

þ �0ðKÞ þ �1ðKÞðs� 1Þð1Þ

þ �2ðKÞðs� 1Þ2 þ � � � :

The constants �nðKÞ are sometimes called the

Stieltjes constants associated with the Dedekind

zeta function. In [6] they are called by higher

Euler’s constants of K. While the constant �K ¼
�0ðKÞ=��1ðKÞ is called the Euler-Kronecker con-

stant in [7] and [16].

In case K ¼ Q, the Laurent expansion of the

Riemann zeta function �ðsÞ at its pole s ¼ 1 is given

by

�ðsÞ ¼
1

s� 1
þ
X
n�0

�nðs� 1Þn;

where

�n ¼
ð�1Þn

n!
lim
x!1

Xx
m¼1

ðlogmÞn

m
�
ðlog xÞnþ1

ðnþ 1Þ

 !
:ð2Þ

Stieltjes in 1885 was the first to propose this

definition of �n for this reason these constants are

today called by his name. The asymptotic behav-

iour of �n, as n!1, has been widely studied by

many authors (for instance: Briggs [3], Mitrović [12],

Israilov [8], Matsuoka [11] and more recently

Coffey [4] and [5], Knessl and Coffey [9], Adell [2],

Adell and Lekuona [1] and Saad Eddin [14]). Their

main interest is focused on the growth, the sign

changes of the sequence ð�nÞ and on giving explicit

upper estimates for j�nj. Moreover, they obtained

relations between this sequence and the zeros of �ðsÞ
(see [11], [15]). In this paper we are interested in the

Stieltjes coefficients �nðKÞ for the Dedekind zeta

function. We first give the following formula of

�nðKÞ which is similar to Stieltjes’s formula given

by Eq. (2).

Theorem 1. For any n � 1, we have

�nðKÞ ¼
ð�1Þn

n!
lim
x!1

X
Na�x

ðlogNaÞn

Na
� ��1ðKÞ

ðlogxÞnþ1

nþ 1

 !
;

and

�0ðKÞ ¼ lim
x!1

X
Na�x

1

Na
� ��1ðKÞ logx

 !
þ ��1ðKÞ:
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This result seems similar to another one

obtained by Hashimoto et al. [6] for the higher

Euler-Selberg constants. Despite a considerable

effort the author has not been able to find Theo-

rem 1 in the literature.

In 1962, Mitrović [12] studied the sign changes

of the constants �n and prove that; each of the

inequalities

�2n > 0; �2n < 0; �2n�1 > 0; �2n�1 < 0;

holds for infinitely many n. In [11], Matsuoka gave

precise conditions for the sign of �n. By the same

techniques used in [12], we prove that

Theorem 2. For the coefficients in the ex-

pansion (1), each of the inequalities

�2nðKÞ > 0; �2nðKÞ < 0;

�2n�1ðKÞ > 0; �2n�1ðKÞ < 0;

holds for infinitely many n.

It immediately follows that

Corollary 1. Infinitely many �nðKÞ are pos-

itive and infinitely many are negative.

2. Proofs.

Proof of Theorem 1. By Eq. (1), we note that

�KðsÞ �
��1ðKÞs
s� 1

¼ �KðsÞ �
��1ðKÞ
s� 1

� ��1ðKÞð3Þ

¼
X
n�0

�nðKÞðs� 1Þn;

where �0ðKÞ ¼ �0ðKÞ � ��1ðKÞ and �nðKÞ ¼ �nðKÞ
for n � 1. By the definition of �KðsÞ, we write

�KðsÞ ¼
Z þ1

1�

dNKðtÞ
ts

¼ s
Z þ1

1�

NKðtÞ
tsþ1

dt;

where

NKðtÞ ¼
X
Na�t

1:

Then, we get

�KðsÞ �
��1ðKÞs
s� 1

¼ s
Z þ1

1�

NKðtÞ � ��1ðKÞt
tsþ1

dt:ð4Þ

Put
P

n�0 �nðKÞðs� 1Þn ¼ hðsÞ. From Eqs. (3) and

(4), we have

hðsÞ ¼ s
Z þ1

1�

NKðtÞ � ��1ðKÞt
tsþ1

dt:

From [10, Satz 210] we have NKðtÞ ¼ ��1ðKÞtþ
Oðt1�1=mÞ, where m is the degree of K and Q. For

<s > 1� 1=m, it is easily seen that the n-th

derivative of hðsÞ at s ¼ 1 is

hðnÞð1Þ ¼ n!�nðKÞ ¼ ð�1ÞnðI1 � I2Þ;ð5Þ

where

I1 ¼
Z þ1

1�
NKðtÞ

logn t� nðlog tÞn�1

t2

 !
dt;

and

I2 ¼ ��1ðKÞ
Z þ1

1�

logn t� nðlog tÞn�1

t
dt:

On the other hand, we haveX
Na�x

ðlogNaÞn

Na
¼
Z x

1�

logn t

t
dNKðtÞ

¼ NKðxÞ
logn x

x
þ
Z x

1�
NKðtÞ

logn t� nðlog tÞn�1

t2

 !
dt:

Thus, we getZ x

1�
NKðtÞ

logn t� nðlog tÞn�1

t2

 !
dt

¼
X
Na�x

ðlogNaÞn

Na
�NKðxÞ

logn x

x
:

Again using the fact that NKðtÞ ¼ ��1ðKÞtþ
Oðt1�1=mÞ, we find thatZ x

1�
NKðtÞ

logn t� nðlog tÞn�1

t2

 !
dt

¼
X
Na�x

ðlogNaÞn

Na
� ��1ðKÞ logn xþO

logn x

x1=m

� �
:

Taking x! þ1, the above becomes

I1 ¼ lim
x!þ1

X
Na�x

ðlogNaÞn

Na
� ��1ðKÞ logn x

" #
:ð6Þ

Now, notice that

I2 ¼ lim
x!þ1

��1ðKÞ
ðlog xÞnþ1

nþ 1
� ��1ðKÞ logn x

" #
:ð7Þ

From Eqs. (5), (6) and (7), we conclude that, for

n � 1,

�nðKÞ ¼ �nðKÞ

¼ ð�1Þn

n!
lim
x!1

X
Na�x

ðlogNaÞn

Na
� ��1ðKÞ

ðlogxÞnþ1

nþ 1

 !

and �0ðKÞ ¼ �0ðKÞ þ ��1ðKÞ. This completes the

proof. �
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Proof of Theorem 2. To prove Theorem 2, we

apply the same technique used in [12]. Let C be the

set of all positive integers n such that �nðKÞ 6¼ 0.

Define

C1 ¼ n : �nðKÞ 6¼ 0 and ð�1Þn ¼ 1f g
C�1 ¼ n : �nðKÞ < 0 and ð�1Þn ¼ 1f g;
Cþ1 ¼ n : �nðKÞ > 0 and ð�1Þn ¼ 1f g;

and

C2 ¼ n : �nðKÞ 6¼ 0 and ð�1Þn ¼ �1f g;
C�2 ¼ n : �nðKÞ < 0 and ð�1Þn ¼ �1f g;
Cþ2 ¼ n : �nðKÞ > 0 and ð�1Þn ¼ �1f g:

From [13], we have

�KðsÞ �
��1ðKÞ
s� 1

is an entire transcendental function. So the cardinal

number of the set C is equal to the cardinal number

of the set of all positive integers @0. Then, we can

write

�KðsÞ �
��1ðKÞ
s� 1

¼
X
n2C�

1

þ
X
n2Cþ

1

þ
X
n2C�

2

þ
X
n2Cþ

2

0
@

1
A�nðKÞðs� 1Þn:

Replacing s by tþ 1 and then by �tþ 1 in the

above. Adding and then subtracting the results, we

find that

�Kðtþ 1Þ þ �Kð�tþ 1Þð8Þ

¼ 2
X
n2C�

1

þ
X
n2Cþ

1

0
@

1
A�nðKÞtn;

and

�Kðtþ 1Þ � �Kð�tþ 1Þ �
2��1ðKÞ

t
ð9Þ

¼ 2
X
n2C�

2

þ
X
n2Cþ

2

0
@

1
A�nðKÞtn:

Taking t ¼ 2mþ 1 with m > 0 and using the fact

that the �KðsÞ vanishes at all negative even

integers. We find the left-hand side of Eq. (8)

approaches to 1 when m! þ1. It follows that

the right-hand side of this equation can’t be

polynomial. That means the cardinal of the set C1

is @0. On the other hand, if we assume that the

cardinal of the set C�1 is less than @0. Then the

right-hand side of Eq. (8) approaches þ1. Simi-

larly, if the cardinal of the set Cþ1 is less than @0.

Then the right-hand side of Eq. (8) approaches

�1, this leads to a contradiction. We thus conclude

that the cardinal of the sets C�1 and Cþ1 are @0. By a

similar argument, we show that the cardinal of the

sets C�2 and Cþ2 in Eq. (9) are @0. That completes

the proof. �
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