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Abstract: Abe, Nuida, and Numata (2009) describe a large class of free multiplicities on

the braid arrangement arising from signed-eliminable graphs. On a large cone in the multiplicity

lattice, we prove that these are the only free multiplicities on the braid arrangement. We also

give a conjecture on the structure of all free multiplicities on the braid arrangement.
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1. Introduction. Let V ¼� K‘þ1 be a vector

space over a field K of characteristic zero, V � its

dual space and S ¼ SymðV �Þ ¼� K½x0; . . . ; x‘�. For

0 � i < j � ‘, set �ij ¼ xi � xj and write Hij for the

corresponding hyperplane. The braid arrangement

of type A‘ � V is [0�i<j�‘Hij. A multiplicity on A‘

is a map m : fHijg ! N; we represent m as the

tuple ðmij ¼mðHijÞÞ in the multiplicity lattice �‘ ¼
N

‘þ1
2ð Þ. The order of the subscripts is not important,

i.e., mij ¼ mji. The pair ðA‘;mÞ is called a multi-

braid arrangement; it is free if the module

DðA‘;mÞ
:¼ f� 2 DerðSÞ : �ð�ijÞ 2 �mij

ij S; 0 � i < j � ‘g
of multi-derivations is a free module over S. In this

case we call m a free multiplicity.

Write �b
‘ for the cone of multiplicities in �‘

satisfying the inequalities mij � mik þmjk þ 1 for

every triple i; j; k. We call �b
‘ the balanced cone of

multiplicities since the exponents of every sub-A2

multi-arrangement differ by at most one by a result

of Wakamiko [9]. In [2], Abe, Nuida, and Numata

completely characterize free multiplicities m 2 �b
‘

of the form mij ¼ ni þ nj þ �ij, where n0; . . . ; n‘ 2
Z�0 and �ij 2 f�1; 0; 1g for 0 � i < j � ‘. We call a

multiplicity of this kind an ANN multiplicity. In this

note we prove that the free ANN multiplicities are

the only free multiplicities in �b
‘ (partially general-

izing the result of [5]).

To state our result precisely, we need some

notation. It is natural to associate A‘ to the

complete graph K‘þ1 on the ‘þ 1 vertices

fv0; . . . ; v‘g, where the hyperplane Hij 2 A‘ corre-

sponds to the edge fvi; vjg 2 K‘þ1. Then a multi-

plicity m on A‘ yields a labeling of the edges of K‘þ1

by positive integers; the edge fvi; vjg is labeled by

mij. We call a three-cycle in K‘þ1 with edges

fvi; vjg; fvj; vkg; fvk; vig an odd three-cycle of m if

mij þmjk þmki is an odd integer. Given a four-

cycle C with edges fvi; vjg; fvj; vsg; fvs; vtg; fvt; vig
in K‘þ1, we put mðCÞ ¼ jmij �mjs þmst �mtij.
Notice that mðCÞ does not depend on a particular

ordering of the edges of C, so it is well-defined.

Given a subset U � fv0; . . . ; v‘g of size at least

four, write mU for the restriction of m to the subset

fHij : fvi; vjg � Ug. We define the deviation of m

over U as DVðmUÞ ¼
P

C�U mðCÞ2, where the index

runs over all four-cycles of K‘þ1 which are contained

in U. Moreover, we define qU to be the number of

odd three-cycles of m contained in U . Our main

result is:

Theorem 1.1. Suppose ðA‘;mÞ is a multi-

braid arrangement with m 2 �b
‘. The following are

equivalent.

(1) ðA‘;mÞ is free.

(2) DVðmUÞ � qUðjU j � 1Þ for every subset U �
fv0; . . . ; v‘g where jU j � 4.

(3) m is a free ANN multiplicity.

The proof of Theorem 1.1 is at the end of §5. In

§6 we also introduce the notion of a free vertex and

present a conjecture about the structure of all free

multiplicities on braid arrangements.

2. Examples. We illustrate Theorem 1.1 for

the A3 arrangement, which corresponds to the

complete graph K4. Write m for a multiplicity

and v0; v1; v2; v3 for the vertices of K4. Since there

are only four vertices, the criterion (2) in Theorem

doi: 10.3792/pjaa.94.36
#2018 The Japan Academy

2010 Mathematics Subject Classification. Primary 13N15;
Secondary 05E40, 14N20.

36 Proc. Japan Acad., 94, Ser. A (2018) [Vol. 94(A),

http://dx.doi.org/10.3792/pjaa.94.36


1.1 only needs to be considered for U ¼
fv0; v1; v2; v3g. There are three four-cycles with

edges:

. C1 : fv0; v2g; fv2; v1g; fv1; v3g; fv3; v0g

. C2 : fv0; v2g; fv2; v3g; fv3; v1g; fv1; v0g

. C3 : fv0; v3g; fv3; v2g; fv2; v1g; fv1; v0g,
so DVðmÞ ¼ jmðC1Þj2 þ jmðC2Þj2 þ jmðC3Þj2. Hence

DVðmÞ ¼ ðm02 �m12 þm13 �m03Þ2

þ ðm02 �m23 þm13 �m01Þ2

þ ðm03 �m23 þm12 �m01Þ2:

Moreover, there are four three-cycles of K4.

Example 2.1. Consider the multiplicity m1

defined by m01 ¼ m23 ¼ 2 and m02 ¼ m03 ¼ m12 ¼
m13 ¼ 1, shown in Figure 1. We can check that

m1 2 �b
‘. We compute mðC1Þ ¼ 0 and mðC2Þ ¼

mðC3Þ ¼ 2, so DVðm1Þ ¼ 8. Also, there are no

odd three-cycles, so qU ¼ 0. Since DVðm1Þ > 0 ¼
qU 	 	ðjU j � 1Þ, ðA3;m1Þ is not free by Theorem 1.1.

Example 2.2. Consider the multiplicity m2

defined by m01 ¼ m02 ¼ m23 ¼ 2 and m03 ¼ m12 ¼
m13 ¼ 1, shown in Figure 2. We can check that

m2 2 �b
‘. We compute mðC1Þ ¼mðC2Þ ¼ 1 and

mðC3Þ ¼ 2, so DVðm2Þ ¼ 6. Also, there are two

odd three-cycles, so qU ¼ 2. Since DVðm2Þ ¼
6 � 2 	 3 ¼ qU 	 ðjUj � 1Þ, ðA3;m2Þ is free by Theo-

rem 1.1.

3. Mixed products in the balanced cone.
We will prove the implication ð1Þ ¼) ð2Þ in Theo-

rem 1.1 using the notion of local and global mixed

products from [3], which we now explain. If

DðA‘;mÞ is free we list its (non-zero) exponents as

a non-increasing sequence ðd1; . . . ; d‘Þ. Put jmj ¼P
0�i<j�‘ mij. Then

P‘
i¼1 di ¼ jmj by Saito’s crite-

rion. For a free multi-arrangement, the kth global

mixed product is GMPðkÞ ¼
P
di1di2 	 	 	 dik , where

the sum runs across all k-tuples satisfying 1 �
i1 < 	 	 	 < ik � ‘. Now write L ¼ LðA‘Þ for the

intersection lattice of A‘ (all intersections among

the hyperplanes Hij) and Lk for those intersections

of codimension k. The kth local mixed product is

LMPðkÞ ¼
P

X2Lk d
X
1 d

X
2 	 	 	 dXk ; where dX1 ; . . . ; dXk are

the (non-zero) exponents of the closed rank k

sub-arrangement ðA‘ÞX (this is the arrangement

consisting of all hyperplanes containing X). By

[3, Corollary 4.6], if ðA‘;mÞ is free then GMPðkÞ ¼
LMPðkÞ for every 2 � k � ‘.

Recall that if fvi; vj; vkg are vertices of K‘þ1 so

that mij þmik þmjk is odd then we call the cycle

traversing these vertices an odd three-cycle of m.

Proposition 3.1. Let ðA‘;mÞ be a multi-

braid arrangement with m 2 �b
‘. Set mijk ¼ mij þ

mjk þmik and write q for the number of odd three-

cycles of m. Then

LMPð2Þ
¼

X
0�i<j<k�‘

ðmijk=2Þ2 þ
X

fi;jg\fs;tg¼;
mijmst � q=4

and

GMPð2Þ �
‘

2

� � jmj2
‘2

:

Proof. We prove the formula for LMPð2Þ first.

If X 2 L2, then either ð1Þ : X ¼ Hij \Hst for a

pair of non-adjacent edges fi; jg and fs; tg or

ð2Þ : X ¼ Hij \Hjk \Hik for a three-cycle on

fvi; vj; vkg. In the first case the arrangement is

boolean with (non-zero) exponents ðmij;mstÞ, con-

tributing mijmst to LMPð2Þ. In the second case

the arrangement is an A2 braid arrangement and

a result of Wakamiko [9] shows the exponents are

ðmijk=2;mijk=2Þ if mijk is even and ððmijk þ
1Þ=2; ðmijk � 1Þ=2Þ if mijk is odd (since m 2 �b

‘).

The former contributes m2
ijk=4 to LMPð2Þ while the

latter contributes m2
ijk=4� 1=4. This yields the

expression for LMPð2Þ.
The inequality for GMPð2Þ is immediate since

the real-valued function
P

1�i<j�‘ xixj subject to the

restrictions xi � 0 for i ¼ 1; . . . ; ‘ and
P‘

i¼1 xi ¼ jmj
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Fig. 1. The multiplicity m1 in Example 2.1.
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Fig. 2. The multiplicity m2 in Example 2.2.
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attains an absolute maximum of ‘
2

� � jmj2
‘2 when

x1 ¼ 	 	 	 ¼ x‘ ¼ jmj‘ . �

In the statement of the next result, DVðmÞ
denotes DVðmUÞ when U ¼ fv0; . . . ; v‘g.

Theorem 3.2. Suppose ðA‘;mÞ is a multi-

braid arrangement with m 2 �b
‘ and write q for the

number of odd three-cycles of m. If DV ðmÞ > q‘,

then m is not a free multiplicity.

Remark 3.3. Theorem 3.2 generalizes [5,

Theorem 4.12] to higher braid arrangements.

Proof. By Proposition 3.1, we know that

LMPð2Þ �GMPð2Þ �
X

0�i<j<k�‘
ðmijk=2Þ2

þ
X

fi;jg\fs;tg¼;
mijmst �

‘

2

� � jmj2
‘2
� q=4:

Our primary claim is

DVðmÞ ¼ 4‘
X

0�i<j<k�‘
ðmijk=2Þ2ð1Þ

þ 4‘
X

fi;jg\fs;tg¼;
mijmst � 4‘

‘

2

� � jmj2
‘2

:

Once Eq. (1) is proved, notice that

4‘ðLMPð2Þ �GMPð2ÞÞ � DVðmÞ � q‘:

Then [3, Corollary 4.6] immediately yields Theo-

rem 3.2. So we prove Eq. (1). By definition

DVðmÞ ¼
P

C mðCÞ2; expanding this yields

DVðmÞ ¼ 2
‘� 1

2

� � X
0�i<j�‘

m2
ijð2Þ

þ 4
X

fi;jg\fs;tg¼;
mijmst

� 2ð‘� 2Þ
X

0�i<j<k�‘
ðmijmikþmijmjkþmikmjkÞ:

Re-writing the right-hand side of Eq. (1) using the

two expressions

jmj2 ¼
X

0�i<j�‘
m2
ij þ 2

X
fi;jg\fs;tg¼;

mijmst

þ 2
X

0�i<j<k�‘
ðmijmik þmijmjk þmikmjkÞ

and X
0�i<j<k�‘

m2
ijk ¼ ð‘� 1Þ

X
0�i<j�‘

m2
ij

þ 2
X

0�i<j<k�‘
ðmijmik þmijmjk þmikmjkÞ

now yields the right-hand side of Eq. (2). �

4. From deviations to ANN multiplici-

ties. Recall that m is an ANN multiplicity on A‘

if m 2 �b
‘ and there exist non-negative integers

n0; . . . ; n‘ and �ij 2 f�1; 0; 1g so that mij ¼ ni þ
nj þ �ij for 0 � i < j � ‘. In this section we prove

the first part of the implication (2) ¼) (3) in

Theorem 1.1. Namely, we prove that if m 2 �b
‘

then the inequalities DVðmÞ � qUðjU j � 1Þ guaran-

tee that m is an ANN multiplicity.

Lemma 4.1. Suppose m is a multiplicity on

A3 with q odd three-cycles and DV ðmÞ � 3q. Then

mðCÞ � 2 for each four-cycle C in K4.

Proof. There are three four-cycles. Set T1 ¼
m01 � m12 þ m23 � m03; T2 ¼ m13 � m01 þ m02 �
m23; and T3 ¼ m13 �m12 þm02 �m03. Notice

T1 þ T2 ¼ T3, and DVðmÞ ¼ T 2
1 þ T 2

2 þ T 2
3 . Now,

suppose without loss that jT3j � 3. Then either

jT1j � 2 or jT2j � 2. But then DVðmÞ � 13, contra-

dicting that DVðmÞ � 3q � 12 (since q � 4). �

Proposition 4.2. Let ðA‘;mÞ be a multi-

braid arrangement so that m 2 �b
‘ and DV ðmUÞ �

3qU for every subset U � fv0; . . . ; v‘g with jUj ¼ 4.

Then m is an ANN multiplicity.

Proof. We need to show that there exist non-

negative integers ni for i ¼ 0; . . . ; ‘ and integers

�ij 2 f�1; 0; 1g for 0 � i < j � ‘ so that mij ¼
ni þ nj þ �ij. By Lemma 4.1, we must have

mðCÞ � 2 for every four-cycle C 2 C4ðK‘þ1Þ. Using

this condition, we give an inductive algorithm to

construct the integers n0; . . . ; n‘.

If ‘ ¼ 2, set n0 ¼ dðm01 þm02 � m12Þ=2e; n1 ¼
dðm01 þm12 �m02Þ=2e, and n2 ¼ dðm02 þm12 �
m01Þ=2e. Since m 2 �b

‘, ni � 0 for i ¼ 0; 1; 2. More-

over, mij ¼ ni þ nj þ �ij, where �ij 2 f�1; 0g.
Now assume ‘ > 2. We make an initial guess

at what the non-negative integers n0; . . . ; n‘ and �ij
should be, and then adjust as necessary. By

induction on ‘, there exist non-negative integers

~n0; . . . ; ~n‘�1 and ~�ij 2 f�1; 0; 1g such that mij ¼ ~ni þ
~nj þ ~�ij for 0 � i < j � ‘� 1. Let ~n‘ be a non-

negative integer satisfying ~n‘ þ ~ni � mi‘ � 1 and

set ~�i‘ ¼ mi‘ � ð~ni þ ~n‘Þ for every i < ‘, so mi‘ ¼
~ni þ ~n‘ þ ~�i‘. By the choice of ~n‘, we have ~�i‘ � 1 for

all i < ‘.

Now suppose there is an index 0 � j < ‘ so that
~�j‘ � �2. Our goal is to decrease either ~n‘ or ~nj by

one, thereby increasing ~�j‘, without disturbing any

of the hypotheses made so far, namely

~ni þ ~nj þ ~�ij ¼ mij for all 0 � i < j � ‘;

38 M. R. DIPASQUALE [Vol. 94(A),



~ni � 0 for all 0 � i � ‘;
~�i‘ � 1 for all i < ‘;ð?Þ
~�st 2 f�1; 0; 1g for all 0 � s < t � ‘� 1:

First we assume ~n‘ > 0 and try to decrease ~n‘
by one. We can do this without disturbing

assumptions (?) provided there is no index s so

that �s‘ ¼ 1. So, assume that there is an index 0 �
s < ‘ so that �s‘ ¼ 1. We claim that in this situation,

�st � 0 for every t 6¼ s. Suppose to the contrary that

there is an index t so that �st ¼ �1 and consider the

four-cycle C : v‘ ! vs ! vt ! vj ! v‘. Then

mðCÞ ¼ j~�s‘ � ~�j‘ þ ~�jt � ~�stj � 1þ 2þ ~�jt þ 1 � 3;

since ~�jt 2 f�1; 0; 1g by the inductive hypothesis.

This contradicts our assumption that mðCÞ � 2. So

it follows that ~�st 2 f0; 1g for all t. Thus we may

increase ~ns by one, thereby decreasing ~�st by one for

every t 6¼ s, without disturbing the hypothesis that
~�st 2 f�1; 0; 1g. Since we can apply this argument at

every index s so that ~�s‘ ¼ 1, we may assume ~�s‘ � 0

for every 0 � s < ‘. Hence, if ~n‘ > 0, it is now clear

that we can decrease ~n‘ by one without disturbing

assumptions (?).

Now assume that ~n‘ ¼ 0. Then, for any s < ‘,

ms‘ þmj‘ �mjs ¼ ð~ns þ ~�s‘Þ þ ð~nj þ ~�j‘Þ
� ð~nj þ ~ns þ ~�jsÞ
¼ ~�s‘ þ ~�j‘ � ~�js

� 0� 2� ~�js � �1;

since ~�js 2 f�1; 0; 1g by the inductive hypothesis.

Since m 2 �b
‘, we must have an equality for all of

these, so �js ¼ �1 for every s 6¼ j, s < ‘. If ~nj ¼ 0 as

well, then mj‘ ¼ ~nj þ ~n‘ þ �j‘ � �2, contradicting

that mj‘ is non-negative. Hence ~nj > 0 and we can

decrease ~nj by one without disturbing any of

assumptions (?).

In either case, we have shown how to increase
~�j‘ if ~�j‘ � �2 without disturbing assumptions (?).

So we iterate the above arguments until ~�j‘ � �1 for

every j < ‘, then set ni ¼ ~ni for 0 � i � ‘ and ~�ij ¼
�ij for 0 � i < j � ‘. This completes the algorithm

and the proof. �

5. Detecting signed-eliminable graphs.

In this section we finish the proof of the implication

ð2Þ ¼) ð3Þ in Theorem 1.1. We will use the charac-

terization of free ANN multiplicities given in [2],

which involves signed-eliminable graphs. We follow

the presentation from [2,8].

A signed graph G on ‘þ 1 vertices is a graph

whose edge set EG is the disjoint union of a set EþG
of edges assigned + and a set E�G of edges assigned

�. Clearly if G is a signed graph on ‘þ 1 vertices

and n0; . . . ; n‘ 2 Z�0 then we can define a multi-

plicity m ¼mGðn0; . . . ; n‘Þ on A‘ by mij ¼ ni þ
nj þ �ij, where

�ij ¼
1 fvi; vjg 2 EþG
�1 fvi; vjg 2 E�G
0 fvi; vjg =2 EG.

8><
>:

The graph G is signed-eliminable with signed-

elimination ordering � : V ðGÞ ! f0; . . . ; ‘g if � is

bijective and, for every three vertices vi; vj; vk 2
V ðGÞ with �ðviÞ; �ðvjÞ < �ðvkÞ, the induced sub-

graph Gjvi;vj;vk satisfies:

. For � 2 fþ;�g, if fvi; vkg and fvj; vkg are edges

in E�
G then fvi; vjg 2 E�

G.

. For � 2 fþ;�g, if fvk; vig 2 E�
G and fvi; vjg 2

E��G then fvk; vjg 2 EG.

According to [2, Theorem 0.3], an ANN multiplicity

of the form mGðn0; . . . ; n‘Þ is free if and only if G is

signed-eliminable.

Remark 5.1. In [2, Theorem 0.3], it is not

stated that m 2 �b
‘. However, this is a necessary

and sufficient condition for the proofs; see Appendix

A of [1]. It is straightforward to check that

condition (3) in the revised statement of Theo-

rem 0.3 in Appendix A of [1] coincides with m 2 �b
‘.

Definition 5.2. A graph with ð‘þ 1Þ verti-

ces v0; v1; . . . ; v‘ and ‘ � 3 is a

(1) �-mountain, where � 2 fþ;�g, if fv0; vig 2 E�
G

for i ¼ 2; . . . ; ‘� 1, fvi; viþ1g 2 E��G for i ¼
1; . . . ; ‘� 1, and no other pair of vertices is

joined by an edge;

(2) a �-hill, where � 2 fþ;�g, if fv0; v1g 2
E�
G; fv0; vig 2 E�

G for i ¼ 2; . . . ; ‘� 1, fv1; vig 2
E�
G for i ¼ 3; . . . ; ‘, fvi; viþ1g 2 E��G for i ¼

2; . . . ; ‘� 1, and no other pair of vertices is

joined by an edge;

(3) a �-cycle if fvi; viþ1g 2 E�
G for i ¼ 0; . . . ; ‘� 1,

fv0; v‘g 2 E�
G, and no other pair of vertices is

joined by an edge.

Theorem 5.3 ([8, Theorem 5.1]). A signed

graph is signed-eliminable if and only if it has no

induced sub-graph which is a graph on four vertices

which is not signed-eliminable, a �-cycle, a �-moun-

tain, or a �-hill.

Remark 5.4. Theorem 5.3 is not precisely

Nuida’s characterization, but it is easily deduced

from it (this is implicit in [2]).
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Proposition 5.5. Suppose n0; . . . ; n‘ are

non-negative integers, G is a signed graph on

v0; . . . ; v‘, and m ¼mGðn0; . . . ; n‘Þ. If G is not

signed-eliminable, then there is a subset U �
f0; . . . ; ‘g so that DV ðmUÞ > qU 	 ðjUj � 1Þ.

Proof. It follows from the definitions that

DVðmUÞ and qU‘ may be determined after replacing

mij by �ij. We write DVðGUÞ for DVðmUÞ to

emphasize dependence only on G and the subset

U. If G is not signed eliminable then by Theorem

5.3 G contains an induced sub-graph H which is a

signed graph on four vertices which is not signed-

eliminable, a �-cycle of length > 3, a �-hill, or a

�-mountain. We assume G ¼ H and show that

DVðGÞ > q‘ in each of these cases.

The inequality DVðGÞ > 3q can easily be

verified by hand for each graph on four vertices

which is not signed-eliminable (this is also done

explicitly in [5, Corollary 6.2]). If G is a �-cycle,

�-mountain, or �-hill on ð‘þ 1Þ vertices then a

straightforward but tedious computation yields

that DVðGÞ ¼ ‘3 � 2‘2 � ‘þ 2 and q ¼ ‘2 � 2‘� 3.

Notice that this proves the result since DVðGÞ ¼
q‘þ 2ð‘þ 1Þ > q‘. Since it is long and not partic-

ularly enlightening, we will not give further details

here for the computation of DV ðGÞ and q for the

�-cycle, �-hill, and �-mountain. The interested

reader can find more details on the author’s

website, https://math.okstate.edu/~mdipasq, under

the Research tab in the section headed ‘Free

Multiplicities on Braid and Graphic Arrangements.’

Click on the link titled ‘Supplemental computations

for sigma cycles, mountains, and hills.’ �

Remark 5.6. Theorem 1.1 implicitly gives

an additional characterization of signed-eliminable

graphs. Namely, a signed graph G is signed-

eliminable if and only if DVðGUÞ � qUðjU j � 1Þ for

every subset U of V ðGÞ of size at least four.

Proof of Theorem 1.1. The direction (3) ¼)
(1) is trivial, so we prove (1) ¼) (2) ¼) (3).

(1) ¼) (2): Suppose m 2 �b
‘ and ðA;mÞ is

free. Let U � fv0; . . . ; v‘g with jUj � 4. Write AU

for the closed sub-arrangement of A‘ with hyper-

planes fHij : fvi; vjg � Ug. By [4, Proposition 1.7],

ðAU;mUÞ is free. Hence by Theorem 3.2, DVðmUÞ �
qUðjUj � 1Þ. Since U was arbitrary, we are done.

(2) ¼) (3): Suppose that m 2 �b
‘ and

DVðmUÞ � qUðjU j � 1Þ for every U � fv0; . . . ; v‘g
with jU j � 4. By Proposition 4.2, m is an ANN

multiplicity. By Proposition 5.5, m ¼mGðn0; . . . ;

n‘Þ for some signed-eliminable graph G. By

[1, Appendix A, Theorem 0.3], m is a free multi-

plicity on A‘ (see Remark 5.1). �

6. Free vertices and a conjecture. In this

final section we discuss free vertices of a multi-

plicity on a graphic arrangement and present a

conjecture on the structure of free multiplicities

on braid arrangements. Given a graph G ¼ ðVG;EGÞ
on ‘þ 1 vertices (in bijection with the variables

x0; . . . ; x‘), the corresponding graphic arrangement

is AG ¼ [fvi;vjg2EGHij. Just as for the braid arrange-

ment, an edge fvi; vjg of G corresponds to the form

Hij ¼ V ðxi � xjÞ, and the graphic multi-arrange-

ment ðAG;mÞ can be identified with the edge-

labeled graph ðG;mÞ where the label on fvi; vjg is

mðHijÞ ¼ mij. If H � G is a subgraph, then we

denote by mH the restriction of m to EH .

Definition 6.1. Suppose G is a graph. A

vertex vi 2 VG is a simplicial vertex if the sub-graph

of G induced by vi and its neighbors is a complete

graph. Given a multi-arrangement ðAG;mÞ and the

corresponding edge-labeled graph ðG;mÞ, a vertex

vi is a free vertex of ðG;mÞ if it is a simplicial vertex

and for every triangle with vertices vi; vj; vk we have

mij þmik � mjk þ 1.

Theorem 6.2. Suppose G is a graph, vi is a

free vertex of ðG;mÞ, and G0 is the induced sub-

graph on the vertex set VG n fvig. Then ðAG;mÞ is

free if and only if ðAG0 ;mG0 Þ is free.

Proof of Theorem 6.2. We use a result whose

proof we omit since it is virtually identical to the

proof of [4, Theorem 5.10]. Recall that a flat X 2 L
is called modular if X þ Y 2 L for every Y 2 L,

where X þ Y is the linear span of X; Y considered as

linear sub-spaces of V ¼� K‘þ1.

Theorem 6.3. Suppose ðA;mÞ is a central

multi-arrangement of rank ‘ � 3 and X is a modular

flat of rank ‘� 1. Suppose ðAX;mXÞ is free with

exponents ðd1; . . . ; d‘�1; 0Þ and for all H 2 A nAX
and H 0 2 AX, set Y :¼ H \H 0. If one of the follow-

ing two conditions is satisfied:

(1) AY ¼ H [H 0 or

(2) mðH 0Þ �
P

H2AnA0
mðHÞ � 1.

Then ðA;mÞ is free with exponents ðd1; . . . ;

d‘�1; jmj � jm0jÞ.
Now suppose G is a graph on ‘þ 1 vertices

fv0; . . . ; v‘g and AG is the associated graphic

arrangement. Further suppose that vi is a free

vertex of ðG;mÞ, and G0 is the induced sub-graph on
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the vertex set VG n fvig, along with the isolated

vertex vi. Set m0 ¼mG0 . By [4, Proposition 1.7], if

ðAG0 ;m0Þ is not free, then neither is ðAG;mÞ.
Suppose now that ðAG0 ;m0Þ is free. We show

that ðAG;mÞ is free using Theorem 6.3. Write Hij ¼
V ðxi � xjÞ. Since vi is a simplicial vertex of G, the

flat X ¼ \vj;vk 6¼viHjk is modular and has rank ‘� 1.

The sub-arrangement ðAGÞX is the graphic arrange-

ment AG0 . Suppose H ¼ Hij 2 AG nAG0 , H 0 ¼ Hst 2
AG0 , and set Y ¼ Hij \Hst. If fs; tg \ fi; jg ¼ ;,
then AY ¼ Hij [Hst. Otherwise, suppose s ¼ j.
Since vi is a simplicial vertex, fi; tg 2 EG, so AY ¼
Hij [Hit [Hjt. Since vi is a free vertex, mij þmit �
mjt þ 1, which is condition (2) from Theorem 6.3.

Hence ðAG;mÞ is free by Theorem 6.3. �

We use Theorem 6.2 to inductively construct

two types of free multiplicities. Given a graph G,

an elimination ordering is an ordering v0; . . . ; v‘ of

the vertices VG so that vi is a simplicial vertex of

the induced sub-graph on v0; . . . ; vi for every i ¼
1; . . . ; ‘. It is known that VG admits an elimination

ordering if and only if G is chordal [6].

Corollary 6.4. Suppose ðG;mÞ is an edge-

labeled chordal graph with elimination ordering

v0; . . . ; v‘ satisfying that vi is a free vertex of the

induced sub-graph on fv0; . . . ; vig for every i � 2.

Then ðAG;mÞ is free.

Corollary 6.5. Let ðA‘;mÞ be a multi-braid

arrangement corresponding to the complete graph

K‘þ1 on ð‘þ 1Þ vertices. Suppose that K‘þ1 admits

an ordering fv0; . . . ; v‘g so that:

(1) For some integer 0 � k � ‘, the induced sub-

graph G0 on fv0; . . . ; vkg satisfies that mG0 is a

free ANN multiplicity.

(2) For kþ 1 � i � ‘, vi is a free vertex of the

induced graph on fv0; . . . ; vig.
Then ðA‘;mÞ is free.

We conjecture that all free multi-braid ar-

rangements take the form of Corollary 6.5.

Conjecture 6.6. The multi-braid arrange-

ment ðA‘;mÞ is free if and only if it is one of the

multi-braid arrangements constructed in Corollary

6.5. Equivalently, by Theorem 6.2, if ðA‘;mÞ is free

then either m is a free ANN multiplicity or m has a

free vertex. Using Theorem 1.1, this is equivalent to

the following statement: if m is a free multiplicity

and m =2 �b
‘, then m has a free vertex.

Remark 6.7. Conjecture 6.6 is proved for

the A3 braid arrangement in [5]. Using Macau-

lay2 [7], we have verified Conjecture 6.6 for many

multiplicities on the A4 arrangement.
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