Inequalities for free multi-braid arrangements

By Michael Robert DIPASQUALE

Department of Mathematics, Oklahoma State University, 401 Math Sciences Building, Stillwater, Oklahoma 74078-1058, U.S.A.

(Communicated by Masaki KASHIWARA, M.J.A., March 12, 2018)

Abstract: Abe, Nuida, and Numata (2009) describe a large class of free multiplicities on the braid arrangement arising from signed-eliminable graphs. On a large cone in the multiplicity lattice, we prove that these are the only free multiplicities on the braid arrangement. We also give a conjecture on the structure of all free multiplicities on the braid arrangement.

Key words: Freeness of multi-arrangements; braid arrangement; multi-derivations.

1. Introduction. Let $V \cong \mathbf{K}^{\ell+1}$ be a vector space over a field \mathbf{K} of characteristic zero, V^* its dual space and $S = \operatorname{Sym}(V^*) \cong \mathbf{K}[x_0, \ldots, x_\ell]$. For $0 \leq i < j \leq \ell$, set $\alpha_{ij} = x_i - x_j$ and write H_{ij} for the corresponding hyperplane. The braid arrangement of type $A_\ell \subset V$ is $\bigcup_{0 \leq i < j \leq \ell} H_{ij}$. A multiplicity on A_ℓ is a map $\mathbf{m} : \{H_{ij}\} \to \mathbf{N}$; we represent \mathbf{m} as the tuple $(m_{ij} = \mathbf{m}(H_{ij}))$ in the multiplicity lattice $\Lambda_\ell =$ $\mathbf{N}^{\binom{\ell+1}{2}}$. The order of the subscripts is not important, i.e., $m_{ij} = m_{ji}$. The pair (A_ℓ, \mathbf{m}) is called a multibraid arrangement; it is free if the module

 $D(A_{\ell},\mathbf{m})$

$$:= \{ \theta \in \operatorname{Der}(S) : \theta(\alpha_{ij}) \in \alpha_{ij}^{m_{ij}} S, 0 \le i < j \le \ell \}$$

of multi-derivations is a free module over S. In this case we call **m** a *free multiplicity*.

Write Λ_{ℓ}^{b} for the cone of multiplicities in Λ_{ℓ} satisfying the inequalities $m_{ij} \leq m_{ik} + m_{jk} + 1$ for every triple i, j, k. We call Λ_{ℓ}^{b} the balanced cone of multiplicities since the exponents of every sub- A_{2} multi-arrangement differ by at most one by a result of Wakamiko [9]. In [2], Abe, Nuida, and Numata completely characterize free multiplicities $\mathbf{m} \in \Lambda_{\ell}^{b}$ of the form $m_{ij} = n_i + n_j + \epsilon_{ij}$, where $n_0, \ldots, n_{\ell} \in$ $\mathbf{Z}_{\geq 0}$ and $\epsilon_{ij} \in \{-1, 0, 1\}$ for $0 \leq i < j \leq \ell$. We call a multiplicity of this kind an ANN multiplicity. In this note we prove that the free ANN multiplicities are the only free multiplicities in Λ_{ℓ}^{b} (partially generalizing the result of [5]).

To state our result precisely, we need some notation. It is natural to associate A_{ℓ} to the complete graph $K_{\ell+1}$ on the $\ell+1$ vertices $\{v_0, \ldots, v_\ell\}$, where the hyperplane $H_{ij} \in A_\ell$ corresponds to the edge $\{v_i, v_j\} \in K_{\ell+1}$. Then a multiplicity \mathbf{m} on A_ℓ yields a labeling of the edges of $K_{\ell+1}$ by positive integers; the edge $\{v_i, v_j\}$ is labeled by m_{ij} . We call a three-cycle in $K_{\ell+1}$ with edges $\{v_i, v_j\}, \{v_j, v_k\}, \{v_k, v_i\}$ an odd three-cycle of \mathbf{m} if $m_{ij} + m_{jk} + m_{ki}$ is an odd integer. Given a four-cycle C with edges $\{v_i, v_j\}, \{v_j, v_s\}, \{v_j, v_s\}, \{v_j, v_s\}, \{v_t, v_i\}$ in $K_{\ell+1}$, we put $\mathbf{m}(C) = |m_{ij} - m_{js} + m_{st} - m_{ti}|$. Notice that $\mathbf{m}(C)$ does not depend on a particular ordering of the edges of C, so it is well-defined.

Given a subset $U \subset \{v_0, \ldots, v_\ell\}$ of size at least four, write \mathbf{m}_U for the restriction of \mathbf{m} to the subset $\{H_{ij} : \{v_i, v_j\} \subset U\}$. We define the *deviation of* \mathbf{m} *over* U as $\mathrm{DV}(\mathbf{m}_U) = \sum_{C \subset U} \mathbf{m}(C)^2$, where the index runs over all four-cycles of $K_{\ell+1}$ which are contained in U. Moreover, we define q_U to be the number of odd three-cycles of \mathbf{m} contained in U. Our main result is:

Theorem 1.1. Suppose (A_{ℓ}, \mathbf{m}) is a multibraid arrangement with $\mathbf{m} \in \Lambda^b_{\ell}$. The following are equivalent.

- (1) (A_{ℓ}, \mathbf{m}) is free.
- (2) $DV(\mathbf{m}_U) \leq q_U(|U|-1)$ for every subset $U \subset \{v_0, \ldots, v_\ell\}$ where $|U| \geq 4$.
- (3) **m** is a free ANN multiplicity.

The proof of Theorem 1.1 is at the end of $\S5$. In $\S6$ we also introduce the notion of a *free vertex* and present a conjecture about the structure of all free multiplicities on braid arrangements.

2. Examples. We illustrate Theorem 1.1 for the A_3 arrangement, which corresponds to the complete graph K_4 . Write **m** for a multiplicity and v_0, v_1, v_2, v_3 for the vertices of K_4 . Since there are only four vertices, the criterion (2) in Theorem

²⁰¹⁰ Mathematics Subject Classification. Primary 13N15; Secondary 05E40, 14N20.

Fig. 1. The multiplicity \mathbf{m}_1 in Example 2.1.

Fig. 2. The multiplicity \mathbf{m}_2 in Example 2.2.

1.1 only needs to be considered for $U = \{v_0, v_1, v_2, v_3\}$. There are three four-cycles with edges:

- $C_1: \{v_0, v_2\}, \{v_2, v_1\}, \{v_1, v_3\}, \{v_3, v_0\}$
- $C_2: \{v_0, v_2\}, \{v_2, v_3\}, \{v_3, v_1\}, \{v_1, v_0\}$
- $C_3: \{v_0, v_3\}, \{v_3, v_2\}, \{v_2, v_1\}, \{v_1, v_0\},$

so $DV(\mathbf{m}) = |\mathbf{m}(C_1)|^2 + |\mathbf{m}(C_2)|^2 + |\mathbf{m}(C_3)|^2$. Hence

$$DV(\mathbf{m}) = (m_{02} - m_{12} + m_{13} - m_{03})^2 + (m_{02} - m_{23} + m_{13} - m_{01})^2 + (m_{03} - m_{23} + m_{12} - m_{01})^2.$$

Moreover, there are four three-cycles of K_4 .

Example 2.1. Consider the multiplicity \mathbf{m}_1 defined by $m_{01} = m_{23} = 2$ and $m_{02} = m_{03} = m_{12} = m_{13} = 1$, shown in Figure 1. We can check that $\mathbf{m}_1 \in \Lambda^b_{\ell}$. We compute $\mathbf{m}(C_1) = 0$ and $\mathbf{m}(C_2) = \mathbf{m}(C_3) = 2$, so $\mathrm{DV}(\mathbf{m}_1) = 8$. Also, there are no odd three-cycles, so $q_U = 0$. Since $\mathrm{DV}(\mathbf{m}_1) > 0 = q_U \cdots (|U| - 1)$, (A_3, \mathbf{m}_1) is not free by Theorem 1.1.

Example 2.2. Consider the multiplicity \mathbf{m}_2 defined by $m_{01} = m_{02} = m_{23} = 2$ and $m_{03} = m_{12} = m_{13} = 1$, shown in Figure 2. We can check that $\mathbf{m}_2 \in \Lambda_{\ell}^b$. We compute $\mathbf{m}(C_1) = \mathbf{m}(C_2) = 1$ and $\mathbf{m}(C_3) = 2$, so $\mathrm{DV}(\mathbf{m}_2) = 6$. Also, there are two odd three-cycles, so $q_U = 2$. Since $\mathrm{DV}(\mathbf{m}_2) = 6 \leq 2 \cdot 3 = q_U \cdot (|U| - 1)$, (A_3, \mathbf{m}_2) is free by Theorem 1.1.

3. Mixed products in the balanced cone. We will prove the implication $(1) \Longrightarrow (2)$ in Theorem 1.1 using the notion of local and global mixed products from [3], which we now explain. If $D(A_{\ell}, \mathbf{m})$ is free we list its (non-zero) exponents as a non-increasing sequence (d_1, \ldots, d_ℓ) . Put $|\mathbf{m}| =$ $\sum_{0 \le i < j \le \ell} m_{ij}$. Then $\sum_{i=1}^{\ell} d_i = |\mathbf{m}|$ by Saito's criterion. For a free multi-arrangement, the kth global mixed product is $GMP(k) = \sum d_{i_1} d_{i_2} \cdots d_{i_k}$, where the sum runs across all k-tuples satisfying $1 \leq$ $i_1 < \cdots < i_k \leq \ell$. Now write $L = L(A_\ell)$ for the intersection lattice of A_{ℓ} (all intersections among the hyperplanes H_{ij} and L_k for those intersections of codimension k. The kth local mixed product is $\text{LMP}(k) = \sum_{X \in L_k} d_1^X d_2^X \cdots d_k^X$, where d_1^X, \ldots, d_k^X are the (non-zero) exponents of the closed rank ksub-arrangement $(A_{\ell})_{\chi}$ (this is the arrangement consisting of all hyperplanes containing X). By [3, Corollary 4.6], if (A_{ℓ}, \mathbf{m}) is free then GMP(k) =LMP(k) for every $2 \le k \le \ell$.

Recall that if $\{v_i, v_j, v_k\}$ are vertices of $K_{\ell+1}$ so that $m_{ij} + m_{ik} + m_{jk}$ is odd then we call the cycle traversing these vertices an *odd three-cycle* of **m**.

Proposition 3.1. Let (A_{ℓ}, \mathbf{m}) be a multibraid arrangement with $\mathbf{m} \in \Lambda^{b}_{\ell}$. Set $m_{ijk} = m_{ij} + m_{jk} + m_{ik}$ and write q for the number of odd threecycles of \mathbf{m} . Then

LMP(2)

$$= \sum_{0 \le i < j < k \le \ell} (m_{ijk}/2)^2 + \sum_{\{i,j\} \cap \{s,t\} = \emptyset} m_{ij}m_{st} - q/4$$

and

$$GMP(2) \le \binom{\ell}{2} \frac{|\mathbf{m}|^2}{\ell^2}$$

Proof. We prove the formula for LMP(2) first. If $X \in L_2$, then either (1): $X = H_{ij} \cap H_{st}$ for a pair of non-adjacent edges $\{i, j\}$ and $\{s, t\}$ or (2): $X = H_{ij} \cap H_{jk} \cap H_{ik}$ for a three-cycle on $\{v_i, v_j, v_k\}$. In the first case the arrangement is boolean with (non-zero) exponents (m_{ij}, m_{st}) , contributing $m_{ij}m_{st}$ to LMP(2). In the second case the arrangement is an A_2 braid arrangement and a result of Wakamiko [9] shows the exponents are $(m_{ijk}/2, m_{ijk}/2)$ if m_{ijk} is even and $((m_{ijk} + 1)/2, (m_{ijk} - 1)/2)$ if m_{ijk} is odd (since $\mathbf{m} \in \Lambda_{\ell}^b$). The former contributes $m_{ijk}^2/4 + 1/4$. This yields the expression for LMP(2).

The inequality for GMP(2) is immediate since the real-valued function $\sum_{1 \le i < j \le \ell} x_i x_j$ subject to the restrictions $x_i \ge 0$ for $i = 1, \ldots, \ell$ and $\sum_{i=1}^{\ell} x_i = |\mathbf{m}|$ attains an absolute maximum of $\binom{\ell}{2} \frac{|\mathbf{m}|^2}{\ell^2}$ when $x_1 = \cdots = x_\ell = \frac{|\mathbf{m}|}{\ell}$.

In the statement of the next result, $DV(\mathbf{m})$ denotes $DV(\mathbf{m}_U)$ when $U = \{v_0, \ldots, v_\ell\}$.

Theorem 3.2. Suppose (A_{ℓ}, \mathbf{m}) is a multibraid arrangement with $\mathbf{m} \in \Lambda^b_{\ell}$ and write q for the number of odd three-cycles of \mathbf{m} . If $DV(\mathbf{m}) > q\ell$, then \mathbf{m} is not a free multiplicity.

Remark 3.3. Theorem 3.2 generalizes [5, Theorem 4.12] to higher braid arrangements.

Proof. By Proposition 3.1, we know that

$$\operatorname{LMP}(2) - \operatorname{GMP}(2) \ge \sum_{0 \le i < j < k \le \ell} (m_{ijk}/2)^2 + \sum_{\{i,j\} \cap \{s,t\} = \emptyset} m_{ij}m_{st} - \binom{\ell}{2} \frac{|\mathbf{m}|^2}{\ell^2} - q/4.$$

Our primary claim is

4

(1)
$$DV(\mathbf{m}) = 4\ell \sum_{0 \le i < j < k \le \ell} (m_{ijk}/2)^2 + 4\ell \sum_{\{i,j\} \cap \{s,t\} = \emptyset} m_{ij}m_{st} - 4\ell \binom{\ell}{2} \frac{|\mathbf{m}|^2}{\ell^2}.$$

Once Eq. (1) is proved, notice that

$$\ell(\text{LMP}(2) - \text{GMP}(2)) \ge \text{DV}(\mathbf{m}) - q\ell.$$

Then [3, Corollary 4.6] immediately yields Theorem 3.2. So we prove Eq. (1). By definition $DV(\mathbf{m}) = \sum_{C} \mathbf{m}(C)^2$; expanding this yields

(2)
$$DV(\mathbf{m}) = 2\binom{\ell-1}{2} \sum_{0 \le i < j \le \ell} m_{ij}^2$$

+ $4 \sum_{\{i,j\} \cap \{s,t\} = \emptyset} m_{ij} m_{st}$
- $2(\ell-2) \sum_{0 \le i < j < k \le \ell} (m_{ij} m_{ik} + m_{ij} m_{jk} + m_{ik} m_{jk}).$

Re-writing the right-hand side of Eq. (1) using the two expressions

$$|\mathbf{m}|^{2} = \sum_{0 \le i < j \le \ell} m_{ij}^{2} + 2 \sum_{\{i,j\} \cap \{s,t\} = \emptyset} m_{ij} m_{st} + 2 \sum_{0 \le i < j < k \le \ell} (m_{ij} m_{ik} + m_{ij} m_{jk} + m_{ik} m_{jk})$$

and

$$\sum_{\substack{0 \le i < j < k \le \ell}} m_{ijk}^2 = (\ell - 1) \sum_{\substack{0 \le i < j \le \ell}} m_{ij}^2 + 2 \sum_{\substack{0 \le i < j < k \le \ell}} (m_{ij}m_{ik} + m_{ij}m_{jk} + m_{ik}m_{jk})$$

now yields the right-hand side of Eq. (2).

4. From deviations to ANN multiplicities. Recall that **m** is an ANN multiplicity on A_{ℓ} if $\mathbf{m} \in \Lambda^b_{\ell}$ and there exist non-negative integers n_0, \ldots, n_{ℓ} and $\epsilon_{ij} \in \{-1, 0, 1\}$ so that $m_{ij} = n_i + n_j + \epsilon_{ij}$ for $0 \le i < j \le \ell$. In this section we prove the first part of the implication $(2) \Longrightarrow (3)$ in Theorem 1.1. Namely, we prove that if $\mathbf{m} \in \Lambda^b_{\ell}$ then the inequalities $\mathrm{DV}(\mathbf{m}) \le q_U(|U| - 1)$ guarantee that **m** is an ANN multiplicity.

Lemma 4.1. Suppose \mathbf{m} is a multiplicity on A_3 with q odd three-cycles and $DV(\mathbf{m}) \leq 3q$. Then $\mathbf{m}(C) \leq 2$ for each four-cycle C in K_4 .

Proof. There are three four-cycles. Set $T_1 = m_{01} - m_{12} + m_{23} - m_{03}$, $T_2 = m_{13} - m_{01} + m_{02} - m_{23}$, and $T_3 = m_{13} - m_{12} + m_{02} - m_{03}$. Notice $T_1 + T_2 = T_3$, and $DV(\mathbf{m}) = T_1^2 + T_2^2 + T_3^2$. Now, suppose without loss that $|T_3| \ge 3$. Then either $|T_1| \ge 2$ or $|T_2| \ge 2$. But then $DV(\mathbf{m}) \ge 13$, contradicting that $DV(\mathbf{m}) \le 3q \le 12$ (since $q \le 4$). □

Proposition 4.2. Let (A_{ℓ}, \mathbf{m}) be a multibraid arrangement so that $\mathbf{m} \in \Lambda_{\ell}^{b}$ and $DV(\mathbf{m}_{U}) \leq 3q_{U}$ for every subset $U \subset \{v_{0}, \ldots, v_{\ell}\}$ with |U| = 4. Then \mathbf{m} is an ANN multiplicity.

Proof. We need to show that there exist nonnegative integers n_i for $i = 0, ..., \ell$ and integers $\epsilon_{ij} \in \{-1, 0, 1\}$ for $0 \le i < j \le \ell$ so that $m_{ij} =$ $n_i + n_j + \epsilon_{ij}$. By Lemma 4.1, we must have $\mathbf{m}(C) \le 2$ for every four-cycle $C \in C_4(K_{\ell+1})$. Using this condition, we give an inductive algorithm to construct the integers n_0, \ldots, n_ℓ .

If $\ell = 2$, set $n_0 = \lceil (m_{01} + m_{02} - m_{12})/2 \rceil$, $n_1 = \lceil (m_{01} + m_{12} - m_{02})/2 \rceil$, and $n_2 = \lceil (m_{02} + m_{12} - m_{01})/2 \rceil$. Since $\mathbf{m} \in \Lambda_{\ell}^b$, $n_i \ge 0$ for i = 0, 1, 2. Moreover, $m_{ij} = n_i + n_j + \epsilon_{ij}$, where $\epsilon_{ij} \in \{-1, 0\}$.

Now assume $\ell > 2$. We make an initial guess at what the non-negative integers n_0, \ldots, n_ℓ and ϵ_{ij} should be, and then adjust as necessary. By induction on ℓ , there exist non-negative integers $\tilde{n}_0, \ldots, \tilde{n}_{\ell-1}$ and $\tilde{\epsilon}_{ij} \in \{-1, 0, 1\}$ such that $m_{ij} = \tilde{n}_i + \tilde{n}_j + \tilde{\epsilon}_{ij}$ for $0 \le i < j \le \ell - 1$. Let \tilde{n}_ℓ be a nonnegative integer satisfying $\tilde{n}_\ell + \tilde{n}_i \ge m_{i\ell} - 1$ and set $\tilde{\epsilon}_{i\ell} = m_{i\ell} - (\tilde{n}_i + \tilde{n}_\ell)$ for every $i < \ell$, so $m_{i\ell} = \tilde{n}_i + \tilde{n}_\ell + \tilde{\epsilon}_{i\ell}$. By the choice of \tilde{n}_ℓ , we have $\tilde{\epsilon}_{i\ell} \le 1$ for all $i < \ell$.

Now suppose there is an index $0 \leq j < \ell$ so that $\tilde{\epsilon}_{j\ell} \leq -2$. Our goal is to decrease either \tilde{n}_{ℓ} or \tilde{n}_{j} by one, thereby increasing $\tilde{\epsilon}_{j\ell}$, without disturbing any of the hypotheses made so far, namely

$$\tilde{n}_i + \tilde{n}_j + \tilde{\epsilon}_{ij} = m_{ij}$$
 for all $0 \le i < j \le \ell$,

No. 4]

$$\begin{split} \tilde{n}_i &\geq 0 \text{ for all } 0 \leq i \leq \ell, \\ (\star) \quad \tilde{\epsilon}_{i\ell} &\leq 1 \text{ for all } i < \ell, \\ \tilde{\epsilon}_{st} &\in \{-1, 0, 1\} \text{ for all } 0 \leq s < t \leq \ell - 1. \end{split}$$

First we assume $\tilde{n}_{\ell} > 0$ and try to decrease \tilde{n}_{ℓ} by one. We can do this without disturbing assumptions (*) provided there is no index s so that $\epsilon_{s\ell} = 1$. So, assume that there is an index $0 \leq s < \ell$ so that $\epsilon_{s\ell} = 1$. We claim that in this situation, $\epsilon_{st} \geq 0$ for every $t \neq s$. Suppose to the contrary that there is an index t so that $\epsilon_{st} = -1$ and consider the four-cycle $C: v_{\ell} \rightarrow v_s \rightarrow v_t \rightarrow v_j \rightarrow v_{\ell}$. Then

$$\mathbf{m}(C) = |\tilde{\epsilon}_{s\ell} - \tilde{\epsilon}_{j\ell} + \tilde{\epsilon}_{jt} - \tilde{\epsilon}_{st}| \ge 1 + 2 + \tilde{\epsilon}_{jt} + 1 \ge 3,$$

since $\tilde{\epsilon}_{jt} \in \{-1, 0, 1\}$ by the inductive hypothesis. This contradicts our assumption that $\mathbf{m}(C) \leq 2$. So it follows that $\tilde{\epsilon}_{st} \in \{0, 1\}$ for all t. Thus we may increase \tilde{n}_s by one, thereby decreasing $\tilde{\epsilon}_{st}$ by one for every $t \neq s$, without disturbing the hypothesis that $\tilde{\epsilon}_{st} \in \{-1, 0, 1\}$. Since we can apply this argument at every index s so that $\tilde{\epsilon}_{s\ell} = 1$, we may assume $\tilde{\epsilon}_{s\ell} \leq 0$ for every $0 \leq s < \ell$. Hence, if $\tilde{n}_{\ell} > 0$, it is now clear that we can decrease \tilde{n}_{ℓ} by one without disturbing assumptions (\star).

Now assume that
$$\tilde{n}_{\ell} = 0$$
. Then, for any $s < \ell$
 $m_{s\ell} + m_{j\ell} - m_{js} = (\tilde{n}_s + \tilde{\epsilon}_{s\ell}) + (\tilde{n}_j + \tilde{\epsilon}_{j\ell})$
 $- (\tilde{n}_j + \tilde{n}_s + \tilde{\epsilon}_{js})$
 $= \tilde{\epsilon}_{s\ell} + \tilde{\epsilon}_{j\ell} - \tilde{\epsilon}_{js}$
 $\leq 0 - 2 - \tilde{\epsilon}_{js} \leq -1,$

since $\tilde{\epsilon}_{js} \in \{-1, 0, 1\}$ by the inductive hypothesis. Since $\mathbf{m} \in \Lambda_{\ell}^{b}$, we must have an equality for all of these, so $\epsilon_{js} = -1$ for every $s \neq j$, $s < \ell$. If $\tilde{n}_{j} = 0$ as well, then $m_{j\ell} = \tilde{n}_{j} + \tilde{n}_{\ell} + \epsilon_{j\ell} \leq -2$, contradicting that $m_{j\ell}$ is non-negative. Hence $\tilde{n}_{j} > 0$ and we can decrease \tilde{n}_{j} by one without disturbing any of assumptions (\star) .

In either case, we have shown how to increase $\tilde{\epsilon}_{j\ell}$ if $\tilde{\epsilon}_{j\ell} \leq -2$ without disturbing assumptions (*). So we iterate the above arguments until $\tilde{\epsilon}_{j\ell} \geq -1$ for every $j < \ell$, then set $n_i = \tilde{n}_i$ for $0 \leq i \leq \ell$ and $\tilde{\epsilon}_{ij} = \epsilon_{ij}$ for $0 \leq i < j \leq \ell$. This completes the algorithm and the proof.

5. Detecting signed-eliminable graphs. In this section we finish the proof of the implication $(2) \Longrightarrow (3)$ in Theorem 1.1. We will use the characterization of free ANN multiplicities given in [2], which involves *signed-eliminable graphs*. We follow the presentation from [2,8].

A signed graph G on $\ell + 1$ vertices is a graph

whose edge set E_G is the disjoint union of a set E_G^+ of edges assigned + and a set E_G^- of edges assigned -. Clearly if G is a signed graph on $\ell + 1$ vertices and $n_0, \ldots, n_\ell \in \mathbb{Z}_{\geq 0}$ then we can define a multiplicity $\mathbf{m} = \mathbf{m}_G(n_0, \ldots, n_\ell)$ on A_ℓ by $m_{ij} = n_i + n_j + \epsilon_{ij}$, where

$$\epsilon_{ij} = \begin{cases} 1 & \{v_i, v_j\} \in E_G^+ \\ -1 & \{v_i, v_j\} \in E_G^- \\ 0 & \{v_i, v_j\} \notin E_G. \end{cases}$$

The graph G is signed-eliminable with signedelimination ordering $\nu: V(G) \to \{0, \ldots, \ell\}$ if ν is bijective and, for every three vertices $v_i, v_j, v_k \in$ V(G) with $\nu(v_i), \nu(v_j) < \nu(v_k)$, the induced subgraph $G|_{v_i,v_j,v_k}$ satisfies:

- For $\sigma \in \{+, -\}$, if $\{v_i, v_k\}$ and $\{v_j, v_k\}$ are edges in E_G^{σ} then $\{v_i, v_j\} \in E_G^{\sigma}$.
- For $\sigma \in \{+, -\}$, if $\{v_k, v_i\} \in E_G^{\sigma}$ and $\{v_i, v_j\} \in E_G^{-\sigma}$ then $\{v_k, v_j\} \in E_G$.

According to [2, Theorem 0.3], an ANN multiplicity of the form $\mathbf{m}_G(n_0, \ldots, n_\ell)$ is free if and only if G is signed-eliminable.

Remark 5.1. In [2, Theorem 0.3], it is not stated that $\mathbf{m} \in \Lambda_{\ell}^{b}$. However, this is a necessary and sufficient condition for the proofs; see Appendix A of [1]. It is straightforward to check that condition (3) in the revised statement of Theorem 0.3 in Appendix A of [1] coincides with $\mathbf{m} \in \Lambda_{\ell}^{b}$.

Definition 5.2. A graph with $(\ell + 1)$ vertices v_0, v_1, \ldots, v_ℓ and $\ell \geq 3$ is a

- (1) σ -mountain, where $\sigma \in \{+, -\}$, if $\{v_0, v_i\} \in E_G^{\sigma}$ for $i = 2, \dots, \ell - 1$, $\{v_i, v_{i+1}\} \in E_G^{-\sigma}$ for $i = 1, \dots, \ell - 1$, and no other pair of vertices is joined by an edge;
- (2) a σ -hill, where $\sigma \in \{+, -\}$, if $\{v_0, v_1\} \in E_G^{\sigma}, \{v_0, v_i\} \in E_G^{\sigma}$ for $i = 2, \ldots, \ell 1, \{v_1, v_i\} \in E_G^{\sigma}$ for $i = 3, \ldots, \ell, \{v_i, v_{i+1}\} \in E_G^{-\sigma}$ for $i = 2, \ldots, \ell 1$, and no other pair of vertices is joined by an edge;
- (3) a σ -cycle if $\{v_i, v_{i+1}\} \in E_G^{\sigma}$ for $i = 0, \dots, \ell 1$, $\{v_0, v_\ell\} \in E_G^{\sigma}$, and no other pair of vertices is joined by an edge.

Theorem 5.3 ([8, Theorem 5.1]). A signed graph is signed-eliminable if and only if it has no induced sub-graph which is a graph on four vertices which is not signed-eliminable, a σ -cycle, a σ -mountain, or a σ -hill.

Remark 5.4. Theorem 5.3 is not precisely Nuida's characterization, but it is easily deduced from it (this is implicit in [2]). **Proposition 5.5.** Suppose n_0, \ldots, n_ℓ are non-negative integers, G is a signed graph on v_0, \ldots, v_ℓ , and $\mathbf{m} = \mathbf{m}_G(n_0, \ldots, n_\ell)$. If G is not signed-eliminable, then there is a subset $U \subset$ $\{0, \ldots, \ell\}$ so that $DV(\mathbf{m}_U) > q_U \cdot (|U| - 1)$.

Proof. It follows from the definitions that $DV(\mathbf{m}_U)$ and $q_U\ell$ may be determined after replacing m_{ij} by ϵ_{ij} . We write $DV(G_U)$ for $DV(\mathbf{m}_U)$ to emphasize dependence only on G and the subset U. If G is not signed eliminable then by Theorem 5.3 G contains an induced sub-graph H which is a signed graph on four vertices which is not signed-eliminable, a σ -cycle of length > 3, a σ -hill, or a σ -mountain. We assume G = H and show that $DV(G) > q\ell$ in each of these cases.

The inequality DV(G) > 3q can easily be verified by hand for each graph on four vertices which is not signed-eliminable (this is also done explicitly in [5, Corollary 6.2]). If G is a σ -cycle, σ -mountain, or σ -hill on $(\ell + 1)$ vertices then a straightforward but tedious computation yields that $DV(G) = \ell^3 - 2\ell^2 - \ell + 2$ and $q = \ell^2 - 2\ell - 3$. Notice that this proves the result since DV(G) = $q\ell + 2(\ell + 1) > q\ell$. Since it is long and not particularly enlightening, we will not give further details here for the computation of DV(G) and q for the σ -cycle, σ -hill, and σ -mountain. The interested reader can find more details on the author's website, https://math.okstate.edu/~mdipasq, under the Research tab in the section headed 'Free Multiplicities on Braid and Graphic Arrangements.' Click on the link titled 'Supplemental computations for sigma cycles, mountains, and hills.'

Remark 5.6. Theorem 1.1 implicitly gives an additional characterization of signed-eliminable graphs. Namely, a signed graph G is signedeliminable if and only if $DV(G_U) \leq q_U(|U| - 1)$ for every subset U of V(G) of size at least four.

Proof of Theorem 1.1. The direction $(3) \Longrightarrow$ (1) is trivial, so we prove $(1) \Longrightarrow (2) \Longrightarrow (3)$.

(1) \Longrightarrow (2): Suppose $\mathbf{m} \in \Lambda_{\ell}^{b}$ and $(\mathcal{A}, \mathbf{m})$ is free. Let $U \subset \{v_{0}, \ldots, v_{\ell}\}$ with $|U| \ge 4$. Write A_{U} for the closed sub-arrangement of A_{ℓ} with hyperplanes $\{H_{ij} : \{v_{i}, v_{j}\} \subset U\}$. By [4, Proposition 1.7], (A_{U}, \mathbf{m}_{U}) is free. Hence by Theorem 3.2, $\mathrm{DV}(\mathbf{m}_{U}) \le q_{U}(|U| - 1)$. Since U was arbitrary, we are done.

(2) \Longrightarrow (3): Suppose that $\mathbf{m} \in \Lambda_{\ell}^{b}$ and $\mathrm{DV}(\mathbf{m}_{U}) \leq q_{U}(|U|-1)$ for every $U \subset \{v_{0}, \ldots, v_{\ell}\}$ with $|U| \geq 4$. By Proposition 4.2, \mathbf{m} is an ANN multiplicity. By Proposition 5.5, $\mathbf{m} = \mathbf{m}_{G}(n_{0}, \ldots, n_{\ell})$

 n_{ℓ}) for some signed-eliminable graph G. By [1, Appendix A, Theorem 0.3], **m** is a free multiplicity on A_{ℓ} (see Remark 5.1).

6. Free vertices and a conjecture. In this final section we discuss *free vertices* of a multiplicity on a graphic arrangement and present a conjecture on the structure of free multiplicities on braid arrangements. Given a graph $G = (V_G, E_G)$ on $\ell + 1$ vertices (in bijection with the variables x_0, \ldots, x_ℓ), the corresponding graphic arrangement is $\mathcal{A}_G = \bigcup_{\{v_i, v_j\} \in E_G} H_{ij}$. Just as for the braid arrangement, an edge $\{v_i, v_j\}$ of G corresponds to the form $H_{ij} = V(x_i - x_j)$, and the graphic multi-arrangement $(\mathcal{A}_G, \mathbf{m})$ can be identified with the edgelabeled graph (G, \mathbf{m}) where the label on $\{v_i, v_j\}$ is $\mathbf{m}(H_{ij}) = m_{ij}$. If $H \subset G$ is a subgraph, then we denote by \mathbf{m}_H the restriction of \mathbf{m} to E_H .

Definition 6.1. Suppose G is a graph. A vertex $v_i \in V_G$ is a *simplicial vertex* if the sub-graph of G induced by v_i and its neighbors is a complete graph. Given a multi-arrangement $(\mathcal{A}_G, \mathbf{m})$ and the corresponding edge-labeled graph (G, \mathbf{m}) , a vertex v_i is a *free vertex* of (G, \mathbf{m}) if it is a simplicial vertex and for every triangle with vertices v_i, v_j, v_k we have $m_{ij} + m_{ik} \leq m_{jk} + 1$.

Theorem 6.2. Suppose G is a graph, v_i is a free vertex of (G, \mathbf{m}) , and G' is the induced subgraph on the vertex set $V_G \setminus \{v_i\}$. Then $(\mathcal{A}_G, \mathbf{m})$ is free if and only if $(\mathcal{A}_{G'}, \mathbf{m}_{G'})$ is free.

Proof of Theorem 6.2. We use a result whose proof we omit since it is virtually identical to the proof of [4, Theorem 5.10]. Recall that a flat $X \in L$ is called *modular* if $X + Y \in L$ for every $Y \in L$, where X + Y is the linear span of X, Y considered as linear sub-spaces of $V \cong \mathbf{K}^{\ell+1}$.

Theorem 6.3. Suppose $(\mathcal{A}, \mathbf{m})$ is a central multi-arrangement of rank $\ell \geq 3$ and X is a modular flat of rank $\ell - 1$. Suppose $(\mathcal{A}_X, \mathbf{m}_X)$ is free with exponents $(d_1, \ldots, d_{\ell-1}, 0)$ and for all $H \in \mathcal{A} \setminus \mathcal{A}_X$ and $H' \in \mathcal{A}_X$, set $Y := H \cap H'$. If one of the following two conditions is satisfied:

(1)
$$\mathcal{A}_Y = H \cup H'$$
 or

(2)
$$\mathbf{m}(H') \ge \sum_{H \in \mathcal{A} \setminus \mathcal{A}'} \mathbf{m}(H) - 1$$

Then $(\mathcal{A}, \mathbf{m})$ is free with exponents $(d_1, \ldots, d_{\ell-1}, |\mathbf{m}| - |\mathbf{m}'|)$.

Now suppose G is a graph on $\ell + 1$ vertices $\{v_0, \ldots, v_\ell\}$ and \mathcal{A}_G is the associated graphic arrangement. Further suppose that v_i is a free vertex of (G, \mathbf{m}) , and G' is the induced sub-graph on

the vertex set $V_G \setminus \{v_i\}$, along with the isolated vertex v_i . Set $\mathbf{m}' = \mathbf{m}_{G'}$. By [4, Proposition 1.7], if $(\mathcal{A}_{G'}, \mathbf{m}')$ is not free, then neither is $(\mathcal{A}_G, \mathbf{m})$.

Suppose now that $(\mathcal{A}_{G'}, \mathbf{m}')$ is free. We show that $(\mathcal{A}_G, \mathbf{m})$ is free using Theorem 6.3. Write $H_{ij} = V(x_i - x_j)$. Since v_i is a simplicial vertex of G, the flat $X = \bigcap_{v_j, v_k \neq v_i} H_{jk}$ is modular and has rank $\ell - 1$. The sub-arrangement $(\mathcal{A}_G)_X$ is the graphic arrangement $\mathcal{A}_{G'}$. Suppose $H = H_{ij} \in \mathcal{A}_G \setminus \mathcal{A}_{G'}, H' = H_{st} \in \mathcal{A}_{G'}$, and set $Y = H_{ij} \cap H_{st}$. If $\{s, t\} \cap \{i, j\} = \emptyset$, then $\mathcal{A}_Y = H_{ij} \cup H_{st}$. Otherwise, suppose s = j. Since v_i is a simplicial vertex, $\{i, t\} \in E_G$, so $\mathcal{A}_Y = H_{ij} \cup H_{it} \cup H_{jt}$. Since v_i is a free vertex, $m_{ij} + m_{it} \leq m_{jt} + 1$, which is condition (2) from Theorem 6.3. Hence $(\mathcal{A}_G, \mathbf{m})$ is free by Theorem 6.3.

We use Theorem 6.2 to inductively construct two types of free multiplicities. Given a graph G, an *elimination ordering* is an ordering v_0, \ldots, v_ℓ of the vertices V_G so that v_i is a simplicial vertex of the induced sub-graph on v_0, \ldots, v_i for every $i = 1, \ldots, \ell$. It is known that V_G admits an elimination ordering if and only if G is chordal [6].

Corollary 6.4. Suppose (G, \mathbf{m}) is an edgelabeled chordal graph with elimination ordering v_0, \ldots, v_ℓ satisfying that v_i is a free vertex of the induced sub-graph on $\{v_0, \ldots, v_i\}$ for every $i \ge 2$. Then $(\mathcal{A}_G, \mathbf{m})$ is free.

Corollary 6.5. Let $(\mathcal{A}_{\ell}, \mathbf{m})$ be a multi-braid arrangement corresponding to the complete graph $K_{\ell+1}$ on $(\ell+1)$ vertices. Suppose that $K_{\ell+1}$ admits an ordering $\{v_0, \ldots, v_{\ell}\}$ so that:

- (1) For some integer $0 \le k \le \ell$, the induced subgraph G' on $\{v_0, \ldots, v_k\}$ satisfies that $\mathbf{m}_{G'}$ is a free ANN multiplicity.
- (2) For $k+1 \leq i \leq \ell$, v_i is a free vertex of the induced graph on $\{v_0, \ldots, v_i\}$.

Then (A_{ℓ}, \mathbf{m}) is free.

We conjecture that all free multi-braid arrangements take the form of Corollary 6.5.

Conjecture 6.6. The multi-braid arrangement (A_{ℓ}, \mathbf{m}) is free if and only if it is one of the multi-braid arrangements constructed in Corollary

6.5. Equivalently, by Theorem 6.2, if (A_{ℓ}, \mathbf{m}) is free then either \mathbf{m} is a free ANN multiplicity or \mathbf{m} has a free vertex. Using Theorem 1.1, this is equivalent to the following statement: if \mathbf{m} is a free multiplicity and $\mathbf{m} \notin \Lambda_{\ell}^{b}$, then \mathbf{m} has a free vertex.

Remark 6.7. Conjecture 6.6 is proved for the A_3 braid arrangement in [5]. Using Macaulay2 [7], we have verified Conjecture 6.6 for many multiplicities on the A_4 arrangement.

Acknowledgements. I would especially like to thank Drs. Jeff Mermin, Chris Francisco, and Jay Schweig for their collaboration on the analysis of free multiplicities on the A_3 braid arrangement. I am very grateful to Dr. Takuro Abe for freely corresponding and offering many suggestions. Computations in Macaulay2 [7] were indispensable for this project.

References

- [1] T. Abe, K. Nuida and Y. Numata, Signed-eliminable graphs and free multiplicities on the braid arrangement, arXiv:0712.4110v3.
- T. Abe, K. Nuida and Y. Numata, Signed-eliminable graphs and free multiplicities on the braid arrangement, J. Lond. Math. Soc. (2) 80 (2009), no. 1, 121–134.
- [3] T. Abe, H. Terao and M. Wakefield, The characteristic polynomial of a multiarrangement, Adv. Math. 215 (2007), no. 2, 825–838.
- T. Abe, H. Terao and M. Wakefield, The Euler multiplicity and addition-deletion theorems for multiarrangements, J. Lond. Math. Soc. (2) 77 (2008), no. 2, 335–348.
- [5] M. DiPasquale, C. A. Francisco, J. Mermin and J. Schweig, Free and non-free multiplicities on the A₃ arrangement, arXiv:1609.00337.
- [6] G. A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg 25 (1961), 71–76.
- [7] D. Grayson, M. Stillman and D. Eisenbud, Macaulay2, a software system for research in algebraic geometry, https://faculty.math.illinois. edu/Macaulay2/.
- [8] K. Nuida, A characterization of signed graphs with generalized perfect elimination orderings, Discrete Math. **310** (2010), no. 4, 819–831.
- [9] A. Wakamiko, On the exponents of 2-multiarrangements, Tokyo J. Math. **30** (2007), no. 1, 99–116.