On the ring of integers of real cyclotomic fields

By Koji Yamagata*) and Masakazu Yamagish***
(Communicated by Shigefumi Mori, M.J.A., May 12, 2016)

Abstract

Let ζ_{n} be a primitive nth root of unity. As is well known, $\mathbf{Z}\left[\zeta_{n}+\zeta_{n}^{-1}\right]$ is the ring of integers of $\mathbf{Q}\left(\zeta_{n}+\zeta_{n}^{-1}\right)$. We give an alternative proof of this fact by using the resultants of modified cyclotomic polynomials.

Key words: Cyclotomic field; ring of integers; Chebyshev polynomials.

1. Introduction. Let ζ_{n} be a primitive nth root of unity. It is well known that $\mathbf{Z}\left[\zeta_{n}\right]$ is the ring of integers of the nth cyclotomic field $\mathbf{Q}\left(\zeta_{n}\right)$. Generally this is proved by reducing the case of general n to the prime-power case (cf. [5]). On the other hand, Lüneburg [4] directly proved the case of general n by showing that $\mathbf{Z}\left[\zeta_{n}\right]$ is a Dedekind domain.

It is also well known that $\mathbf{Z}\left[\zeta_{n}+\zeta_{n}^{-1}\right]$ is the ring of integers of the nth real cyclotomic field $\mathbf{Q}\left(\zeta_{n}+\right.$ $\left.\zeta_{n}^{-1}\right)$. This fact easily follows from the corresponding fact for $\mathbf{Q}\left(\zeta_{n}\right)$ (cf. [5]). Another proof by use of the ramification groups is found in [3]. The purpose of this note is to give yet another proof of this fact, applying the method of [4] to $\mathbf{Q}\left(\zeta_{n}+\zeta_{n}^{-1}\right)$. A key ingredient in the proof is the computation of the resultants of modified cyclotomic polynomials by the second named author in [8]. We also compute the discriminants of modified cyclotomic polynomials. We remark that analogous results have been obtained for cyclotomic function fields in [1].
2. Chebyshev polynomials and modified cyclotomic polynomials. We recall the definition of Chebyshev polynomials and modified cyclotomic polynomials, and quote some of their properties.

Definition 2.1. The Chebyshev polynomials T_{n}, U_{n}, V_{n}, and W_{n} of the first, second, third, and fourth kind, respectively, are characterized by

$$
T_{n}(\cos \theta)=\cos n \theta, \quad U_{n}(\cos \theta)=\frac{\sin (n+1) \theta}{\sin \theta}
$$

[^0]\[

$$
\begin{aligned}
& V_{n}(\cos \theta)=\frac{\cos (n+1 / 2) \theta}{\cos \theta / 2} \\
& W_{n}(\cos \theta)=\frac{\sin (n+1 / 2) \theta}{\sin \theta / 2}
\end{aligned}
$$
\]

where n is a nonnegative integer. The normalized Chebyshev polynomials of the first and second kind are defined by $C_{n}(x)=2 T_{n}(x / 2), S_{n}(x)=U_{n}(x / 2)$. We adopt Schur's notation $\mathscr{S}_{n}=S_{n-1}$. For odd $n \quad$ we define $\quad \mathscr{V}_{n}(x)=V_{(n-1) / 2}(x / 2), \quad \mathscr{W}_{n}(x)=$ $W_{(n-1) / 2}(x / 2)$.

Note that these polynomials all have integral coefficients.

Lemma 2.2.

$$
\begin{gather*}
C_{n}^{\prime}(x)=n \mathscr{S}_{n}(x) \tag{2.1}\\
\mathscr{V}_{n}^{\prime}(x)=\frac{n \mathscr{W}_{n}(x)-\mathscr{V}_{n}(x)}{2(x+2)}(n: \text { odd }) \text { and } \tag{2.2}\\
\mathscr{W}_{n}^{\prime}(x)=\frac{n \mathscr{V}_{n}(x)-\mathscr{W}_{n}(x)}{2(x-2)}(n: \text { odd }) . \tag{2.3}
\end{gather*}
$$

We define the modified cyclotomic polynomials Ψ_{n}. For $n \geq 3$ let Ψ_{n} be the minimal polynomial of $2 \cos (2 \pi / n)$ over \mathbf{Q}. Then $\Psi_{n}(x) \in \mathbf{Z}[x]$ and $\operatorname{deg}\left(\Psi_{n}\right)=\varphi(n) / 2$. We do not define Ψ_{1}, Ψ_{2} themselves, but instead we define their squares by

$$
\Psi_{1}(x)^{2}=x-2, \quad \Psi_{2}(x)^{2}=x+2
$$

Proposition 2.3 ([6, Proposition 2.4]). (a) For $n \geq 3$, we have

$$
\begin{aligned}
& C_{n}(x)=\prod_{d \mid n, \frac{n}{d} \text { :odd }} \Psi_{4 d}(x) \\
& \mathscr{S}_{n}(x)=\prod_{2<d \mid 2 n} \Psi_{d}(x)
\end{aligned}
$$

(b) For odd $n \geq 3$, we have

$$
\begin{equation*}
\mathscr{V}_{n}(x)=\prod_{1<d \mid n} \Psi_{2 d}(x) \tag{2.4}
\end{equation*}
$$

$$
\begin{equation*}
\mathscr{W}_{n}(x)=\prod_{1<d \mid n} \Psi_{d}(x) \tag{2.5}
\end{equation*}
$$

Lemma 2.4. Let $n \not \equiv 2(\bmod 4)$. Let p be a prime and e, m positive integers such that $n=$ $p^{e} m, p \nmid m$. Then,

$$
\Psi_{n}(x) \equiv \Psi_{m}(x)^{\varphi\left(p^{e}\right)} \quad(\bmod p)
$$

Note that the right side makes sense even if $m=1$ since $\varphi\left(p^{e}\right)$ is even by our assumption.

Proof. In the case where $m \geq 3$, this follows from $[8,(3.4)]$.

In the case where $m=1$, we are reduced to the case where $n=p \geq 3$ or $n=4, p=2$, by $[8,(3.4)]$. Suppose $n=p \geq 3$. By (2.5) and [7, Lemma 2.1 (ix)], we have

$$
\Psi_{p}(x)=\mathscr{W}_{p}(x) \equiv(x-2)^{\frac{p-1}{2}}=\Psi_{1}(x)^{\varphi(p)}(\bmod p)
$$

For $n=4, p=2$, we have

$$
\Psi_{4}(x)=x \equiv \Psi_{1}(x)^{\varphi(4)}(\bmod 2)
$$

Since $m \neq 2$, we complete the proof.
For a positive integer n let $L(n)=p$ if n is a power of some prime p, and $L(n)=1$ otherwise.

Lemma 2.5 ([8, Lemma 3.1]). Let $n \geq 3$.
(a) $\Psi_{n}(2)=L(n)$.
(b) $\left|\Psi_{n}(-2)\right|= \begin{cases}1 & \text { if } n \text { is odd, } \\ L(n / 2) & \text { if } n \text { is even } .\end{cases}$

Let $\operatorname{res}(f, g)$ denote the resultant of two polynomials f and g.

Theorem 2.6 ([8, Theorem 3.2]). Let $3 \leq$ $m<n$.

$$
\left|\operatorname{res}\left(\Psi_{n}, \Psi_{m}\right)\right|= \begin{cases}L(n / m)^{\frac{\varphi(m)}{2}} & \text { if } m \mid n \\ 1 & \text { otherwise }\end{cases}
$$

3. The discriminant of $\Psi_{n}(x)$. We give an alternative proof of the following well known result. Let $\Delta(f)$ denote the discriminant of a polynomial f.

Proposition 3.1 ([2, Theorem 3.8]). Let $n \geq$ 3. If $n=2^{e}$, $e>1$, then

$$
\Delta\left(\Psi_{n}\right)=2^{(e-1) 2^{e-2}-1}
$$

If $n=p^{e}$ or $n=2 p^{e}, p$ is an odd prime, then

$$
\Delta\left(\Psi_{n}\right)=p^{\frac{e p^{e}-(e+1) p^{e-1}-1}{2}}
$$

Otherwise,

$$
\Delta\left(\Psi_{n}\right)=\frac{n^{\frac{\varphi(n)}{2}}}{\prod_{p \mid n} p^{\frac{\varphi(n)}{2(p-1)}}} .
$$

Proof. Since all roots of Ψ_{n} are real, $\Delta\left(\Psi_{n}\right)$ is positive. So we ignore the signs in the computation of $\Delta\left(\Psi_{n}\right)$ throughout this proof.

Case $\boldsymbol{n}:$ odd If $\Psi_{n}(\lambda)=0$, by (2.3) and (2.5), we have

$$
\begin{aligned}
\frac{n \mathscr{V}_{n}(\lambda)}{2(\lambda-2)} & =\mathscr{W}_{n}^{\prime}(\lambda) \\
& =\Psi_{n}^{\prime}(\lambda) \prod_{1<d \mid n, d \neq n} \Psi_{d}(\lambda)
\end{aligned}
$$

Then it follows that
(3.1)

$$
\begin{aligned}
& \Delta\left(\Psi_{n}\right)=\prod_{\lambda} \Psi_{n}^{\prime}(\lambda) \\
& \quad=\frac{n^{\frac{\varphi(n)}{2}} \prod_{\lambda} \mathscr{V}_{n}(\lambda)}{2^{\frac{\varphi(n)}{2}}\left(\prod_{\lambda}(\lambda-2)\right)\left(\prod_{\lambda} \prod_{1<d \mid n, d \neq n} \Psi_{d}(\lambda)\right)}
\end{aligned}
$$

where λ ranges over the roots of Ψ_{n}. By (2.4) and Theorem 2.6 we have

$$
\begin{align*}
\prod_{\lambda} \mathscr{V}_{n}(\lambda) & =\prod_{1<d \mid n} \operatorname{res}\left(\Psi_{n}, \Psi_{2 d}\right) \tag{3.2}\\
& =\operatorname{res}\left(\Psi_{n}, \Psi_{2 n}\right) \\
& =2^{\frac{\varphi(n)}{2}}
\end{align*}
$$

Lemma 2.5 (a) gives

$$
\begin{equation*}
\prod_{\lambda}(\lambda-2)=\Psi_{n}(2)=L(n) \tag{3.3}
\end{equation*}
$$

Finally we compute

$$
\begin{equation*}
\prod_{\lambda} \prod_{1<d \mid n, d \neq n} \Psi_{d}(\lambda)=\prod_{1<d \mid n, d \neq n} \operatorname{res}\left(\Psi_{n}, \Psi_{d}\right) \tag{3.4}
\end{equation*}
$$

as follows: If $n=p^{e}$, then, by Theorem 2.6 we have
(3.5) $\prod_{1<d \mid n, d \neq n} \operatorname{res}\left(\Psi_{n}, \Psi_{d}\right)=\prod_{i=1}^{e-1} p^{\frac{\varphi\left(p^{i}\right)}{2}}=p^{\frac{p^{e-1}-1}{2}}$.

If $n=\prod_{i=1}^{t} p_{i}^{e_{i}}, t \geq 2, e_{i} \geq 1$, then, by Theorem 2.6, we have

$$
\begin{align*}
\prod_{1<d \mid n, d \neq n} \operatorname{res}\left(\Psi_{n}, \Psi_{d}\right) & =\prod_{i=1}^{t} \prod_{j=1}^{e_{i}} p_{i}^{\frac{\varphi\left(n / p_{i}^{j}\right)}{2}} \tag{3.6}\\
& =\prod_{i=1}^{t} p_{i}^{\frac{\varphi(n)}{2\left(p_{i}-1\right)}}
\end{align*}
$$

since

$$
\begin{aligned}
\sum_{j=1}^{e_{i}} \varphi\left(n / p_{i}^{j}\right) & =\varphi\left(n / p_{i}^{e_{i}}\right) \sum_{j=0}^{e_{i}-1} \varphi\left(p_{i}^{j}\right) \\
& =\varphi\left(n / p_{i}^{e_{i}}\right) p^{e_{i}-1} \\
& =\frac{\varphi(n)}{p_{i}-1}
\end{aligned}
$$

Substituting (3.2)-(3.6) into (3.1), the desired identity follows.

The argument is similar in the remaining cases, so we just provide some key identities:

Case $n \equiv 2(\bmod 4)$

$$
\begin{aligned}
& \frac{(n / 2) \mathscr{W}_{n / 2}(\lambda)}{2(\lambda+2)}=\mathscr{V}_{n / 2}^{\prime}(\lambda) \\
&=\Psi_{n}^{\prime}(\lambda) \prod_{1<d \frac{n}{2}, d \neq \frac{n}{2}} \Psi_{2 d}(\lambda) . \\
& \begin{aligned}
& \Delta\left(\Psi_{n}\right)=\left(\frac{n}{4}\right)^{\frac{\varphi(n / 2)}{2}} \\
& \times \frac{\prod_{\lambda} \mathscr{W}_{\frac{n}{2}}(\lambda)}{\left(\prod_{\lambda}(\lambda+2)\right)\left(\prod_{\lambda} \prod_{1<d \left\lvert\, \frac{n}{2}\right., d \neq \frac{n}{2}} \Psi_{2 d}(\lambda)\right)}, \\
& \prod_{\lambda} \mathscr{W}_{\frac{n}{2}}(\lambda)=\prod_{1<d \left\lvert\, \frac{n}{2}\right.} \operatorname{res}\left(\Psi_{n}, \Psi_{d}\right) \\
&=\operatorname{res}\left(\Psi_{n}, \Psi_{\frac{n}{2}}\right) \\
&=2^{\frac{\varphi(n / 2)}{2}}, \\
& \prod_{\lambda}(\lambda+2)=\Psi_{n}(-2)=L(n / 2) .
\end{aligned} .
\end{aligned}
$$

If $n=2 p^{e}$, then

$$
\prod_{\lambda} \prod_{1<d \left\lvert\, \frac{n}{2}\right., d \neq \frac{n}{2}} \Psi_{2 d}(\lambda)=p^{\frac{p^{e-1}-1}{2}} .
$$

If $n=2 \prod_{i=1}^{t} p_{i}^{e_{i}}, t \geq 2, e_{i} \geq 1$, then

$$
\prod_{\lambda} \prod_{1<d \frac{n}{2}, d \neq \frac{n}{2}} \Psi_{2 d}(\lambda)=\prod_{i=1}^{t} p_{i}^{\frac{\varphi(n)}{2\left(p_{i}-1\right)}} .
$$

Case $n \equiv 0 \quad(\bmod 4)$

$$
\frac{n}{4} \mathscr{S}_{n / 4}(\lambda)=C_{n / 4}^{\prime}(\lambda)=\Psi_{n}^{\prime}(\lambda) \prod_{d} \Psi_{4 d}(\lambda)
$$

the product being taken over all d such that $d \left\lvert\, \frac{n}{4}\right.$, $d \neq \frac{n}{4}, \frac{n}{4 d}$ is odd,

$$
\Delta\left(\Psi_{n}\right)=\left(\frac{n}{4}\right)^{\frac{\varphi(n)}{2}} \frac{\prod_{\lambda} \mathscr{S}_{\frac{n}{4}}(\lambda)}{\prod_{\lambda} \prod_{d} \Psi_{4 d}(\lambda)} .
$$

If $n=2^{e}$, then

$$
\begin{aligned}
\prod_{\lambda} \prod_{d} \Psi_{4 d}(\lambda) & =\prod_{d} \operatorname{res}\left(\Psi_{n}, \Psi_{4 d}\right)=1 \\
\prod_{\lambda} \mathscr{S}_{n / 4}(\lambda) & =\prod_{2<d \left\lvert\, \frac{n}{2}\right.} \operatorname{res}\left(\Psi_{n}, \Psi_{d}\right) \\
& =\prod_{j=2}^{e-1} \operatorname{res}\left(\Psi_{n}, \Psi_{2^{j}}\right) \\
& =2^{2^{e-2}-1}
\end{aligned}
$$

If $n=\prod_{i=1}^{t} p_{i}^{e_{i}}, t \geq 2, e_{i} \geq 1$, then

$$
\begin{aligned}
& \prod_{\lambda} \prod_{d} \Psi_{4 d}(\lambda)=\prod_{d} \operatorname{res}\left(\Psi_{n}, \Psi_{4 d}\right)=\prod_{i=1}^{t} p_{i}^{\frac{\varphi(n)}{2\left(p_{i}-1\right)}} \\
& \prod_{\lambda} \mathscr{S}_{n / 4}(\lambda)=\prod_{2<d \left\lvert\, \frac{n}{2}\right.} \operatorname{res}\left(\Psi_{n}, \Psi_{d}\right) \\
& \\
& =\prod_{j=1}^{e} \operatorname{res}\left(\Psi_{n}, \Psi_{\frac{n}{2 j}}\right) \\
& \\
& =2^{\frac{\varphi(n)}{2}}
\end{aligned}
$$

4. The ring of integers of $\mathrm{Q}\left(\zeta_{n}+\right.$ $\left.\zeta_{n}^{-1}\right)$. We need the following lemma to prove Theorem 4.2. Let $\mathbf{F}_{p}=\mathbf{Z} / p \mathbf{Z}$.

Lemma 4.1 ([4, Hilfssatz 4]). Let θ be an algebraic integer, and $f(x)$ the minimal polynomial of θ over \mathbf{Q}. Let P be a maximal ideal of $\mathbf{Z}[\theta]$ and p the prime such that $p \mathbf{Z}=P \cap \mathbf{Z}$. Let $\mu(x)$ be a monic polynomial over \mathbf{Z} of least degree such that $\mu(\theta) \in P$. Then, there exist polynomials $g(x), h(x) \in \mathbf{Z}[x]$ such that $f=\mu h+$ pg. Suppose $\operatorname{gcd}(\mu, g, h)=1$ over \mathbf{F}_{p}. Then, the localization of $\mathbf{Z}[\theta]$ at P is a discrete valuation ring.

The main result of this note is the following
Theorem 4.2. Let $n \geq 3$. Then $\mathbf{Z}\left[\zeta_{n}+\zeta_{n}^{-1}\right]$ is a Dedekind domain. Therefore $\mathbf{Z}\left[\zeta_{n}+\zeta_{n}^{-1}\right]$ is the ring of algebraic integers in the field $\mathbf{Q}\left(\zeta_{n}+\zeta_{n}^{-1}\right)$.

Proof. We may assume $n \not \equiv 2(\bmod 4)$ since $\zeta_{n}=-\zeta_{n / 2}$ if $n \equiv 2(\bmod 4)$. Put $\theta=\zeta_{n}+\zeta_{n}^{-1}, R=$ $\mathbf{Z}[\theta]$. We shall prove that R is a Dedekind domain by showing that the localization R_{P} is a discrete valuation ring for each maximal ideal $P \subset R$. Let p be the prime such that $p \mathbf{Z}=P \cap \mathbf{Z}$.

First we consider the case where $p \nmid n$. By Proposition 3.1 we have $p \nmid \Delta\left(\Psi_{n}\right)$, so that $\Psi_{n}(x)$ is separable over \mathbf{F}_{p}. If we apply Lemma 4.1 to $f=\Psi_{n}$, then $\mu(x)$ and $h(x)$ have no common roots over the algebraic closure $\overline{\mathbf{F}_{p}}$, so R_{P} is a discrete valuation ring.

Suppose $p \mid n$ and write $n=p^{e} m, e \geq 1, p \nmid m$.

By Lemma 2.4, there exists $g(x) \in \mathbf{Z}[x]$ such that

$$
\begin{equation*}
\Psi_{n}(x)=\Psi_{m}(x)^{\varphi\left(p^{e}\right)}+p g(x) . \tag{4.1}
\end{equation*}
$$

Note that $\varphi\left(p^{e}\right)$ is even by our assumption $n \not \equiv$ $2(\bmod 4)$.

Lemma 4.3. $g(\theta)$ is a unit in R.
Proof. Suppose $m \geq 3$. By Theorem 2.6 we have

$$
\begin{aligned}
p^{\varphi(n)} & =p^{\varphi(m) \varphi\left(p^{e}\right)} \\
& =\operatorname{res}\left(\Psi_{n}, \Psi_{m}\right)^{2 \varphi\left(p^{e}\right)} \\
& =\prod_{\lambda}\left(\Psi_{m}(\lambda)^{\varphi\left(p^{e}\right)}\right)^{2}
\end{aligned}
$$

the product being taken over the roots λ of Ψ_{n}. Since $\Psi_{m}(\lambda)^{\varphi\left(p^{e}\right)}=-p g(\lambda)$ by (4.1), we have

$$
p^{\varphi(n)}=\left(p^{\frac{\varphi(n)}{2}} \prod_{\lambda} g(\lambda)\right)^{2}
$$

Hence $\prod_{\lambda} g(\lambda)= \pm 1$, from which we conclude that $g(\theta)$ is a unit in R.

Suppose $m=1$. By Lemma 2.5 we have

$$
\operatorname{res}\left(\Psi_{p^{e}}, \Psi_{1}^{2}\right)=\operatorname{res}\left(\Psi_{p^{e}}, x-2\right)= \pm \Psi_{p^{e}}(2)= \pm p
$$

so that

$$
p^{\varphi\left(p^{e}\right)}=\operatorname{res}\left(\Psi_{p^{e}}, \Psi_{1}^{2}\right)^{\varphi\left(p^{e}\right)}=\left(p^{\frac{\varphi\left(p^{e}\right)}{2}} \prod_{\lambda} g(x)\right)^{2}
$$

Hence the claim follows similarly.
We return to the proof of Theorem 4.2. One could proceed as in [4], but here we give a shorter proof which was suggested to us by the referee. In the notation of Lemma 4.1, we take f, μ, g such that
$f(x)=\Psi_{n}(x)$ and $g(x)$ is defined by (4.1). Since every root of $\mu(x) \bmod P$ coincides with $\theta \bmod P$ for some choice of primitive nth root of unity ζ_{n}, we see, by Lemma 4.3, that $\mu(x)$ and $g(x)$ have no common roots over $\overline{\mathbf{F}_{p}}$. Hence R_{P} is a discrete valuation ring by Lemma 4.1. This completes the proof.

Acknowledgment. The authors would like to thank an anonymous referee for pointing out the simplification of the proof of Theorem 4.2.

References

[1] S. Jeong, Resultants of cyclotomic polynomials over $\mathbf{F}_{q}[T]$ and applications, Commun. Korean Math. Soc. 28 (2013), no. 1, 25-38.
[2] D. H. Lehmer, An extended theory of Lucas' functions, Ann. of Math. (2) 31 (1930), no. 3, 419-448.
[3] J. J. Liang, On the integral basis of the maximal real subfield of a cyclotomic field, J. Reine Angew. Math. 286/287 (1976), 223-226.
[4] H. Lüneburg, Resultanten von Kreisteilungspolynomen, Arch. Math. (Basel) 42 (1984), no. 2, 139-144.
[5] L. C. Washington, Introduction to cyclotomic fields, 2nd ed., Graduate Texts in Mathematics, 83, Springer, New York, 1997.
[6] M. Yamagishi, A note on Chebyshev polynomials, cyclotomic polynomials and twin primes, J. Number Theory 133 (2013), no. 7, 2455-2463.
[7] M. Yamagishi, Periodic harmonic functions on lattices and Chebyshev polynomials, Linear Algebra Appl. 476 (2015), 1-15.
[8] M. Yamagishi, Resultants of Chebyshev polynomials: the first, second, third, and fourth kinds, Canad. Math. Bull. 58 (2015), no. 2, 423-431.

[^0]: 2010 Mathematics Subject Classification. Primary 11E09; Secondary 11R18.
 *) Field of Mathematics and Mathematical Science, Department of Computer Science and Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan.
 **) Department of Mathematics, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan.

