On the Iwasawa μ -invariants of branched Z_p -covers

By Jun UEKI

Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan

(Communicated by Shigefumi MORI, M.J.A., May 12, 2016)

Abstract: Following the analogies between knots and primes, we establish relative genus theory for a branched cover of rational homology 3-spheres. Then we formulate analogues of Iwasawa's theorems on μ -invariants for branched \mathbf{Z}_p -covers of rational homology 3-spheres, by using relative genus theory.

Key words: Link; rational homology 3-sphere; branched covering; relative genus theory; Iwasawa theory; arithmetic topology.

1. Introduction. In this article, following the analogies between knots and primes ([Mor12]), we establish relative genus theory for a branched cover of rational homology 3-spheres (QHS³). Then we formulate analogues of Iwasawa's theorems on μ -invariants ([Iwa73]) in 3-dimensional topology by using relative genus theory.

Genus theory for number fields was first studied for quadratic, abelian, and Galois extensions over **Q** by Hasse, Iyanaga–Tamagawa and Leopoldt, and Fröhlich. The case over a general number field k was formulated by Furuta in [Fur67] and is called relative genus theory. A role of the co-invariant group was also discussed in [Yok67]. Genus theory for 3-manifolds, on the other hand, was formulated in [Mor01] and [Mor12] for the cyclic case over an integral homology 3-sphere $(\mathbb{Z}HS^3)$, and was also discussed in [Uek14]. In this paper, we generalize these results and establish relative genus theory for a branched Galois cover of oriented, connected, and closed 3-manifolds. In addition, by employing Niibo's idèle ([Nii14], [NU]), we give an alternative proof which is parallel to the one for number fields.

Next, we recall Iwasawa theory. Let p be a prime number and let $\mathbf{Z}_p = \lim \mathbf{Z}/p^n \mathbf{Z}$ denote the ring of p-adic integers. A field k_{∞} obtained as a \mathbf{Z}_p -extension of a number field is called a \mathbf{Z}_p -field. Such k_{∞} is a limit of cyclic extensions k_n/k of degree p^n . As an analogue of \mathbf{Z}_p -extension, we consider an inverse system of cyclic branched p-covers h_n : $M_n \to M$ of \mathbf{Q} HS³ which are branched over a link L objects, the Iwasawa invariants λ, μ, ν are defined and studied ([Iwa59], [HMM06], [KM08], [KM13], [Uek]), and they describe the behaviors of the orders of *p*-parts of the ideal class groups $\operatorname{Cl}(k_n)$ and $H_1(M_n)$. Moreover, as an analogue of an extension of \mathbb{Z}_p -fields, the notion of a morphism (*branched Galois cover*) of branched \mathbb{Z}_p -covers was introduced in [Uek]. It is a compatible system of branched covers on each layer.

in M, and call it a branched \mathbf{Z}_p -cover. For these

In [Iwa73], Iwasawa studied the behavior of the μ -invariants in a *p*-extension of \mathbf{Z}_p -fields, by employing relative genus theory. He gave a construction of a \mathbf{Z}_p -extension with arbitrary large μ , and also proved that there are infinitely many \mathbf{Z}_p -fields with $\mu = 0$. We formulate their analogues.

Notation. For a group G and a G-module A, let A^G and $A_G = A/I_G A$ denote the G-invariant subgroup and the G-co-invariant quotient, where $I_G = (g-1 \mid g \in G) < \mathbb{Z}[G]$ is the augmentation ideal. If G is a finite cyclic group, then $\#A^G = \#A_G$ holds.

2. Relative genus theory for number fields. First, we recall the case for number fields. We assume that algebraic extensions of **Q** are contained in **C**, and number fields are finite over **Q**.

Definition 2.1. Let k'/k be an abelian extension of number fields. The *relative genus field* k'^{g} of k'/k is the maximal unramified extension of k' abelian over k. The degree $g_{k'/k} = (k'^{g} : k')$ is called the *relative genus number*.

In addition, for a Galois extension k'/k, we define the same notions by considering the maximal unramified extension k'^{g} of k' which is obtained as a composite of k' and an abelian extension of k instead.

²⁰¹⁰ Mathematics Subject Classification. Primary 57M12, 11R23.

Theorem 2.2 ([Fur67]). Let k'/k be a finite Galois extension of a number field, and let k'_0/k denote its maximal abelian subextension. Then,

$$g_{k'/k} = \frac{\#\mathrm{Cl}(k)\prod_{\mathfrak{p}} e'_{\mathfrak{p}}}{(k'_0:k)[\varepsilon:\eta]}$$

where \mathfrak{p} runs through all the primes of k, $e'_{\mathfrak{p}}$ denotes the ramification index of the maximal abelian subextension of $K_{\mathfrak{P}}/k_{\mathfrak{p}}$ for a prime \mathfrak{P} of K dividing $\mathfrak{p}, \varepsilon$ the unit group of k, and η the group of elements in ε everywhere locally norm.

Theorem 2.3 ([Yok67, Proposition 1]). Let k'/k be a cyclic extension of number fields with $G = \operatorname{Gal}(k'/k) = \langle \sigma \rangle$. Then $g_{k'/k} = \#\operatorname{Cl}(k')_G = \#(\operatorname{Cl}(k')/\operatorname{Cl}(k')^{1-\sigma}) = \#\operatorname{Cl}(k')^G$ holds.

By combining these two theorems, we can estimate the increase of class numbers in extensions.

3. Relative genus theory for rational homology 3-spheres. In this section, we formulate analogues of the two theorems in §2. They generalize the results of [Mor01] and [Mor12] originally for a branched cyclic cover over a $\mathbb{Z}HS^3$. We also give an alternative proof by employing Niibo's idèle.

In the following, we assume that 3-manifolds are oriented, connected, and closed, and that branched covers of 3-manifolds are branched over links and are equipped with base points. In order to discuss analogues of class numbers, we sometimes assume that 3-manifolds are $\mathbf{Q}\mathrm{HS}^3$'s. A 3-manifold M is a $\mathbf{Q}\mathrm{HS}^3$ if and only if $H_1(M) < \infty$.

Definition 3.1. For a finite branched abelian cover $h: N \to M$ of 3-manifolds, the *relative* genus cover of h is the maximal unbranched cover $N^{\text{g}} \to N$ abelian over M, and $g_h := \text{deg}(N^{\text{g}} \to N) \in$ $\mathbf{N} \cup \{\infty\}$ is called the *relative genus number*.

In addition, for a finite branched Galois cover $h: N \to M$, we define the same notions by considering the maximal unbranched cover $N^{\text{g}} \to N$ obtained as a composite (in the sense of Galois theory) of h and a branched abelian cover of M instead.

Now the first theorem is presented as follows:

Theorem 3.2. Let $h: N \to M$ be a finite branched Galois cover of 3-manifolds branched over $L = \sqcup K_i$, and let $h_0: N_0 \to M$ denote the maximal abelian subcover of h. Then the branch indices e_i of K_i in h satisfy

$$g_h = \frac{\#H_1(M)\prod_i e_i}{\deg(h_0)}.$$

Proof. Let $(N^{g})_{0} \to N_{0} \to M$ denote the maximal subcovers of $N^{g} \to N \to M$ abelian over M.

Then $g_h = \deg((N^g)_0 \to N_0)$. Indeed, let $Y^g \to Y \to X$ and $(Y^g)_0 \to Y_0 \to X$ denote their restrictions to the exteriors of the branch links, let $D(\pi_1(X))$ denote the commutator group of $\pi_1(X)$, and put $A := \operatorname{Ker}(\pi_1(Y) \to \pi_1(N))$. Then by definition, $\pi_1(Y^g) > A$ and $\pi_1(Y^g) = \pi_1(Y) \cap P$ for some $P > D(\pi_1(X))$. Thus $\pi_1(Y^g) = \pi_1(Y) \cap (D(\pi_1(X)) \to A)$, $\pi_1(Y_0) = \pi_1(Y) \cdot D(\pi_1(X))$, and $\pi_1((Y^g)_0) = \pi_1(Y) \cdot D(\pi_1(X))$. Hence $\pi_1(Y^g) = \pi_1((Y^g)_0) \cap \pi_1(Y)$, $\pi_1(Y_0) = \pi_1(Y) \cdot \pi_1((Y^g)_0)$ and $\operatorname{Gal}((N^g)_0 \to N_0) = \pi_1(Y_0)/\pi_1((Y^g)_0) \cong \pi_1(Y)/\pi_1(Y^g) = g_h$.

The set of meridians of $h^{-1}(L)$ generates B :=Ker $(H_1(Y) \twoheadrightarrow H_1(N))$. By the definition of the relative genus cover, the covers $(N^{\rm g})_0 \to N_0 \to M$ correspond to the subgroups $h_*(B) < h_*(H_1(Y)) <$ $H_1(X)$. Since $\operatorname{Gal}(h_0) \cong H_1(X)/h_*(H_1(Y))$, we have $\operatorname{Gal}(N^{\rm g}/N) \cong h_*(H_1(Y))/h_*(B)$ and $g_h =$ $\#(h_*(H_1(Y))/h_*(B)) = \#(H_1(X)/h_*(B))/\operatorname{deg}(h_0)$.

Now suppose that L is a t-component link, and let $\langle \mu_L \rangle < H_1(X)$ denote the meridian group. If M is not a QHS³, then the formula is clear by a surjection $H_1(X)/h_*(B) \rightarrow H_1(M)$. If M is a QHS³, then the Mayer–Vietoris long exact sequence yields the exact sequence $0 \rightarrow \langle \mu_L \rangle \rightarrow H_1(X) \rightarrow H_1(M) \rightarrow$ 0. Let V_{K_i} denote the tubular neighborhood of K_i . Then $\pi_1(\partial V_{K_i}) \cong \mathbf{Z}^2$ is abelian, and so is the decomposition group. Since $\prod_i e_i \mathbf{Z} \cong h_*(B) < \langle \mu_L \rangle \cong \mathbf{Z}^t$, we have an exact sequence $0 \rightarrow \langle \mu_L \rangle/h_*(B) \rightarrow$ $H_1(X)/h_*(B) \rightarrow H_1(M) \rightarrow 0$ with $\langle \mu_L \rangle/h_*(B) \cong$ $\prod_i \mathbf{Z}/e_i\mathbf{Z}$. Hence $g_h \deg(h_0) = \#(H_1(X)/h_*(B)) =$ $\#H_1(M) \prod_i e_i$, and the assertion holds.

Corollary 3.3. Let $h: N \to M$ be a finite branched Galois cover of 3-manifolds. Then M is a $\mathbf{Q}HS^3$ if and only if g_h is finite.

Proof. If M is not a QHS³, then $\#H_1(M) = \infty$ and so is g_h . If M is a QHS³, then by Theorem 3.2, $g_h < \infty$ (while N is not necessarily a QHS³).

Corollary-Definition 3.4. Let $h: N \to M$ be a finite branched Galois cover of 3-manifolds. If the branch link L consists of null-homologous components, then there are a natural splitting $H_1(X) \cong$ $H_1(M) \oplus \langle \mu_L \rangle$ ([Uek, Lemma 4.4]) and a well-defined homomorphism $\Phi: H_1(N) \to H_1(X)/h_*(B) \stackrel{\cong}{\to}$ $H_1(M) \oplus \prod_i \mathbf{Z}/e_i\mathbf{Z}$ with $\Phi([c]) = ([h(c)], (lk(c, K_i))$ mod $e_i)_i)$ for any $c \in \text{Hom}(S^1, N)$. We say that $a, b \in H_1(N)$ belong to the same genus over M if $\Phi(a) = \Phi(b)$. This generalizes the notion of genus over S^3 ([Mor12, Chapter 6.2]).

Remark. Let $h: N \to M$ be a finite

branched Galois cover of $\mathbf{Q}\mathrm{HS}^3$. Then, since $N^{\mathrm{g}} \rightarrow N$ is unbranched and abelian, $g_h | \# H_1(N)$ holds. This fact will be used in the study of Iwasawa invariants in §5.

Remark. Let $h: N \to M$ be a finite cyclic branched cover of QHS³ with G = Gal(h), and fix finite CW-structures on them compatible with h. Then [Uek14, Proposition 16] states that $g_h =$ $\#H_1(N)^G = \gamma(\prod_i e_i) \#H_1(M), \ \gamma = \#\hat{H}^0(G, Z_2(N))/$ $\#\hat{H}^1(G, Z_2(N))$. By the theorem above, we obtain $\gamma = 1/\text{deg}(h)$.

Next, we study the relation between the coinvariant group and the relative genus number.

For the trivial action of a group G on \mathbf{Z} , we write $H_i(G) := H_i(G, \mathbf{Z})$. We have $H_1(G) = G^{ab}$. If G is finite, then $H_2(G)$ is finite, and if G is cyclic in addition, then $H_2(G) = 0$. Further, for a path-connected space X, we have $H_2(\pi_1(X)) =$ $\operatorname{Coker}(\pi_2(X) \xrightarrow{\operatorname{Hur}} H_2(X))$ (Hopf's theorem, [Bro94]). Now we have

Theorem 3.5. Let $h: N \to M$ be a finite branched Galois cover over a $\mathbf{Q}HS^3$ with $G = \operatorname{Gal}(h)$, and put $b := (h_{0*}(B_0) : h_*(B))$ with the notation of Theorem 3.2. Then $g_h = \#(H_1(N)_G/\delta(H_2(G)))/b$ for some map $\overline{\delta}$ with $1 \le b \le \operatorname{deg}(N \to N_0)$.

If h is abelian, then b = 1. If $G = \langle \sigma \rangle$, then $g_h = \#H_1(N)_G = \#H_1(N)/(1-\sigma)H_1(N) = \#H_1(N)^G$.

Proof. By the Hochschild-Serre spectral sequence ([Bro94, VII-6]), the short exact sequence $1 \to \pi_1(Y) \to \pi_1(X) \to G \to 1$ yields an exact sequence $H_2(\pi_1(X)) \to H_2(G) \xrightarrow{\delta} H_1(\pi_1(Y))_G \to H_1(\pi_1(X)) \to H_1(G) \to 0$. By the Hurewicz isomorphism $\pi_1(X)^{ab} \cong H_1(X)$, we have an exact sequence $H_2(G) \to H_1(Y)_G \xrightarrow{h_*} H_1(X) \to G^{ab} \to 0$. Since $h_*(I_GH_1(Y))_E = 0$, we have an exact sequence $H_2(G) \to H_1(Y)_G \xrightarrow{h_*} h_*(H_1(Y)) \to 0$.

Since $h_*(I_GB) = 0$, there is an induced surjection $h_*: B_G \twoheadrightarrow h_*(B)$. Since $()_G = H_0()$, an exact sequence $0 \to B \to H_1(Y) \to H_1(N) \to 0$ yields an exact sequence $\dots \to B_G \to H_1(Y)_G \to H_1(N)_G \to 0$. Thus we have a commutative diagram

$$H_{2}(G)$$

$$\downarrow$$

$$B_{G} \longrightarrow H_{1}(Y)_{G} \longrightarrow H_{1}(N)_{G} \longrightarrow 0$$

$$\downarrow$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$0 \longrightarrow h_{*}(B) \longrightarrow h_{*}(H_{1}(Y)) \longrightarrow h_{*}(H_{1}(Y))/h_{*}(B) \longrightarrow 0$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$0 \qquad 0 \qquad 0$$

consisting of exact sequences. Let $\bar{\delta}: H_2(G) \to H_1(N)_G$ denote the natural map. Then by the

snake lemma, we have $\delta(H_2(G)) = \text{Ker}(H_1(N)_G \rightarrow h_*(H_1(Y))/h_*(B))$. Hence by Theorem 3.2, we have $\#H_1(N)_G/\bar{\delta}(H_2(G)) = \#h_*(H_1(Y))/h_*(B) = g_h b$.

Now $h': N \to N_0$ satisfies $h'_*(B) < \operatorname{Ker}(B_0 \hookrightarrow H_1(Y_0) \twoheadrightarrow H_1(Y_0)/h'_*(H_1(Y)))$, and hence $b \leq \#B_0/h'_*(B) \leq \#H_1(Y_0)/h'_*(H_1(Y)) \leq \operatorname{deg}(h')$. \Box

Finally, we give an alternative proof of Theorem 3.2, which is rather parallel to the one in [Fur67], by employing Niibo's idèle. This idèle theory was initially introduced by Niibo in [Nii14], and was modified and generalized in [NU]. We first recall definitions and results in [NU]. Let M be a 3manifold, and let $\mathcal{K} \subset M$ be an infinite link equipped with a tubular neighborhood $V_{\mathcal{K}} = \sqcup_{K \subset \mathcal{K}} V_K$. Let $\mathcal{A}_{M,\mathcal{K}}$ denote the set of all the abelian covers of M branched over a finite sublink of \mathcal{K} . We call \mathcal{K} a very admissible link of M if for any $h: N \to M$ $M \in \mathcal{A}_{M,\mathcal{K}}, H_1(N)$ is generated by components of the preimage $h^{-1}(\mathcal{K})$. For any link L consisting of countably many tame components in a 3-manifold M, there exists such a \mathcal{K} including L ([NU, Theorem 2.3]). Let (M, \mathcal{K}) be such a pair. Then the *idèle* group $I_M = \prod_{K \subset \mathcal{K}} H_1(\partial V_K)$ is defined as the restricted product with respect to the meridian subgroups $\langle \mu_K \rangle < H_1(\partial V_K)$. In other words, we put $I_M := \{(a_K) \in \prod_{K \in \mathcal{K}} H_1(\partial V_K) \mid v_K(a_K) = 0 \text{ for } \}$ almost all K}, where $v_K : H_1(\partial V_K) \to H_1(V_K)$ is a natural map. The principle idèle group is defined by $\mathcal{P}_M = \lim_{\substack{\longrightarrow \\ L \subset \mathcal{K}}} H_2(M, L)$ where L runs through all the finite sublinks of \mathcal{K} . The unit idèle group $U_M <$ I_M is the subgroup consisting of formal infinite sums of meridians $\sum_{K \subset \mathcal{K}} a_K \mu_K(a_K \in \mathbf{Z})$. By [NU, Lemma 5.7], we have $I_M/(P_M + U_M) \cong H_1(M)$. By [NU, Theorem 7.4] (the existence theorem), there is a natural bijective correspondence between certain subgroups $P_M < H < I_M$ and h's. For each $h: N \rightarrow$ $M \in \mathcal{A}_{M,\mathcal{K}}$ and a very admissible link $h^{-1}(\mathcal{K})$ of N, we define I_N, P_N, U_N . By [NU, Theorem 5.5] (the global reciprocity law), there is a natural isomorphism $I_M/(P_M + h_*(I_N)) \cong \operatorname{Gal}(h)$.

An alternative proof of Theorem 3.2. We fix a very admissible link \mathcal{K} of M containing $L = \sqcup_i K_i$. Since $H^* := P_M + h_*(P_N + U_N) < I_M$ corresponds to $(N^g)_0 \to M$, we have $\deg(h_0)g_h = [I_M : H^*] =$ $[I_M : P_M + U_M] \cdot [P_M + U_M : P_M + h_*(P_N + U_N)] =$ $\#H_1(M) \cdot [P_M + U_M : P_M + h_*(U_N)] = \#H_1(M)[U_M :$ $h_*(U_N)]/[P_M \cap U_M : P_M \cap h_*(U_N)]$. If M is not a **Q**HS³, then the formula is clear. If M is a **Q**HS³, then exact sequences $0 \to \langle \mu_{L'} \rangle \to H_1(M - L') \to$ $H_1(M) \to 0$ for $L' \subset \mathcal{K}$ yield a natural injection $U_M \hookrightarrow \lim_{\leftarrow h \in \mathcal{A}_{M,\mathcal{K}}} \operatorname{Gal}(h)$. Therefore $P_M \cap U_M = 0$ and the denominator is 1. Since $U_M/h_*(U_N) \cong$ $\prod \mathbf{Z}/e_i \mathbf{Z}$, we have $\operatorname{deg}(h_0)g_h = \#H_1(M)\prod_i e_i$. \Box

4. Iwasawa μ -invariants of \mathbb{Z}_p -fields. Let p be a prime number. In this section, we recall the theorems on the μ -invariants in p-extensions of \mathbb{Z}_p -fields given by Iwasawa in [Iwa73] with use of relative genus theory. We also refer to [Och14] for the details.

Let v_p denote the *p*-adic valuation. Let k_{∞}/k be a \mathbf{Z}_p -extension of a number field, and let k_n/k denote the subextension of degree p^n for each *n*. Then we have the Iwasawa class number formula ([Iwa59]):

$$v_p(\#\operatorname{Cl}(k_n)) = \lambda n + \mu p^n + \nu \quad \text{for } n \gg 0,$$

for some constants $\lambda = \lambda_{k_{\infty}/k}$, $\mu = \mu_{k_{\infty}/k} \in \mathbf{N} = \mathbf{N} \cup \{0\}$, $\nu = \nu_{k_{\infty}/k} \in \mathbf{Z}$ called the Iwasawa invariants. The value of λ and whether $\mu = 0$ or not depend only on k_{∞} , and are independent of the choice of k.

There is a unique \mathbf{Z}_p -extension \mathbf{Q}_{∞} of \mathbf{Q} . For a number field k, the composite $k_{\infty}^c = k\mathbf{Q}_{\infty}$ is called a *cyclotomic* \mathbf{Z}_p -field. In a cyclotomic \mathbf{Z}_p -extension k_{∞}^c/k , every non-p prime decomposes finitely. On the other hand, a number field k is called a *CM*-field if it is a totally imaginary quadratic extension of a totally real field k^+ . Such k has a \mathbf{Z}_p -extension K/kwhich is a limit of dihedral extensions of k^+ , and every prime is inert in k/k^+ decomposes completely in K/k ([Iwa73]). (If p > 2, then a CM-field k has the anti-cyclotomic $\mathbf{Z}_p^{[k;\mathbf{Q}]/2}$ -extension k_{∞}^{∞}/k , whose any sub- \mathbf{Z}_p -extension K/k is dihedral over k^+ .)

Iwasawa conjectured that $\mu = 0$ holds for every cyclotomic \mathbf{Z}_p -extension k_{∞}^c/k , and it is true by Ferrero-Washington [FW79] if k is abelian over \mathbf{Q} . If $\mu = 0$, then the nature of a \mathbf{Z}_p -field "resembles" that of a function field. For general cases, however, there exist \mathbf{Z}_p -extensions with arbitrary large μ :

Theorem 4.1 ([Iwa73, §1]). Let k/\mathbf{Q} be an extension of degree d containing primitive p-th roots of unity, and let k_{∞}/k be a \mathbf{Z}_p -extension. Suppose that there exist primes p_1, \ldots, p_t in k which are completely decomposed in k_{∞}/k , and let $k' = k(\sqrt[p]{p_1 \ldots p_t})$ and $k'_{\infty} = k'k_{\infty}$. Then, $\mu_{k'_{\infty}/k'} \ge t - d$ holds.

Let k be the 4-th or p > 2-th cyclotomic field. Then k is a CM-field, and there is a \mathbb{Z}_p -extension K/k dihedral over k^+ . Since there are infinitely many primes inert in k/k^+ , there are infinitely many primes completely decomposed in K/k. Therefore by the previous theorem, we obtain the following

Theorem 4.2 ([Iwa73, Theorem 1]). Let k be the cyclotomic field of p-th or 4-th roots of unity according as p > 2 or p = 2. Then, for any $N \in \mathbf{N}$, there exist an extension k'/k of degree p and a \mathbf{Z}_p -extension k'_{∞}/k' such that $\mu_{k'_{\infty}/k'} \ge N$.

On the other hand, the following tells that there are many \mathbf{Z}_{p} -fields with $\mu = 0$.

Theorem 4.3 ([Iwa73, Theorem 2]). Let k be a number field (totally imaginary if p = 2), k_{∞}/k a \mathbb{Z}_p -extension, k'/k a finite Galois p-extension, and put $k'_{\infty} = k_{\infty}k'$. Suppose that every prime of k which is ramified in k'/k is finitely decomposed in k_{∞}/k . Then $\mu_{k_{\infty}/k} = 0$ if and only if $\mu_{k'_{\infty}/k'} = 0$.

5. Iwasawa μ -invariants of branched \mathbb{Z}_p -covers. In this section, we formulate analogues of Iwasawa's results recalled in the previous section.

Let $L \subset M$ be a link in \mathbf{QHS}^3 . We call an inverse system of *L*-branched $\mathbf{Z}/p^n\mathbf{Z}$ -covers $\widetilde{M} = \{h_n : M_n \to M\}_n$ a branched \mathbf{Z}_p -cover, and regard it as an analogue of a \mathbf{Z}_p -field. Put X := M - L. Then a surjective homomorphism from the pro-*p* completion of the fundamental group $\tau : \widehat{\pi}_1(X) \to \mathbf{Z}_p$ corresponds to such \widetilde{M} . Assume that M_n is a \mathbf{QHS}^3 for any *n*. Then we have an Iwasawa type formula ([HMM06], [KM08], [Uek]):

$$v_p(H_1(M_n)) = \lambda n + \mu p^n + \nu \quad \text{for } n \gg 0,$$

for some $\lambda = \lambda_{\widetilde{M}}, \ \mu = \mu_{\widetilde{M}} \in \mathbf{N}, \ \nu = \nu_{\widetilde{M}} \in \mathbf{Z}$. These constants are called the Iwasawa invariants.

Next, we review an analogous object of an extension of \mathbb{Z}_p -fields introduced in [Uek]. Let $\widetilde{M} = \{h_n : M_n \to M\}_n$ be an *L*-branched \mathbb{Z}_p -cover and $\widetilde{M}' = \{h'_n : M'_n \to M'\}_n$ an *L'*-branched \mathbb{Z}_p -cover. Then a branched Galois cover $f : \widetilde{M}' \to \widetilde{M}$ of degree r is a compatible system of branched Galois covers $\{f_n : M'_n \to M_n\}_n$ of degree r such that each induced map $\operatorname{Gal}(f_{n+1}) \to \operatorname{Gal}(f_n)$ is an isomorphism. If L and L' are properly branched in \widetilde{M} and \widetilde{M}' , then $L' = f_0^{-1}(L)$. We can easily see that the branch links S_n of f_n satisify $S_n \subset h_n^{-1}(S_0)$. We put $S' := f_0^{-1}(S)$, $Y := M - L \cup S$, and $Y' := M' - L' \cup S'$. Then, there is a commutative diagram

$$\widehat{\pi_1}(Y') \xrightarrow{\tau} \mathbf{Z}_p$$

$$f_{0*} \bigvee \bigcup_{\iota \neq 1} \iota_{\iota} \downarrow \cong$$

$$\widehat{\pi_1}(Y) \xrightarrow{\tau'} \mathbf{Z}_p$$

for the defining homomorphisms τ, τ' of $\widetilde{M}, \widetilde{M'}$. Conversely, if $f_0: M' \to M$ and such a diagram are given, then $\widetilde{M'} \to \widetilde{M}$ is defined.

Let M be a $\mathbf{Q}\mathrm{HS}^3$, let $L = \sqcup K_i$ be a link which consists of null-homologous components in M, and let μ_i denote the meridian of K_i for each i. Then, the branched \mathbf{Z}_p -cover \widetilde{M} defined by $\tau : \pi_1(M-L) \to$ $\mathbf{Z}; \forall \mu_i \mapsto 1$ is called the total linking number (or TLN for short) \mathbf{Z}_p -cover over (M, L).

Let Σ be a Seifert surface of L, that is, a compact orientable surface Σ satisfying $\partial \Sigma = L$. Then $M - \Sigma$ gives a fundamental domain of each $\mathbf{Z}/p^n\mathbf{Z}$ -cover. Let $K \subset M - L$ be a knot, and assume that K and Σ intersect transversally (perturb Σ if necessary). Then the intersection number ι satisfies $lk(K, L) = \iota(K, \Sigma)$. By a standard argument similar to [Mor12, Chapter 4.1], the natural map $H_1(X) \to \text{Gal}(h_n) = \langle \sigma \mid \sigma^{p^n} \rangle$ sends [K] to $\sigma^{v_p(lk(K,L))}$. Therefore, if $lk(K,L) \neq 0$ and $n \geq$ $v_p(lk(K,L))$, then each component of $h_n^{-1}(K)$ consists of $p^{n-v_p(lk(K,L))}$ copies of K, and $h_n^{-1}(K)$ is a $p^{v_p(lk(K,L))}$ -component link. Otherwise, $h_n^{-1}(K)$ is a p^n -component link. In particular, we have the following

Proposition 5.1. Let $\tilde{M} = \{h_n : M_n \to M\}_n$ be the TLN- \mathbb{Z}_p -cover over (M, L), and $K \subset M - L$ a knot. Then, $lk(K, L) \neq 0$ holds if and only if K is finitely decomposed into $p^{v_p(lk(K,L))}$ components in h_n for all $n \gg 0$, and lk(K, L) = 0 holds if and only if K is completely decomposed in all h_n .

If S is finitely decomposed in M, then $f: M' \to \widetilde{M}$ resembles a p-extension of cyclotomic \mathbb{Z}_{p} -field. If S is completely decomposed in \widetilde{M} , then $f: \widetilde{M'} \to \widetilde{M}$ resembles the case of anti-cyclotomic.

Now we present our main theorems.

Theorem 5.2 (arbitrary large μ). Let $f: \widetilde{M'} \to \widetilde{M}$ be a branched Galois cover of degree p of \mathbb{Z}_p -covers of $\mathbb{Q}HS^3$. Suppose that the branch link S of $f_0: M' \to M$ is a t-component link, and that S is completely decomposed in \widetilde{M} . Then, $\mu_{\widetilde{M'}} \geq t$ holds.

Proof. Since $f_n: M'_n \to M_n$ is of degree pand the branch link S_n of f_n is a tp^n -component link $h_n^{-1}(S)$, by Theorem 3.2, we have $\#H_1(M'_n)_G =$ $\#H_1(M_n)p^{tp^n-1}$. Then, $\#H_1(M'_n)_G | \#H_1(M'_n)$ implies $v_p(\#H_1(M'_n)) \ge v_p(\#H_1(M_n)) + tp^n - 1$, and hence $\mu_{\widetilde{M'}} \ge t$.

Theorem 5.3 (many $\mu = 0$). Let $f: \widetilde{M'} \to \widetilde{M}$ be a branched Galois p-cover of branched \mathbf{Z}_p -covers of $\mathbf{Q}HS^3$, and suppose that any knot branched in $f_0: M' \to M$ is finitely decomposed in

 \widetilde{M} . Then $\mu_{\widetilde{M}} = 0$ if and only if $\mu_{\widetilde{M'}} = 0$.

Proof. Since any finite p-group has a nontrivial center, we can reduce the argument to the case of degree p.

For a finite abelian *p*-group *A*, we put rank $A := \dim A \otimes \mathbf{F}_p$. If B < A, then rank *B*, rank $A/B \le \operatorname{rank} A \le \operatorname{rank} B + \operatorname{rank} A/B$. If a group $G = \langle \sigma \rangle \cong \mathbf{Z}/p\mathbf{Z}$ acts on *A*, then $(1 - \sigma)^p$ acts on $A \otimes \mathbf{F}_p$ as zero, and rank $A \le \sum_{i=0}^{p-1} \operatorname{rank} A^{(1-\sigma)^i}/A^{(1-\sigma)^{i+1}} \le p \operatorname{rank} A/A^{1-\sigma}$ holds.

Now let $f_0: M' \to M$ be a branched cover of degree p with $\operatorname{Gal}(f_0) = \langle \sigma \rangle$. Let A and A' denote the *p*-parts of $H_1(M)$ and $H_1(M')$ respectively, and put $r = r_0 := \operatorname{rank} A$ and $r' = r'_0 := \operatorname{rank} A'$. Let s = s_0 denote the number of components of the branch link S of f_0 . Then genus theory yields $r-1 \leq$ $r' \leq p(r+s)$. Indeed, let $M_{\rm ab} \to M$ and $M'_{\rm ab} \to M'$ denote the maximal unbranched abelian p-covers. Then, the relative genus cover $M^{\prime g} \rightarrow M$ of f_0 : $M' \to M$ factors through $M_{\rm ab} \to M$ by definition. Put $r_{g} := \operatorname{rank} \operatorname{Gal}(M^{\prime g}/M^{\prime})$. Then by Theorem 3.5, $\operatorname{Gal}(M^{\prime g}/M^{\prime}) \cong A^{\prime}/A^{\prime 1-\sigma}$ holds, and hence $r^{\prime} \leq pr_{g}$. For each *i*, let $T_i < \text{Gal}(M'_{ab}/M)$ denote the inertia group of K_i in $M'^{g} \to M$. Then, since $M'^{g} \to M'$ is unbranched, we have $T_i \cong \mathbf{Z}/p\mathbf{Z}$, and $\operatorname{Gal}(M'^{\mathrm{g}}/p\mathbf{Z})$ $M_{\rm ab}) = T_1 \cdots T_s.$ Therefore $r_{\rm g} \leq \operatorname{rank} \operatorname{Gal}(M^{\prime g}/M)$ $M \leq r + \operatorname{rank} \operatorname{Gal}(M^{\prime g}/M_{ab}) \leq r + s$. On the other hand, we have $r < \operatorname{rank} \operatorname{Gal}(M^{\prime g}/M) < 1 +$ $\operatorname{rank}\operatorname{Gal}(M^{\prime \mathrm{g}}/M^{\prime}) \leq 1 + r^{\prime}.$

Similarly, for each $f_n: M'_n \to M_n$, let r_n and r'_n denote the *p*-ranks of $H_1(M_n)$ and $H_1(M'_n)$ respectively, and let s_n denote the number of component of the branch link S_n of f_n . By a similar argument, $r_n - 1 \le r'_n \le p(r_n + s_n)$ holds. Since $S_n \subset h_n^{-1}(S)$ and S is finitely decomposed in \widetilde{M} , $\{s_n\}_n$ is bounded. By Sakuma's exact sequence ([Uek, Proposition 4.11]), there is a finitely generated torsion $\Lambda = \mathbf{Z}_p[[T]]$ -module $\mathcal{H}_{\widetilde{M}}$ with $H_1(M_n, \mathbf{Z}_p)/$ $h_n^!(H_1(M, \mathbf{Z}_p)) \cong \mathcal{H}_{\widetilde{M}}/\nu_{p^n}\mathcal{H}_{\widetilde{M}}$ for any n, where $\nu_{p^n} = ((1+T)^{p^n} - 1)/T$. By the structure theorem of finitely generated Λ -modules ([Uek, Lemma 3.1 (4)]), $\mu_{\widetilde{M}} = 0$ (resp. $\mu_{\widetilde{M}'} = 0$) is equivalent to that $\{r_n\}_n$ (resp. $\{r'_n\}_n$) is bounded. Thus the assertion holds. \square

Example 5.4. Let L and S be distinct unknots in $M = S^3$ and let $f_0: M' \to M$ be the S-branched cover of degree p. Let \widetilde{M} and $\widetilde{M'}$ denote the TLN- \mathbb{Z}_p -covers over (M, L) and (M', L') for $L' = f_0^{-1}(L)$ respectively. Then a branched Galois cover $f: \widetilde{M'} \to \widetilde{M}$ is defined and $\mu_{\widetilde{M}} = 0$ holds. If $\widetilde{M'}$ consists of **Q**HS³'s and if lk(L, S) = p, then $\mu_{\widetilde{M'}} = 0$ by Theorem 5.3. If p = 2, then L' is the Hopf link. If p = 3, then L' is the Borromean ring.

If $\operatorname{lk}(L,S) = 0$, then L' is a split link, its Alexander polynomial is zero, $\widetilde{M'}$ does not consist of $\operatorname{\mathbf{QHS}}^{3}$'s, and $\mu_{\widetilde{M'}}$ is not defined. Instead, let $L = K_1 \cup K_2$ be a Hopf link, let $L \cup S$ be 6_3^3 in Rolfsen's table ([Rol76]) and fix orientations so that $\operatorname{lk}(K_1,S) = 1$ and $\operatorname{lk}(K_2,S) = -1$. Then $\mu_{\widetilde{M}} = 0$ and $\operatorname{lk}(L,S) = 0$. If p = 2, then $\mu_{\widetilde{M'}}$ is defined, and $\mu_{\widetilde{M'}} \geq 1$ by Theorem 5.2. Indeed, $L' = K'_1 \cup K'_2$ is 4_1^2 in Rolfsen's table and $\mu_{\widetilde{M'}} = 1$ holds.

Theorems 5.2 and 5.3 give branched \mathbf{Z}_p -covers \widetilde{M}' which are candidates for $\mu = 0$ and $\mu \geq t$. We can check whether \widetilde{M}' consists of \mathbf{QHS}^{3} 's or not by using the Alexander polynomials. We note that various constructions of \widetilde{M} with given λ, μ, ν are studied in [KM08] and [KM13].

Remark. A \mathbf{Z}_p -field with $\mu = 0$ resembles a function field. Especially, as an analogue of the Riemann–Hurwitz formula for a cover of Riemann surfaces, Kida's formula for a *p*-extension of \mathbf{Z}_p -fields with $\mu = 0$ is known. In [Uek], following Iwasawa's second proof in [Iwa81], their analogue in the topological context was formulated. It describes the balance of Iwasawa λ -invariants, covering degree, and branching indices. We employed representation theory of finite groups, and Tate cohomology of 2-cycles $\widehat{H}^i(G, \mathbb{Z}_2(\widetilde{N}))$. Meanwhile, Kida's formula for \mathbf{Z}_p -fields extension was first proved with use of genus theory ([Kid80]). We expect an alternative proof for our formula by following Kida's proof.

Acknowledgments. The author is very grateful to Masanori Morishita for encouragement and advice, Tsuyoshi Ito for suggesting that he consider an analogue of [Iwa73], Takahiro Kitajima, Tomoki Mihara, Yasushi Mizusawa, Hirofumi Niibo, and the anonymous referee for helpful comments and enlightening discussions, and Yuki Imoto for checking his English. The author is partially supported by Grant-in-Aid for JSPS Fellows (25-2241).

References

[Bro94] K. S. Brown, Cohomology of groups, corrected reprint of the 1982 original, Graduate Texts in Mathematics, 87, Springer, New York, 1994.

- [Fur67] Y. Furuta, The genus field and genus number in algebraic number fields, Nagoya Math. J. 29 (1967), 281–285.
- [FW79] B. Ferrero and L. C. Washington, The Iwasawa invariant μ_p vanishes for abelian number fields, Ann. of Math. (2) **109** (1979), no. 2, 377–395.
- [HMM06] J. Hillman, D. Matei and M. Morishita, Pro-p link groups and p-homology groups, in Primes and knots, Contemp. Math., 416, Amer. Math. Soc., Providence, RI, 2006, pp. 121–136.
- [Iwa59] K. Iwasawa, On Γ-extensions of algebraic number fields, Bull. Amer. Math. Soc. 65 (1959), 183–226.
- [Iwa73] K. Iwasawa, On the μ-invariants of Z_ℓ-extensions, in Number theory, algebraic geometry and commutative algebra, in honor of Yasuo Akizuki, Kinokuniya, Tokyo, 1973, pp. 1–11.
- Iwa81] K. Iwasawa, Riemann-Hurwitz formula and p-adic Galois representations for number fields, Tôhoku Math. J. (2) 33 (1981), no. 2, 263–288.
- [Kid80] Y. Kida, *l*-extensions of CM-fields and cyclotomic invariants, J. Number Theory **12** (1980), no. 4, 519–528.
- [KM08] T. Kadokami and Y. Mizusawa, Iwasawa type formula for covers of a link in a rational homology sphere, J. Knot Theory Ramifications **17** (2008), no. 10, 1199– 1221.
- [KM13] T. Kadokami and Y. Mizusawa, On the Iwasawa invariants of a link in the 3sphere, Kyushu J. Math. **67** (2013), no. 1, 215–226.
- [Mor01] M. Morishita, A theory of genera for cyclic coverings of links, Proc. Japan Acad. Ser. A Math. Sci. **77** (2001), no. 7, 115–118.
- [Mor12] M. Morishita, *Knots and primes*, Universitext, Springer, London, 2012.
- [Nii14] H. Niibo, Idèlic class field theory for 3manifolds, Kyushu J. Math. **68** (2014), no. 2, 421–436.
- [NU] H. Niibo and J. Ueki, Idèlic class field theory for 3-manifolds and very admissible links, arXiv:1501.03890.
- [Och14] T. Ochiai, *Iwasawa theory and its perspective I*, Iwanami Studies in Advanced Mathematics, Iwanami Shoten, Tokyo, 2014.
- [Rol76] D. Rolfsen, *Knots and links*, Publish or Perish, Berkeley, CA, 1976.
- Uek] J. Ueki, On the Iwasawa invariants for links and Kida's formula, arXiv:1605.09036.
- [Uek14] J. Ueki, On the homology of branched coverings of 3-manifolds, Nagoya Math. J. **213** (2014), 21–39.
- [Yok67] H. Yokoi, On the class number of a relatively cyclic number field, Nagoya Math. J. **29** (1967), 31–44.