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Abstract: Following the analogies between knots and primes, we establish relative genus

theory for a branched cover of rational homology 3-spheres. Then we formulate analogues of

Iwasawa’s theorems on �-invariants for branched Zp-covers of rational homology 3-spheres, by

using relative genus theory.
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1. Introduction. In this article, following

the analogies between knots and primes ([Mor12]),

we establish relative genus theory for a branched

cover of rational homology 3-spheres (QHS3). Then

we formulate analogues of Iwasawa’s theorems on

�-invariants ([Iwa73]) in 3-dimensional topology by

using relative genus theory.

Genus theory for number fields was first

studied for quadratic, abelian, and Galois exten-

sions over Q by Hasse, Iyanaga–Tamagawa and

Leopoldt, and Fröhlich. The case over a general

number field k was formulated by Furuta in [Fur67]

and is called relative genus theory. A role of the

co-invariant group was also discussed in [Yok67].

Genus theory for 3-manifolds, on the other hand,

was formulated in [Mor01] and [Mor12] for the

cyclic case over an integral homology 3-sphere

(ZHS3), and was also discussed in [Uek14]. In this

paper, we generalize these results and establish

relative genus theory for a branched Galois cover

of oriented, connected, and closed 3-manifolds. In

addition, by employing Niibo’s idèle ([Nii14],

[NU]), we give an alternative proof which is parallel

to the one for number fields.

Next, we recall Iwasawa theory. Let p be a

prime number and let Zp ¼ lim � Z=pnZ denote the

ring of p-adic integers. A field k1 obtained as a

Zp-extension of a number field is called a Zp-field.

Such k1 is a limit of cyclic extensions kn=k of degree

pn. As an analogue of Zp-extension, we consider an

inverse system of cyclic branched p-covers hn :
Mn !M of QHS3 which are branched over a link L

in M, and call it a branched Zp-cover. For these

objects, the Iwasawa invariants �; �; � are defined

and studied ([Iwa59], [HMM06], [KM08], [KM13],

[Uek]), and they describe the behaviors of the orders

of p-parts of the ideal class groups ClðknÞ and

H1ðMnÞ. Moreover, as an analogue of an extension

of Zp-fields, the notion of a morphism (branched

Galois cover) of branched Zp-covers was introduced

in [Uek]. It is a compatible system of branched

covers on each layer.

In [Iwa73], Iwasawa studied the behavior of the

�-invariants in a p-extension of Zp-fields, by em-

ploying relative genus theory. He gave a construc-

tion of a Zp-extension with arbitrary large �, and

also proved that there are infinitely many Zp-fields

with � ¼ 0. We formulate their analogues.

Notation. For a group G and a G-module A,

letAG andAG ¼ A=IGA denote theG-invariant sub-

group and the G-co-invariant quotient, where IG ¼
ðg� 1 j g 2 GÞ < Z½G� is the augmentation ideal. If

G is a finite cyclic group, then #AG ¼ #AG holds.

2. Relative genus theory for number

fields. First, we recall the case for number fields.

We assume that algebraic extensions of Q are

contained in C, and number fields are finite over Q.

Definition 2.1. Let k0=k be an abelian ex-

tension of number fields. The relative genus field k0g

of k0=k is the maximal unramified extension of k0

abelian over k. The degree gk0=k ¼ ðk0g : k0Þ is called

the relative genus number.

In addition, for a Galois extension k0=k, we

define the same notions by considering the maximal

unramified extension k0g of k0 which is obtained as a

composite of k0 and an abelian extension of k

instead.
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Theorem 2.2 ([Fur67]). Let k0=k be a finite

Galois extension of a number field, and let k00=k
denote its maximal abelian subextension. Then,

gk0=k ¼
#ClðkÞ

Q
p e
0
p

ðk00 : kÞ½" : ��
where p runs through all the primes of k, e0p denotes

the ramification index of the maximal abelian

subextension of KP=kp for a prime P of K dividing

p, " the unit group of k, and � the group of elements

in " everywhere locally norm.

Theorem 2.3 ([Yok67, Proposition 1]). Let

k0=k be a cyclic extension of number fields with

G ¼ Galðk0=kÞ ¼ h�i. Then gk0=k ¼ #Clðk0ÞG ¼
#ðClðk0Þ=Clðk0Þ1��Þ ¼ #Clðk0ÞG holds.

By combining these two theorems, we can esti-

mate the increase of class numbers in extensions.

3. Relative genus theory for rational ho-

mology 3-spheres. In this section, we formulate

analogues of the two theorems in §2. They general-

ize the results of [Mor01] and [Mor12] originally for

a branched cyclic cover over a ZHS3. We also give

an alternative proof by employing Niibo’s idèle.

In the following, we assume that 3-manifolds

are oriented, connected, and closed, and that

branched covers of 3-manifolds are branched over

links and are equipped with base points. In order to

discuss analogues of class numbers, we sometimes

assume that 3-manifolds are QHS3’s. A 3-manifold

M is a QHS3 if and only if H1ðMÞ <1.

Definition 3.1. For a finite branched abe-

lian cover h : N !M of 3-manifolds, the relative

genus cover of h is the maximal unbranched cover

Ng ! N abelian over M, and gh :¼ degðNg ! NÞ 2
N [ f1g is called the relative genus number.

In addition, for a finite branched Galois cover

h : N !M, we define the same notions by consid-

ering the maximal unbranched cover Ng ! N ob-

tained as a composite (in the sense of Galois theory)

of h and a branched abelian cover of M instead.

Now the first theorem is presented as follows:

Theorem 3.2. Let h : N !M be a finite

branched Galois cover of 3-manifolds branched over

L ¼ tKi, and let h0 : N0 !M denote the maximal

abelian subcover of h. Then the branch indices ei of

Ki in h satisfy

gh ¼
#H1ðMÞ

Q
i ei

degðh0Þ
:

Proof. Let ðNgÞ0 ! N0 !M denote the max-

imal subcovers of Ng ! N !M abelian over M.

Then gh ¼ degððNgÞ0 ! N0Þ. Indeed, let Y g !
Y ! X and ðY gÞ0 ! Y0 ! X denote their restric-

tions to the exteriors of the branch links, let

Dð�1ðXÞÞ denote the commutator group of �1ðXÞ,
and put A :¼ Kerð�1ðY Þ ! �1ðNÞÞ. Then by defini-

tion, �1ðY gÞ is the smallest subgroup of �1ðXÞ sat-

isfying �1ðY gÞ > A and �1ðY gÞ ¼ �1ðY Þ \ P for some

P > Dð�1ðXÞ). Thus �1ðY gÞ ¼ �1ðY Þ \ ðDð�1ðXÞÞ �
AÞ, �1ðY0Þ ¼ �1ðY Þ �Dð�1ðXÞÞ, and �1ððY gÞ0Þ ¼
�1ðY gÞ �Dð�1ðXÞÞ. Hence �1ðY gÞ ¼ �1ððY gÞ0Þ \
�1ðY Þ, �1ðY0Þ ¼ �1ðY Þ � �1ððY gÞ0Þ and GalððNgÞ0 !
N0Þ ¼ �1ðY0Þ=�1ððY gÞ0Þ ¼� �1ðY Þ=�1ðY gÞ ¼ gh.

The set of meridians of h�1ðLÞ generates B :¼
KerðH1ðY Þ� H1ðNÞÞ. By the definition of the

relative genus cover, the covers ðNgÞ0 ! N0 !M

correspond to the subgroups h�ðBÞ < h�ðH1ðY ÞÞ <
H1ðXÞ. Since Galðh0Þ ¼� H1ðXÞ=h�ðH1ðY ÞÞ, we

have GalðNg=NÞ ¼� h�ðH1ðY ÞÞ=h�ðBÞ and gh ¼
#ðh�ðH1ðY ÞÞ=h�ðBÞÞ ¼ #ðH1ðXÞ=h�ðBÞÞ=degðh0Þ.

Now suppose that L is a t-component link, and

let h�Li < H1ðXÞ denote the meridian group. If M is

not a QHS3, then the formula is clear by a

surjection H1ðXÞ=h�ðBÞ� H1ðMÞ. If M is a QHS3,

then the Mayer–Vietoris long exact sequence yields

the exact sequence 0! h�Li ! H1ðXÞ ! H1ðMÞ !
0. Let VKi

denote the tubular neighborhood of Ki.

Then �1ð@VKi
Þ ¼� Z2 is abelian, and so is the decom-

position group. Since
Q

i eiZ ¼� h�ðBÞ < h�Li ¼� Zt,

we have an exact sequence 0! h�Li=h�ðBÞ !
H1ðXÞ=h�ðBÞ ! H1ðMÞ ! 0 with h�Li=h�ðBÞ ¼�Q

i Z=eiZ. Hence gh degðh0Þ ¼ #ðH1ðXÞ=h�ðBÞÞ ¼
#H1ðMÞ

Q
i ei, and the assertion holds. �

Corollary 3.3. Let h : N !M be a finite

branched Galois cover of 3-manifolds. Then M is a

QHS3 if and only if gh is finite.

Proof. If M is not a QHS3, then #H1ðMÞ ¼ 1
and so is gh. If M is a QHS3, then by Theorem 3.2,

gh <1 (while N is not necessarily a QHS3). �

Corollary-Definition 3.4. Let h : N !M

be a finite branched Galois cover of 3-manifolds. If

the branch link L consists of null-homologous com-

ponents, then there are a natural splitting H1ðXÞ ¼�
H1ðMÞ � h�Li ([Uek, Lemma 4.4]) and a well-de-

fined homomorphism � : H1ðNÞ ! H1ðXÞ=h�ðBÞ!¼
�

H1ðMÞ �
Q

i Z=eiZ with �ð½c�Þ ¼ ð½hðcÞ�; ðlkðc;KiÞ
mod eiÞiÞ for any c 2 HomðS1; NÞ. We say that

a; b 2 H1ðNÞ belong to the same genus over M if

�ðaÞ ¼ �ðbÞ. This generalizes the notion of genus

over S3 ([Mor12, Chapter 6.2]).

Remark. Let h : N !M be a finite
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branched Galois cover of QHS3. Then, since Ng !
N is unbranched and abelian, ghj#H1ðNÞ holds.

This fact will be used in the study of Iwasawa

invariants in §5.

Remark. Let h : N !M be a finite cyclic

branched cover of QHS3 with G ¼ GalðhÞ, and fix

finite CW-structures on them compatible with h.

Then [Uek14, Proposition 16] states that gh ¼
#H1ðNÞG ¼ �ð

Q
i eiÞ#H1ðMÞ, � ¼# bH0ðG;Z2ðNÞÞ=

# bH1ðG;Z2ðNÞÞ. By the theorem above, we obtain

� ¼ 1=degðhÞ.
Next, we study the relation between the co-

invariant group and the relative genus number.

For the trivial action of a group G on Z, we

write HiðGÞ :¼ HiðG;ZÞ. We have H1ðGÞ ¼ Gab.

If G is finite, then H2ðGÞ is finite, and if G is cy-

clic in addition, then H2ðGÞ ¼ 0. Further, for a

path-connected space X, we have H2ð�1ðXÞÞ ¼
Cokerð�2ðXÞ !

Hur
H2ðXÞÞ (Hopf’s theorem, [Bro94]).

Now we have

Theorem 3.5. Let h : N !M be a finite

branched Galois cover over a QHS3 withG ¼GalðhÞ,
and put b :¼ ðh0�ðB0Þ : h�ðBÞÞ with the notation of

Theorem 3.2. Then gh ¼ #ðH1ðNÞG= �	ðH2ðGÞÞÞ=b
for some map �	 with 1 � b � degðN ! N0Þ.

If h is abelian, then b ¼ 1. If G ¼ h�i, then gh ¼
#H1ðNÞG ¼ #H1ðNÞ=ð1� �ÞH1ðNÞ ¼ #H1ðNÞG.

Proof. By the Hochschild-Serre spectral se-

quence ([Bro94, VII-6]), the short exact sequence

1! �1ðY Þ ! �1ðXÞ ! G! 1 yields an exact

sequence H2ð�1ðXÞÞ ! H2ðGÞ !
	
H1ð�1ðY ÞÞG !

H1ð�1ðXÞÞ ! H1ðGÞ ! 0. By the Hurewicz iso-

morphism �1ðXÞab ¼� H1ðXÞ, we have an exact

sequence H2ðGÞ ! H1ðY ÞG!
h�
H1ðXÞ ! Gab ! 0.

Since h�ðIGH1ðY ÞÞ ¼ 0, we have an exact sequence

H2ðGÞ ! H1ðY ÞG !
h�
h�ðH1ðY ÞÞ ! 0.

Since h�ðIGBÞ ¼ 0, there is an induced surjec-

tion h� : BG � h�ðBÞ. Since ð ÞG ¼ H0ð Þ, an exact

sequence 0! B! H1ðY Þ ! H1ðNÞ ! 0 yields an

exact sequence � � � ! BG ! H1ðY ÞG ! H1ðNÞG !
0. Thus we have a commutative diagram

consisting of exact sequences. Let �	 : H2ðGÞ !
H1ðNÞG denote the natural map. Then by the

snake lemma, we have �	ðH2ðGÞÞ ¼ KerðH1ðNÞG !
h�ðH1ðY ÞÞ=h�ðBÞÞ. Hence by Theorem 3.2, we have

#H1ðNÞG=�	ðH2ðGÞÞ ¼ #h�ðH1ðY ÞÞ=h�ðBÞ ¼ ghb.
Now h0 : N ! N0 satisfies h0�ðBÞ < KerðB0 ,!

H1ðY0Þ� H1ðY0Þ=h0�ðH1ðY ÞÞÞ, and hence b � #B0=

h0�ðBÞ � #H1ðY0Þ=h0�ðH1ðY ÞÞ � degðh0Þ. �

Finally, we give an alternative proof of Theo-

rem 3.2, which is rather parallel to the one in

[Fur67], by employing Niibo’s idèle. This idèle

theory was initially introduced by Niibo in [Nii14],

and was modified and generalized in [NU]. We first

recall definitions and results in [NU]. Let M be a 3-

manifold, and let K 	M be an infinite link equip-

ped with a tubular neighborhood VK ¼ tK	KVK .

Let AM;K denote the set of all the abelian covers

of M branched over a finite sublink of K. We call K
a very admissible link of M if for any h : N !
M 2 AM;K, H1ðNÞ is generated by components of

the preimage h�1ðKÞ. For any link L consisting of

countably many tame components in a 3-manifold

M, there exists such a K including L ([NU, Theo-

rem 2.3]). Let ðM;KÞ be such a pair. Then the idèle

group IM ¼
Q‘

K	KH1ð@VKÞ is defined as the re-

stricted product with respect to the meridian

subgroups h�Ki < H1ð@VKÞ. In other words, we

put IM :¼ fðaKÞ 2
Q

K	KH1ð@VKÞ j vKðaKÞ ¼ 0 for

almost all Kg, where vK : H1ð@VKÞ ! H1ðVKÞ is

a natural map. The principle idèle group is defined

by PM ¼ lim�! L	K
H2ðM;LÞ where L runs through all

the finite sublinks of K. The unit idèle group UM <

IM is the subgroup consisting of formal infinite sums

of meridians
P

K	K aK�KðaK 2 ZÞ. By [NU, Lem-

ma 5.7], we have IM=ðPM þ UMÞ ¼� H1ðMÞ. By

[NU, Theorem 7.4] (the existence theorem), there is

a natural bijective correspondence between certain

subgroups PM < H < IM and h’s. For each h : N !
M 2 AM;K and a very admissible link h�1ðKÞ of N,

we define IN; PN; UN . By [NU, Theorem 5.5] (the

global reciprocity law), there is a natural isomor-

phism IM=ðPM þ h�ðINÞÞ ¼� GalðhÞ.
An alternative proof of Theorem 3.2. We fix a

very admissible link K of M containing L ¼ tiKi.

Since H� :¼ PM þ h�ðPN þ UNÞ < IM corresponds

to ðNgÞ0 !M, we have degðh0Þgh ¼ ½IM : H�� ¼
½IM : PM þ UM � � ½PM þ UM : PM þ h�ðPN þ UNÞ� ¼
#H1ðMÞ � ½PM þ UM : PM þ h�ðUNÞ� ¼ #H1ðMÞ½UM :

h�ðUNÞ�=½PM \ UM : PM \ h�ðUNÞ�. If M is not a

QHS3, then the formula is clear. If M is a QHS3,

then exact sequences 0! h�L0 i ! H1ðM � L0Þ !
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H1ðMÞ ! 0 for L0 	 K yield a natural injection

UM ,! lim � h2AM;K
GalðhÞ. Therefore PM \ UM ¼ 0

and the denominator is 1. Since UM=h�ðUNÞ ¼�Q
Z=eiZ, we have degðh0Þgh ¼ #H1ðMÞ

Q
i ei. �

4. Iwasawa �-invariants of Zp-fields. Let

p be a prime number. In this section, we recall

the theorems on the �-invariants in p-extensions

of Zp-fields given by Iwasawa in [Iwa73] with use

of relative genus theory. We also refer to [Och14]

for the details.

Let vp denote the p-adic valuation. Let k1=k
be a Zp-extension of a number field, and let kn=k

denote the subextension of degree pn for each n.

Then we have the Iwasawa class number formula

([Iwa59]):

vpð#ClðknÞÞ ¼ �nþ �pn þ � for n
 0;

for some constants � ¼ �k1=k, � ¼ �k1=k 2 N ¼ N [
f0g, � ¼ �k1=k 2 Z called the Iwasawa invariants.

The value of � and whether � ¼ 0 or not depend

only on k1, and are independent of the choice of k.

There is a unique Zp-extension Q1 of Q. For a

number field k, the composite kc
1 ¼ kQ1 is called a

cyclotomic Zp-field. In a cyclotomic Zp-extension

kc
1=k, every non-p prime decomposes finitely. On

the other hand, a number field k is called a CM-field

if it is a totally imaginary quadratic extension of a

totally real field kþ. Such k has a Zp-extension K=k

which is a limit of dihedral extensions of kþ, and

every prime is inert in k=kþ decomposes completely

in K=k ([Iwa73]). (If p > 2, then a CM-field k has

the anti-cyclotomic Z½k:Q�=2
p -extension kac

1=k, whose

any sub-Zp-extension K=k is dihedral over kþ.)

Iwasawa conjectured that � ¼ 0 holds for every

cyclotomic Zp-extension kc1=k, and it is true by

Ferrero-Washington [FW79] if k is abelian over Q.

If � ¼ 0, then the nature of a Zp-field ‘‘resembles’’

that of a function field. For general cases, however,

there exist Zp-extensions with arbitrary large �:

Theorem 4.1 ([Iwa73, §1]). Let k=Q be an

extension of degree d containing primitive p-th roots

of unity, and let k1=k be a Zp-extension. Suppose

that there exist primes p1; . . . ; pt in k which are

completely decomposed in k1=k, and let k0 ¼
kð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip1 . . . ptp
p Þ and k01 ¼ k0k1. Then, �k01=k0 � t� d

holds.

Let k be the 4-th or p > 2-th cyclotomic field.

Then k is a CM-field, and there is a Zp-extension

K=k dihedral over kþ. Since there are infinitely

many primes inert in k=kþ, there are infinitely many

primes completely decomposed in K=k. Therefore

by the previous theorem, we obtain the following

Theorem 4.2 ([Iwa73, Theorem 1]). Let k

be the cyclotomic field of p-th or 4-th roots of unity

according as p > 2 or p ¼ 2. Then, for any N 2 N,

there exist an extension k0=k of degree p and a

Zp-extension k01=k
0 such that �k01=k0 � N.

On the other hand, the following tells that

there are many Zp-fields with � ¼ 0.

Theorem 4.3 ([Iwa73, Theorem 2]). Let k

be a number field (totally imaginary if p ¼ 2),

k1=k a Zp-extension, k0=k a finite Galois p-exten-

sion, and put k01 ¼ k1k0. Suppose that every prime

of k which is ramified in k0=k is finitely decomposed

in k1=k. Then �k1=k ¼ 0 if and only if �k01=k0 ¼ 0.

5. Iwasawa �-invariants of branched

Zp-covers. In this section, we formulate ana-

logues of Iwasawa’s results recalled in the previous

section.

Let L 	M be a link in QHS3. We call an

inverse system of L-branched Z=pnZ-covers eM ¼
fhn : Mn !Mgn a branched Zp-cover, and regard it

as an analogue of a Zp-field. Put X :¼M � L. Then

a surjective homomorphism from the pro-p com-

pletion of the fundamental group 
 : b�1ðXÞ� Zp

corresponds to such eM. Assume that Mn is a QHS3

for any n. Then we have an Iwasawa type formula

([HMM06], [KM08], [Uek]):

vpðH1ðMnÞÞ ¼ �nþ �pn þ � for n
 0;

for some � ¼ �fM , � ¼ �fM 2 N, � ¼ �fM 2 Z. These

constants are called the Iwasawa invariants.

Next, we review an analogous object of an

extension of Zp-fields introduced in [Uek]. Let eM ¼
fhn : Mn !Mgn be an L-branched Zp-cover and
fM 0 ¼ fh0n : M 0

n !M 0gn an L0-branched Zp-cover.

Then a branched Galois cover f : fM 0 ! eM of degree

r is a compatible system of branched Galois covers

ffn : M 0
n !Mngn of degree r such that each in-

duced map Galðfnþ1Þ ! GalðfnÞ is an isomorphism.

If L and L0 are properly branched in eM and fM 0,
then L0 ¼ f�1

0 ðLÞ. We can easily see that the branch

links Sn of fn satisify Sn 	 h�1
n ðS0Þ. We put S0 :¼

f�1
0 ðSÞ, Y :¼M � L [ S, and Y 0 :¼M 0 � L0 [ S0.

Then, there is a commutative diagram
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for the defining homomorphisms 
; 
 0 of eM; fM 0.
Conversely, if f0 : M 0 !M and such a diagram are

given, then fM 0 ! eM is defined.

Let M be a QHS3, let L ¼ tKi be a link which

consists of null-homologous components in M, and

let �i denote the meridian of Ki for each i. Then, the

branched Zp-cover eM defined by 
 : �1ðM � LÞ !
Z; 8�i 7! 1 is called the total linking number (or

TLN for short) Zp-cover over ðM;LÞ.
Let � be a Seifert surface of L, that is, a

compact orientable surface � satisfying @� ¼ L.

Then M � � gives a fundamental domain of each

Z=pnZ-cover. Let K 	M � L be a knot, and

assume that K and � intersect transversally

(perturb � if necessary). Then the intersection

number � satisfies lkðK;LÞ ¼ �ðK;�Þ. By a standard

argument similar to [Mor12, Chapter 4.1], the nat-

ural map H1ðXÞ ! GalðhnÞ ¼ h� j �p
ni sends ½K� to

�vpðlkðK;LÞÞ. Therefore, if lkðK;LÞ 6¼ 0 and n �
vpðlkðK;LÞÞ, then each component of h�1

n ðKÞ con-

sists of pn�vpðlkðK;LÞÞ copies of K, and h�1
n ðKÞ is a

pvpðlkðK;LÞÞ-component link. Otherwise, h�1
n ðKÞ is

a pn-component link. In particular, we have the

following

Proposition 5.1. Let eM ¼ fhn : Mn !Mgn
be the TLN-Zp-cover over ðM;LÞ, and K 	M � L a

knot. Then, lkðK;LÞ 6¼ 0 holds if and only if K is

finitely decomposed into pvpðlkðK;LÞÞ components in

hn for all n
 0, and lkðK;LÞ ¼ 0 holds if and only if

K is completely decomposed in all hn.

If S is finitely decomposed in eM, then f : fM 0 !
eM resembles a p-extension of cyclotomic Zp-field. If

S is completely decomposed in eM, then f : fM 0 ! eM
resembles the case of anti-cyclotomic.

Now we present our main theorems.

Theorem 5.2 (arbitrary large �). Let f :
fM 0 ! eM be a branched Galois cover of degree p of

Zp-covers of QHS3. Suppose that the branch link S

of f0 : M 0 !M is a t-component link, and that S is

completely decomposed in eM. Then, �gM 0 � t holds.

Proof. Since fn : M 0
n !Mn is of degree p

and the branch link Sn of fn is a tpn-component

link h�1
n ðSÞ, by Theorem 3.2, we have #H1ðM 0

nÞG ¼
#H1ðMnÞptp

n�1. Then, #H1ðM 0
nÞGj#H1ðM 0

nÞ im-

plies vpð#H1ðM 0
nÞÞ � vpð#H1ðMnÞÞ þ tpn � 1, and

hence �gM 0 � t. �

Theorem 5.3 (many � ¼ 0). Let f : fM 0 !
eM be a branched Galois p-cover of branched

Zp-covers of QHS3, and suppose that any knot

branched in f0 : M 0 !M is finitely decomposed in

eM. Then �fM ¼ 0 if and only if �gM 0 ¼ 0.

Proof. Since any finite p-group has a nontrivial

center, we can reduce the argument to the case of

degree p.

For a finite abelian p-group A, we put

rankA :¼ dimA� Fp. If B < A, then rankB;

rankA=B � rankA � rankBþ rankA=B. If a

group G ¼ h�i ¼� Z=pZ acts on A, then ð1� �Þp
acts on A� Fp as zero, and rankA �Pp�1

i¼0 rankAð1��Þ
i

=Að1��Þ
iþ1 � p rankA=A1�� holds.

Now let f0 : M 0 !M be a branched cover of

degree p with Galðf0Þ ¼ h�i. Let A and A0 denote

the p-parts of H1ðMÞ and H1ðM 0Þ respectively, and

put r ¼ r0 :¼ rankA and r0 ¼ r00 :¼ rankA0. Let s ¼
s0 denote the number of components of the branch

link S of f0. Then genus theory yields r� 1 �
r0 � pðrþ sÞ. Indeed, let Mab !M and M 0

ab !M 0

denote the maximal unbranched abelian p-covers.

Then, the relative genus cover M 0g !M of f0 :

M 0 !M factors through Mab !M by definition.

Put rg :¼ rank GalðM 0g=M 0Þ. Then by Theorem 3.5,

GalðM 0g=M 0Þ ¼� A0=A01�� holds, and hence r0 � prg.

For each i, let Ti < GalðM 0
ab=MÞ denote the inertia

group of Ki in M 0g !M. Then, since M 0g !M 0 is

unbranched, we have Ti ¼� Z=pZ, and GalðM 0g=
MabÞ ¼ T1 � � �Ts. Therefore rg � rank GalðM 0g=
MÞ � rþ rank GalðM 0g=MabÞ � rþ s. On the other

hand, we have r � rank GalðM 0g=MÞ � 1þ
rank GalðM 0g=M 0Þ � 1þ r0.

Similarly, for each fn : M 0
n !Mn, let rn and r0n

denote the p-ranks of H1ðMnÞ and H1ðM 0
nÞ respec-

tively, and let sn denote the number of component

of the branch link Sn of fn. By a similar argument,

rn � 1 � r0n � pðrn þ snÞ holds. Since Sn 	 h�1
n ðSÞ

and S is finitely decomposed in eM, fsngn is

bounded. By Sakuma’s exact sequence ([Uek, Prop-

osition 4.11]), there is a finitely generated tor-

sion � ¼ Zp½½T ��-module HfM with H1ðMn;ZpÞ=
h!
nðH1ðM;ZpÞÞ ¼� HfM=�pnHfM for any n, where

�pn ¼ ðð1þ T Þp
n

� 1Þ=T . By the structure theorem

of finitely generated �-modules ([Uek, Lemma 3.1

(4)]), �fM ¼ 0 (resp. �gM 0 ¼ 0) is equivalent to that

frngn (resp. fr0ngn) is bounded. Thus the assertion

holds. �

Example 5.4. Let L and S be distinct

unknots in M ¼ S3 and let f0 : M 0 !M be the

S-branched cover of degree p. Let eM and fM 0 denote

the TLN-Zp-covers over ðM;LÞ and ðM 0; L0Þ for

L0 ¼ f�1
0 ðLÞ respectively. Then a branched Galois

cover f : fM 0 ! eM is defined and �fM ¼ 0 holds. If
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fM 0 consists of QHS3’s and if lkðL; SÞ ¼ p, then

�gM 0 ¼ 0 by Theorem 5.3. If p ¼ 2, then L0 is the

Hopf link. If p ¼ 3, then L0 is the Borromean ring.

If lkðL; SÞ ¼ 0, then L0 is a split link, its

Alexander polynomial is zero, fM 0 does not consist

of QHS3’s, and �gM 0 is not defined. Instead, let L ¼
K1 [K2 be a Hopf link, let L [ S be 63

3 in Rolfsen’s

table ([Rol76]) and fix orientations so that

lkðK1; SÞ ¼ 1 and lkðK2; SÞ ¼ �1. Then �fM ¼ 0

and lkðL; SÞ ¼ 0. If p ¼ 2, then �gM 0 is defined, and

�gM 0 � 1 by Theorem 5.2. Indeed, L0 ¼ K01 [K02 is 42
1

in Rolfsen’s table and �gM 0 ¼ 1 holds.

Theorems 5.2 and 5.3 give branched Zp-covers
fM 0 which are candidates for � ¼ 0 and � � t. We

can check whether fM 0 consists of QHS3’s or not

by using the Alexander polynomials. We note that

various constructions of eM with given �; �; � are

studied in [KM08] and [KM13].

Remark. A Zp-field with � ¼ 0 resembles a

function field. Especially, as an analogue of the

Riemann–Hurwitz formula for a cover of Riemann

surfaces, Kida’s formula for a p-extension of

Zp-fields with � ¼ 0 is known. In [Uek], following

Iwasawa’s second proof in [Iwa81], their analogue in

the topological context was formulated. It describes

the balance of Iwasawa �-invariants, covering

degree, and branching indices. We employed rep-

resentation theory of finite groups, and Tate

cohomology of 2-cycles bHiðG;Z2ð eNÞÞ. Meanwhile,

Kida’s formula for Zp-fields extension was first

proved with use of genus theory ([Kid80]). We

expect an alternative proof for our formula by

following Kida’s proof.
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[ Nii14 ] H. Niibo, Idèlic class field theory for 3-
manifolds, Kyushu J. Math. 68 (2014),
no. 2, 421–436.

[ NU ] H. Niibo and J. Ueki, Idèlic class field theory
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