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Abstract: We study the uniqueness question of transcendental entire functions sharing

one finite nonzero value with their derivatives in some angular domains instead of the whole

complex plane. The results in the present paper improve and extend the corresponding results

from Chang-Fang [2] and extend Theorem 3 from Zheng [15]. An example is provided to show

that the results in this paper, in a sense, are best possible.
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1. Introduction and main results. Let f :
C! C [ f1g be a transcendental meromorphic

function, where C is the complex plane. We assume

that the readers are familiar with the Nevanlinna

theory of meromorphic functions and the standard

notations such as Nevanlinna’s deficiency �ða; fÞ of

f with respect to a 2 C and Nevanlinna character-

istic T ðr; fÞ of f . Moreover, the definitions of the

lower order �ðfÞ and the order �ðfÞ can be found in

Hayman [7] and Laine [10]. An a 2 C [ f1g is

called an IM (CM) shared value in a domain X � C

of two meromorphic functions f and g, if in X,

fðzÞ ¼ a if and only if gðzÞ ¼ a ignoring multiplic-

ities (counting multiplicities). Throughout this

paper, we denote by nðr;C nX; a; fÞ the number of

a-points of f in fz : z 2 C nXg \ fz : jzj < rg, where

each a-point of f in nðr;C nX; a; fÞ is counted

according its multiplicity. We also denote by

nðr;C nX; a; fÞ the reduced form of nðr;C nX;
a; fÞ. Nevanlinna [11] proved that if two meromor-

phic functions f and g have five distinct IM shared

values in X ¼ C, then f ¼ g. Later on, many math-

ematicians in the world treated some uniqueness

questions of meromorphic functions with shared

values in the whole complex plane (cf. Yang-Yi [12]).

In 1986, Jank-Mues-Volkmann [9] proved that if a

nonconstant meromorphic function f shares a non-

zero finite complex value a CM with f 0 and f 00; then

f ¼ f 0: Later on, Yang [13] and Chang-Fang [2]

studied the uniqueness question of entire functions

share one finite nonzero complex number with their

derivatives, and dealt with a question posed by

Yang and Yi (cf. [12, p. 398]). An example from

Yang [13] shows that this question is negative. In

2004, Zheng [15] first took into the uniqueness

question of meromorphic functions with shared

values in some angular domains. Next, we consider

q pairs of real numbers f�j; �jg and let a positive

number ! such that

�� � �1 < �1 � �2 < �2 � � � � � �q < �q � �;ð1:1Þ

! ¼ max
�

�1 � �1
;

�

�2 � �2
; � � � ;

�

�q � �q

� �
:ð1:2Þ

In this paper, we will study the following

question: Let f be a nonconstant meromorphic

function, a a nonzero finite complex number, and k,

m two distinct positive integers. Suppose that f ,

fðkÞ and f ðmÞ share a CM in some angular domains

instead of the whole complex plane, can we have

fðkÞ ¼ fðmÞ? In this direction, we will prove the

following result:

Theorem 1.1. Let f be a transcendental

entire function with finite lower order � such that

for some b 2 C, � ¼ �ðb; fÞ > 0. Suppose that q � 3
pairs of real numbers f�j; �jg satisfy (1.1) and

Xq
j¼1

ð�jþ1 � �jÞ <
4

�
arcsin

ffiffiffi
�

2

r
;ð1:3Þ

where � ¼ maxf!; �g, ! is defined as in (1.2), that

f, fðkÞ and fðmÞ share a CM in X ¼
Sq
j¼1

fz : �j �
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arg z � �jg, and that f ðkÞ and f ðmÞ share a IM n

C nX, where k and m are two distinct positive

integers satisfying k > m, a is a finite nonzero

complex number. If there exists some positive

integer N1 such that

nðr;C nX; a; fÞ � N1;ð1:4Þ

as r!1, then f ðkÞ ¼ f ðmÞ.
If we remove the assumption ‘‘�ðfÞ <1’’ in

Theorem 1.1, we have the following result:

Theorem 1.2. Let f be a transcendental

entire function such that for some b 2 C, � ¼
�ðb; fÞ > 0. Assume that for q � 3 radii arg z ¼ �j
ð1 � j � qÞ satisfying

�� � �1 < �2 < � � � < �q < �; �qþ1 ¼ �1 þ 2�;ð1:5Þ

that f, f ðkÞ and f ðmÞ share a CM in X ¼ C n
Sq
j¼1

fz :

arg z ¼ �jg, and that f ðkÞ and f ðmÞ share a IM in

A", where k and m are two distinct positive integers

satisfying k > m, a is a finite nonzero complex

number, and A" is the union of the sectors

A" ¼
[q
j¼1

fz : jarg z� �jj < "gð1:6Þ

for " > 0. If there exists some positive integer N2

such that nðr; nðr; A"; a; fÞ � N2, then f ðkÞ ¼ f ðmÞ.
The following example shows that the assump-

tion ‘‘� ¼ �ðb; fÞ > 0’’ in Theorems 1.1 and 1.2, the

assumption (1.4) in Theorems 1.1 and the assump-

tion ‘‘nðr; nðr; A"; a; fÞ � N2’’ in Theorems 1.2 can

not be simply dropped:

Example 1.1 ([15, Remark A]). For each

real number a satisfying 0 � a � 1, we let sin z ¼
eiz�e�iz

2i ¼ a, where z ¼ xþ yi and x; y 2 R. Then we

have e�y cosx ¼ a and e�y sinx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2
p

, and so

e�2y ¼ 1, which implies y ¼ 0. Hence z ¼ x is a real

number. Similarly, if cos z ¼ eizþe�iz
2 ¼ a, where z ¼

xþ yi and x; y 2 R, then we can deduce y ¼ 0 and

so z ¼ x is also a real number. Therefore, for each

real number a satisfying 0 � a � 1, fðzÞ ¼ sin z and

f 0ðzÞ and f ð4ÞðzÞ can take over a only on the real

axis, and so they share a CM in the domain X ¼
C nR. Obviously, ! ¼ �ðsin zÞ ¼ �ðcos zÞ ¼ 1 and

A" ¼ fz : jarg zþ �j < "g [ fz : jarg zj < "g for " >

0. Moreover, �ðb; sin zÞ ¼ 0 for all b 2 C, and that

nðr; A"; a; fÞ ! 1, as r!1. But f 0 6� f ð4Þ.
2. Preliminaries. In this section, we intro-

duce some important lemmas to prove the main

results in this paper.

First, we introduce the Nevanlinna theory

on an angular domain, which can be found in

Goldberg-Ostrovskii [5, pp. 23–26]:

Let f be a meromorphic function on the

angular domain �ð�; �Þ ¼ fz : � � arg z � �g,
where �; � 2 ½0; 2�	 and so 0 � � � � < 2�. Follow-

ing Goldberg-Ostrovskii [5, pp. 23–26], we define

A�;�ðr; fÞ

¼
!

�

Z r

1

1

t!
�
t!

r2!

� �
ðlogþ jfðtei�Þj þ logþ jfðtei�ÞjÞ

dt

t
;

B�;�ðr; fÞð2:1Þ

¼
2!

�r!

Z �

�

logþ jfðrei	Þj sin!ð	� �Þd	 and

C�;�ðr; fÞð2:2Þ

¼ 2
X

1<jbmj<r

1

jbmj!
�
jbmj!

r2!

� �
sin!ð	m � �Þ;

where ! ¼ �=ð� � �Þ, 1 � r < þ1 and bm ¼ jbmjei	m
are the poles of f on �ð�; �Þ appearing often

according to their multiplicities. The function

C�;� is called the angular counting function of the

poles of f on Xð�; �Þ and the Nevanlinna angular

characteristic function is defined as S�;�ðr; fÞ ¼
A�;�ðr; fÞ þB�;�ðr; fÞ þ C�;�ðr; fÞ. Similarly, for

any finite value a, we define A�;�ðr; faÞ, B�;�ðr; faÞ,
C�;�ðr; faÞ and S�;�ðr; faÞ, where fa ¼ 1=ðf � aÞ. For

the sake of simplicity, next we omit the subscript

of all the above notations and respectively use the

notations Aðr; faÞ, Bðr; faÞ, Cðr; faÞ and Sðr; faÞ
instead of A�;�ðr; faÞ, B�;�ðr; faÞ, C�;�ðr; faÞ and

S�;�ðr; faÞ for any finite complex value a.

Lemma 2.1 ([5, pp. 23–26] and [5, Theorem

3.1]). Let f be meromorphic on �ð�; �Þ. Then, for

an arbitrary complex number a 2 C and any integer

k � 0 we have

S r;
1

f � a

� �
¼ S r; fð Þ þOð1Þ;

Sðr; f ðkÞÞ � 2kSðr; fÞ þ Rðr; fÞ

and Aðr; fðkÞf Þ þ Bðr;
fðkÞ

f Þ ¼ Rðr; fÞ, where and in

what follows, Rðr; fÞ is such a quantity that if

�ðfÞ <1, then Rðr; fÞ ¼ Oð1Þ, as r!1, if

�ðfÞ ¼ 1, then Rðr; fÞ ¼ OðlogðrT ðr; fÞÞÞ, as r =2 E
and r!1, here and in what follows, E denotes a

set of positive real numbers with finite linear

measure. It is not necessarily the same for every

occurrence in the context.
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Lemma 2.2 ([5, p. 112, Theorem 3.3]). Let f

be a meromorphic function on �ð�; �Þ. Then, for

arbitrary q distinct values aj 2 C [ f1g ð1 � j � qÞ,

ðq � 2ÞSðr; fÞ �
Xq
j¼1

C r;
1

f � aj

� �
þ Rðr; fÞ;

where Cðr; 1
f�ajÞ is the reduced form of Cðr; 1

f�ajÞ:
Lemma 2.3 ([4, 14]). Let f be a transcen-

dental meromorphic function in C with the lower

order 0 � � <1 and the order 0 < � <1. Then,

for an arbitrary positive number � satisfying � �
� � � and a set E with finite linear measure, there

exist a sequence of positive numbers frng such that

(i) rn =2 E and lim
n!1

rn
n ¼ 1, (ii) lim inf

r!1
logT ðrn;fÞ

log rn
�

� and (iii) T ðt; fÞ < ð1þ oð1ÞÞð trnÞ
�T ðrn; fÞ.

A sequence frng in Lemma 2.3 is called a Pólya

peak of order � outside E in this paper. For r > 0

and a 2 C, we define (iv) Dðr; aÞ :¼ f	 2 ½��; �Þ :

logþ 1
jfðrei	Þ�aj >

1
log r T ðr; fÞg and Dðr;1Þ :¼ f	 2

½��; �Þ : logþ jfðrei	Þj 1
log r T ðr; fÞg:

Lemma 2.4 ([1]). Let f be a transcendental

meromorphic function in C with the finite lower

order � and the order 0 < � � 1, and for some

a 2 C [ f1g, �ða; fÞ ¼ � > 0. Then, for an arbitrary

Pólya peak frng of order � > 0, � � � � �, we have

lim inf
n!1

mesDðrn; aÞ � min 2�;
4

�
arcsin

ffiffiffi
�

2

r( )
:

Remark 2.1. Lemma 2.4 was proved in [1]

for the Pólya peak of order �, the same argument of

Baernstein [1] can derive Lemma 2.4 for the Pólya

peak of order � with � � � � �.
Lemma 2.5 ([8]). Let f be a transcendental

meromorphic function in C. Then, for each K > 1,

there exists a set MðKÞ of the lower logarithmic

density at most dðKÞ ¼ 1� ð2eK�1 � 1Þ�1 > 0, that

is

log densMðKÞ ¼ lim inf
r!1

1

log r

Z
MðKÞ\½1;r	

dt

t
� dðKÞ;

such that, for every positive integer k,

lim sup
r!1
r=2MðKÞ

T ðr; fÞ
T ðr; fðkÞÞ � 3eK:

Lemma 2.6 ([3]). Let f be a meromorphic

function with �ð1; fÞ ¼ � > 0. Then, given " > 0,

mesEðr; fÞ >
1

ðT ðr; fÞÞ"ðlog rÞ1þ"
ðr =2 F Þ;

where

Eðr; fÞ ¼ 	 2 ½��; �Þ : logþ jfðrei	Þj >
�

4
T ðr; fÞ

� �

and that F is a set of positive real numbers with

finite logarithmic measure depending on ".

3. Proof of Theorems.

Proof of Theorem 1.1. Suppose that f ðkÞ 6�
fðmÞ. Set

’ ¼
f ðkÞ � f ðmÞ

f � a :ð3:1Þ

Then, ’ 6� 0. Moreover, by (3.1), Lemma 2.1 and

the assumption that f, f ðkÞ and f ðmÞ share a CM in

X ¼
Sq
j¼1

fz : �j � arg z � �jg, we have

S�j;�jðr; ’Þ ¼ A�j;�j r;
f ðkÞ � f ðmÞ

f � a

 !
ð3:2Þ

þ B�j;�j r;
f ðkÞ � f ðmÞ

f � a

 !
� R�j;�jðr; fÞ; 1 � j � q:

Set

h1 ¼
fðkÞ � a
f � a

and h2 ¼
f ðmÞ � a
f � a

:ð3:3Þ

Then, by (3.1) and (3.3), we have h1 � h2 ¼ ’, and

so

h1

’
�
h2

’
¼ 1:ð3:4Þ

Thus, by (3.2), (3.4), Lemmas 2.1 and 2.2, we have

S�j;�jðr; h1Þ � R�j;�jðr; fÞ; 1 � j � q;ð3:5Þ
S�j;�jðr; h2Þ � R�j;�jðr; fÞ; 1 � j � q:ð3:6Þ

By (3.3) we have

1

f � a
¼ 1

a

f ðkÞ

f � a
� h1

 !
;ð3:7Þ

1

f � a ¼
1

a

f ðmÞ

f � a � h2

 !
:

By (3.5), Lemma 2.1 and the left equality of (3.7),

we deduce

A�j;�j r;
1

f � a

� �
þ B�j;�j r;

1

f � a

� �
ð3:8Þ

¼ R�j;�jðr; fÞ

for 1 � j � q.
If b 6¼ a, by the left equality of (3.1), we have

No. 4] Uniqueness results of entire functions 43



1

f � b
¼

1

ða� bÞ’
�

f ðkÞ

f � a
�

fðkÞ

f � b

 !
ð3:9Þ

�
1

ða� bÞ’
�

f ðmÞ

f � a
�
f ðmÞ

f � b

 !
:

By (3.8), (3.9) and Lemma 2.1, we deduce

A�j;�j r;
1

f � b

� �
þ B�j;�j r;

1

f � b

� �
ð3:10Þ

� Oðlog rþ logT ðr; fÞÞ; 1 � j � q;

as r =2 E and r!1. Now we prove

�ðfÞ � !:ð3:11Þ

Suppose that (3.11) does not hold. Then

�ðfÞ > !:ð3:12Þ

We consider the following two cases:

Case 1. Suppose that �ðfÞ > �ðfÞ. Then, by

the fact � ¼ maxf!; �g we have

�ðfÞ > � � �ðfÞ:ð3:13Þ

By (1.3), we can find some sufficiently small posi-

tive number " such thatXq
j¼1

ð�jþ1 � �jÞ þ 2" <
4

�þ 2"
arcsin

ffiffiffi
�

2

r
ð3:14Þ

and

�ðfÞ > �þ 2" > �ðfÞ:ð3:15Þ

Applying Lemma 2.3 to f , we can find that there

exists a Pólya peak of order �þ 2" outside E.

Combining this with Lemma 2.4 and

�þ 2" � !þ 2" � !j þ 2" � 1þ 2";ð3:16Þ

we have

measDðrn; bÞ �
4

�þ 2"
arcsin

ffiffiffi
�

2

r
� ":ð3:17Þ

Without loss of generality, we can assume that

(3.16) holds for all the n. Set

Kn ¼ meas Dðrn; bÞ \
[q
j¼1

ð�j þ "; �j � "Þ
 !

:ð3:18Þ

Then, by (3.14), (3.17) and (3.18), we have

Kn � measDðrn; bÞð3:19Þ

�meas ½0; 2�Þ n
[q
j¼1

ð�j þ "; �j � "Þ
 !

¼ measDðrn; bÞ

�meas
[q
j¼1

ð�j � "; �jþ1 þ "Þ
 !

¼ measDðrn; bÞ �
Xq
j¼1

ð�jþ1 � �j þ 2"Þ � ":

By (3.18) and (3.19), we can find that there exists

some positive integer j0 satisfying 1 � j0 � q such

that for infinitely many positive integers n,

meas Dðrn; bÞ \ ð�j0
þ "; �j0

� "Þ
� �

�
Kn

q
>
"

q
:ð3:20Þ

Without loss of generality, we can assume that

(3.20) holds for all the positive integers n. Next

we set En ¼ Dðrn; bÞ \ ð�j0
þ "; �j0

� "Þ. Then, from

(3.20) and the definition of Dðr; bÞ in (iv) of

Lemma 2.3 we haveZ �j0�"

�j0þ"
logþ

1

jfðrnei	Þ � bj
d	ð3:21Þ

�
T ðrn; fÞ
log rn

measEn >
"

q

T ðrn; fÞ
log rn

:

On the other hand, by (3.8), (3.10), Lemma 2.1,

Lemma 2.5 and the definition of B�;�ðr; fÞ in (2.1),

we haveZ �j0�"

�j0þ"
logþ

1

jfðrnei	Þ � bj
d	ð3:22Þ

� �

2!j0
sinð"!j0

Þ
r!j0n B�j0 ;�j0

rn;
1

fðrnei	Þ � b

� �

� Kj0;"r
!j0
n logðrnT ðrn; fÞÞ

¼ Kj0;"r
!j0
n ðlog rn þ logT ðrn; fÞÞ þOð1Þ;

where rn =2 E and !j0
¼ �

�j0��j0
, Kj0;" is a positive

constant depending only on j0 and ". From (3.21)

and (3.22) we have

logT ðrn; fÞ � log logT ðrn; fÞ þ !j0
log rnð3:23Þ

þ 3 log log rn þOð1Þ;
where rn =2 E and rn !1. Noting that frng is a

Pólya peak of order �þ 2" of f outside E, we can

get from (3.23) that

�þ 2" � lim
rn!1

logT ðrn; fÞ
log rn

� !j0
� !;

which contradicts the assumption � ¼ maxf!; �g.
Case 2. Suppose that �ðfÞ ¼ �ðfÞ. Then, by

the same argument as in Case 1 with all �þ 2"
replaced with � ¼ �ðfÞ ¼ �ðfÞ, we can derive �ðfÞ ¼
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� � !, which contradicts (3.12). This completes the

proof of (3.11).

Finally, we will complete the proof of Theorem

1.1. First of all, by (3.1) and (1.4), we have ’ ¼ h3

P1
,

where h3 is an entire function, P1 is a nonzero

polynomial. Then, by (3.1), (3.11), Corollary 3 from

Gundersen [6] and the assumptions of Theorem 1.1,

there exists arbitrarily large positive number r such

that for any " > 0, we deduce

jh3ðzÞj � jP1ðzÞj �
f ðkÞðzÞ
fðzÞ � a

				
				þ f ðmÞðzÞ

fðzÞ � a

				
				

 !
ð3:24Þ

� rdegðP1Þþk!�kþk"ð1þ oð1ÞÞ;

as r ¼ jzj =2 E and r!1, where E 
 ð0;þ1Þ is a

subset that has finite linear measure. By (3.24) we

can see that h3 is a polynomial of degree not more

than degðP1Þ þ k!� k. Combining this with (3.1),

(3.24) and the assumption that f ðkÞ and f ðmÞ share a

IM in C nX, we deduce

nðr;C nX; a; fðkÞÞ þ nðr;C nX; a; f ðmÞÞ � N3;ð3:25Þ

where N3 is some positive integer. Suppose that

�ða; fÞ > 0. Then, by (3.11), the left equality of

(3.7), and the lemma of logarithmic derivative (cf.

[10, Corollary 2.3.4]), we can see that there exists

some subset I 
 ð0;1Þ with linear measure mes I ¼
1, and there exist some infinite sequences of posi-

tive numbers frng 
 I such that

T ðrn; fÞ � ð�ða; fÞ þ "Þm rn;
1

f � a

� �
ð3:26Þ

� ð1þ "ÞT ðrn; h1Þ þOðlog rnÞ;
as rn =2 E, rn 2 I and rn !1. By (3.26), Theo-

rem 1.5 [12] and the assumption that f is a tran-

scendental meromorphic function, we deduce that

h1 is a transcendental meromorphic function. Sim-

ilarly, we can deduce that h2 is also a transcenden-

tal meromorphic function. Therefore, by (3.3),

(3.25) and the assumption that f , f ðkÞ and f ðmÞ

share a CM in X, we deduce

Nðr; hjÞ þN r;
1

hj

� �
¼ oðT ðr; hjÞÞ; j ¼ 1; 2:ð3:27Þ

By ’ ¼ h3=P1 6� 0, we know that ’ is a nonzero

function. Therefore, by (3.4), (3.27) and Theorem

1.62 [12] we can get a contradiction. Suppose that

�ðb; fÞ > 0. Then, by (3.9) and the lemma of

logarithmic derivative, we can find that there exists

some subset I 
 ð0;1Þ with linear measure mes I ¼

1, and there exist some infinite sequences of

positive numbers frng 
 I such that T ðrn; fÞ �
Oðlog rnÞ, as rn =2 E, rn 2 I and rn !1. This

implies that f is a rational function, which is

impossible. This completes the proof of Theorem

1.1. �

Proof of Theorem 1.2. Suppose that f ðkÞ 6�
fðmÞ. Then, in the same manner as in Case 1 of the

proof of Theorems 1.1, we have from Lemma 2.1

that

B�j;�jþ1
r;

1

f � b

� �
� R�j;�jðr; fÞð3:28Þ

� Oðlog rþ logT ðr; fÞÞ; 1 � j � q;
as r =2 E and r!1. Next we prove �ðfÞ <1.

Indeed, for the exceptional set F in Lemma 2.6 and

the exceptional set E in (3.22), we have

log densðF [ EÞ ¼ 0;

and so for MðKÞ in Lemma 2.5, where K � 2 is a

positive number, we have

log densðMðKÞ [ F [ EÞ � log densðMðKÞÞ � dðKÞ;

where dðKÞ ¼ 1� ð2eK�1 � 1Þ�1. Applying this and

Lemma 2.6 to f , we can find that there exist a

sequence of positive numbers rn =2MðKÞ [ F [ E
such that

measE rn;
1

f � b

� �
>

1

ðT ðrn; fÞÞ"ðlog rnÞ1þ"
;ð3:29Þ

as rn !1. Set

"n ¼
1

2q þ 1

1

ðT ðrn; fÞÞ"ðlog rnÞ1þ"
:ð3:30Þ

Then, by (3.29) and (3.30) we have

meas E rn;
1

f � b

� �
\
[q
j¼1

�j þ "n; �jþ1 � "n
� � !

�

measE rn;
1

f � b

� �
�meas

[q
j¼1

�j � "n; �j þ "n
� � !

> ð2q þ 1Þ"n � 2q"n ¼ "n:
This implies that there exists some j0 satisfying 1 �
j0 � q such that

meas E rn;
1

f � b

� �
\ �j0

þ "n; �j0þ1 � "n
� �� �

ð3:31Þ

�
"n

q
:

Without loss of generality, we can assume that
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(3.31) holds for all n. Next, we set

~En ¼ E rn;
1

f � b

� �
\ �j0

þ "n; �j0þ1 � "n
� �

:ð3:32Þ

By (3.32) and the definition of ~Eðrn; 1
f�bÞ, we haveZ �j0þ1�"n

�j0þ"n
logþ

1

jfðrnei	Þ � bj
d	 �ð3:33Þ

Z
~En

logþ
1

jfðrnei	Þ � bj
d	 � measð ~EnÞ

�ðb; fÞ
4

T ðrn; fÞ

�
"n�ðb; fÞ

4q
T ðrn; fÞ:

On the other hand, by (3.28), Lemma 2.1, Lem-

ma 2.5 and the definition of B�;�ðr; fÞ in (2.1), we

have Z �j0þ1�"n

�j0þ"n
logþ

1

jfðrnei	Þ � bj
d	ð3:34Þ

�
�r

!j0
n

2!j0
sinð"n!j0

ÞB�j0 ;�j0þ1
rn;

1

fðrnei	Þ � b

� �

� ~Kj0;"r
!j0
n ðlog rn þ logT ðrn; fÞÞ;

as rn =2MðKÞ [ F [ E and rn !1, where !j0
¼

�
�j0þ1��j0

, ~Kj0;" is a positive constant depending only

on j0 and ". By (3.33) and (3.34), we have

�ðb; fÞðT ðrn; fÞÞ1�"ð3:35Þ

� 4qð2q þ 1Þ ~Kj0;"r
!j0
n ðlog rnÞ1þ" log rn

þ 4qð2q þ 1Þ ~Kj0;"r
!j0
n ðlog rnÞ1þ" logT ðrn; fÞ

þOð1Þ;
as rn =2MðKÞ [ F [ E and rn !1. By (3.35) we

derive �ðfÞ � !j0
� !, which implies �ðfÞ <1.

Therefore, by (3.28) and in the same manner as in

the proof of Theorem 1.1 we can get the conclusion

of Theorem 1.2. �

4. Concluding remarks. Regarding Theo-

rem 3 from Zheng [15], one may ask: Can we find

some additional assumptions replaced with the

assumption ‘‘�ðfÞ > !’’ in Theorem 3 from Zheng

[15], so as to make the conclusion of Theorem 3

from Zheng [15] hold for q � 2?

Acknowledgments. This work is supported

by the National Natural Science Foundation of

China (No. 11171184), the National Natural Science

Foundation of China (No. 11461042) and the Na-

tional Natural Science Foundation of Shandong

Province (No. ZR2014AM011). The authors want

to express their thanks to the referee for his/her

valuable suggestions and comments.

References

[ 1 ] A. Baernstein, II, Proof of Edrei’s spread con-
jecture, Proc. London Math. Soc. (3) 26 (1973),
418–434.

[ 2 ] J. Chang and M. Fang, On entire functions that
share a value with their derivatives, Ann. Acad.
Sci. Fenn. Math. 31 (2006), no. 2, 265–286.

[ 3 ] A. Edrei, Meromorphic functions with three
radially distributed values, Trans. Amer. Math.
Soc. 78 (1955), 276–293.

[ 4 ] A. Edrei, Sums of deficiencies of meromorphic
functions, J. Analyse Math. 14 (1965), 79–107.

[ 5 ] A. A. Goldberg and I. V. Ostrovskii, Value
distribution of meromorphic functions, trans-
lated from the 1970 Russian original by Mikhail
Ostrovskii, Translations of Mathematical
Monographs, 236, Amer. Math. Soc., Provi-
dence, RI, 2008.

[ 6 ] G. G. Gundersen, Estimates for the logarithmic
derivative of a meromorphic function, plus
similar estimates, J. London Math. Soc. (2) 37
(1988), no. 1, 88–104.

[ 7 ] W. K. Hayman, Meromorphic functions, Oxford
Mathematical Monographs, Clarendon Press,
Oxford, 1964.

[ 8 ] W. K. Hayman and J. Miles, On the growth of a
meromorphic function and its derivatives,
Complex Variables Theory Appl. 12 (1989),
no. 1–4, 245–260.

[ 9 ] G. Jank, E. Mues and L. Volkmann, Meromorphe
Funktionen, die mit ihrer ersten und zweiten
Ableitung einen endlichen Wert teilen, Com-
plex Variables Theory Appl. 6 (1986), no. 1,
51–71.

[ 10 ] I. Laine, Nevanlinna theory and complex differ-
ential equations, de Gruyter Studies in Mathe-
matics, 15, Walter de Gruyter, Berlin, 1993.

[ 11 ] R. Nevanlinna, Le théorème de Picard-Borel et la
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