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On variations of the Liouville constant which are also Liouville numbers

By Diego MARQUES® and Carlos Gustavo MOREIRA*"

(Communicated by Masaki KASHIWARA, M.J.A., Feb. 12, 2016)

Abstract:

Let £ be the Liouville’s constant, defined as a decimal with a 1 in each decimal

place corresponding to n! and 0 otherwise. This number is a classical example of a Liouville
number. In this note, we give an optimal condition on the number of replacements of 0’s by 1’s
between two consecutive 1’s in the decimal expansion of £ in order to ensure that this new number

is still a Liouville number.

Key words:

1. Introduction. A real number £ is called
a Liouville number, if there exist a sequence of
rational numbers (pi/qi),, with ¢ >1, and a
sequence of positive real numbers (wy), such that
lim supy,_, o, wi = +00 and

Pk

0<‘§—
qk

<q. ", forall k=1,2,3,....

The most classical example of a Liouville
number is the Liouville’s constant £ (see [1]), defined
as a decimal with a 1 in each decimal place
corresponding to n! and 0 otherwise. It can be
represented by the fast convergent series f =
3% 107" = 0.1100010. . ...

An irrational real number ¢ is said to be
Diophantine if there exist positive constants C
and x such that

q q"
for all rational numbers p/q, with ¢ > 1. These
numbers are very important in complex dynamics
because of their failure to be closely approximated
by rational numbers. In particular, an irrational
number is a Liouville number if and only if it is
not Diophantine.

The question which motivated this note is to
see “how many” replacements of 0’s by 1’s one can
make between two consecutive 1’s in the decimal
expansion of ¢, in order to guarantee that this
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new number is still a Liouville number.

In order to make this more precise, let S be a
subset of positive integer numbers. We define £° as
the number obtained by replacing, for all ¢ € S, the
number in the ¢-th position in the decimal expan-
sion of ¢, say s, by 1 —s. For example, £ =0
(where F is the set of factorial numbers), and /N =
0.001110111111...=1/9 — ¢ which is a Liouville
number (since the difference between a Liouville
number and a rational number is always a Liouville
number). By using a similar argument, if .S is finite,
then £° is also a Liouville number.

In this note, we give the optimal condition on
the cardinality of SN (n!,(n+1)!) such that £5 is
a Liouville number. More precisely, we have

Theorem 1.1. Let S be a subset of positive
integer numbers which does not contain factorials.

If
#(SN(nl (n+ 1))
logn

lim inf
n—o0o

:O’

then €% is a Liowville number. Moreover, this result
is the best possible, in the sense that for any € > 0,
there exists a set S with

#SN L (n+ 1) < elogn (n>1)

and such that ¢° is a Diophantine number (in
particular, it is not a Liouville number).

2. The proof. By hypothesis, we can write
SUF ={y1,y2,...} with y; <ya<---. Set k, =
#S N (n+1))) and (when k, >1) suppose
that n! < x(1n> << :cgcm < (n+1)!, where ml(n) €
S (in the case of k, =0, we make the conven-
tion that the set {:vg"),...,:c;:’)} is empty). De-
fine xém =n! and xg;l)ﬂ = (n+1)!, then there
exists j, € [1,k, +1] such that x§7>/x§:>_1 =
max;<i<p, +1{2\" /2" }. Then, we have
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n+1=

n n n n k41
AR SO TR
(n) .(n) 2 = (n) '
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1
Therefore w, = z; )/x > (n+ 1)1/(k”+1). More-

)

over, we suppose that :1:( ) =1y, and z; Ly = Yo,

Now, for all n > 1, deﬁne mtegers
Z IOIJ' 1Y

)
g, = 10%1 and p, =

Thus

s _ Pn _
0<? = w(u; 01/7”1)

1.2 1.2

<——=—.
0% 4"

By wusing that liminfk,/logn =0, we get
limsup w, = co. This implies that ¢° is a Liouville
number as desired.

For the second part, for e >0, choose an
integer k > 3 such that 2/logk < e. For any n > 0,
define a,;’ = k/n!, for je€0,s,] and alr ) =
(n+1)!, where s, is the largest integer such that
Ernl < (n+1)!, that is, s, <log(n+1)/logk <
210gn/10gk:< elogn, for n > 1. Consider the set
S = {a,7 :m >0 and j € [0,s,]}\F, then

#(SN(n, (n+ 1)) = s, < elogn.

Now, we shall prove that ¢° is a Diophantine
number. In fact, note that

o0 Sn

-3y

771]010"

For j < s,, let U,LJ/IO“” be the truncatlon of the
above series with denominator 107 (observe that
this fraction is irreducible). Then
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U, 1.2 1.2 1
07— 10 5 < 104 = 10k < 21002
ay, a, a, (10an )
where we used that k> 3. Hence UnJ/IOa'@ is a
convergent, say py(n.j)/Gr(n,j), of the continued frac—
tion of £5 = [by; by, b, ...]. Note that Qr(nj) = 109,
Also, for r(n,j—1) < m < r(n,j), it holds that
r(n,j)

r(n.j)
Ar(n,j—1)

bm < bi <
i=r(n,j—1)+1

k—1 k—1
= qr(n,jfl) < A1

Thus, for any convergent p,,/¢, of the continued
fraction of £%, we have

(1) 1 1

Pm > }
= 3¢k

Q’U 1

-

3 bm+ 1 ng

Aiming for a contradiction, suppose that ¢° is not a
Diophantine number, then there exists a rational
number p/q, with ¢ > 3 and such that

1
@ q‘<W'

Since 1/¢*% < 1/(2¢%), then p/q must be a con-
vergent of the continued fraction of ¢°. Therefore,
by combining (1) and (2), we arrive at the contra-
diction that ¢ < 3. The proof is complete. (I
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