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Abstract: For 0 < � < 1, let W� and R� denote Weyl fractional integral operator and

Riemann-Liouville fractional integral operator, respectively. We establish sharp versions of

Muckenhoupt-Wheeden conjecture for these operators. Specifically, we prove that for any weight

w on ½0;1Þ, we have

kW�fkL1=ð1��Þ;1ðwÞ � ��1kfkL1ððM�wÞ1��Þ

and

kR�fkL1=ð1��Þ;1ðwÞ � ��1kfkL1ððMþwÞ1��Þ:

Here M�, Mþ denote the one-sided Hardy-Littlewood maximal operators on ½0;1Þ. In each of the

estimates, the constant ��1 is the best possible.
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1. Introduction. The purpose of this paper

is to investigate certain weighted inequalities which

arise naturally in the context of fractional integral

operators. Our starting point is the classical result

obtained by Fefferman and Stein in 1971. Let w be

a weight (i.e., a nonnegative, locally integrable

function) on Rd and let M stand for the usual

Hardy-Littlewood maximal operator. Then, as

shown in [4], there exists a universal constant c

such that

�wðfx 2 Rd : MfðxÞ � �gÞ � ckfkL1ðMwÞ;

for any locally integrable function f on Rd and

any � > 0. Here we have used the standard

notation wðEÞ ¼
R
E wðxÞdx and kfkL1ðMwÞ ¼R

Rd jfðxÞjMwðxÞdx. The above statement gave rise

to the following natural question, formulated by

Muckenhoupt and Wheeden in the seventies. Sup-

pose that T is a Calderón-Zygmund singular

integral operator. Is there a constant c, depending

only on T , such that for each � > 0,

�wðfx 2 Rd : TfðxÞ � �gÞ � ckfkL1ðMwÞ ?ð1:1Þ

This problem, called the Muckenhoupt-Wheeden

conjecture, remained open for a long time, and

many mathematicians contributed to interesting

partial results in this direction. In particular,

Chanillo and Wheeden proved in [3] that the

estimate holds true for the square function;

Buckley [2] showed that the conjecture is true for

the weights w�ðxÞ ¼ jxj�dð1��Þ, 0 < � < 1; Pérez

showed that if M2 denotes the second iteration of

M, then

�wðfx 2 Rd : TfðxÞ � �gÞ � ckfkL1ðM2wÞ; � > 0:

Actually, he proved a stronger statement, in which

the operator M2 was replaced by a smaller object

MLðlogLÞ" . We refer the interested reader to [10] for

details. Consult also the recent works of Lerner,

Ombrosi and Pérez [6–8] for further results con-

cerning the weaker form of (1.1). In 2010, the

Muckenhoupt-Wheeden conjecture was finally

shown to be false. See the counterexamples by

Nazarov, Reznikov, Vasyunin, Volberg, Reguera

and Thiele, presented in [9,11,12].

The purpose of this note is to study an

appropriate version of Muckenhoupt-Wheeden con-

jecture in the setting of classical fractional integral

operators on ½0;1Þ. Let us recall the necessary

definitions. For 0 < � < 1, Weyl fractional integral

operator W� and Riemann-Liouville fractional in-

tegral operator R� are defined by
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W�fðxÞ ¼
Z 1
x

fðtÞðt� xÞ��1dt

and

R�fðxÞ ¼
Z x

0

fðtÞðx� tÞ��1dt;

where f is a locally integrable function on the

positive halfline. These operators are fundamental

objects of fractional calculus and play important

role in applications. Note that W� is the adjoint to

R� and vice versa, in the sense thatZ 1
0

fðxÞW�gðxÞdx ¼
Z 1

0

R�fðxÞgðxÞdx;

provided f and g are sufficiently regular (e.g., both

are nonnegative).

We go back to (1.1). The first question we need

to answer concerns the appropriate form of this

estimate for W� and R�. To gain some intuition,

note that Muckenhoupt-Wheeden conjecture is a

weighted weak-type (1,1) estimate, and can be

understood as a boundary of the classical Lp-bound-

edness of Calderón-Zygmund operators, 1 < p <1.

Let us inspect the corresponding results for frac-

tional integrals. If 1 < p < 1=�, 1=q ¼ 1=p� � and

T is W� or R�, then it is well-known (see e.g.

Theorem 383 in Hardy, Littlewood and Pólya [5])

thatZ 1
0

jTfðxÞjqdx
� �1=q

� Cp;q
Z 1

0

jfðxÞjpdx
� �1=p

for some finite Cp;q which depends only on the

parameters indicated. See also [1] for related results

in the weighted setting. In the limit case p ¼ 1, q ¼
1=ð1� �Þ the above Lp ! Lq estimate does not hold

with any finite constant, but we have the corre-

sponding weak-type substitute. This suggests that

the version of (1.1) should describe the action

between the weighted spaces L1 and L1=ð1��Þ;1. The

next problem concerns the maximal operator to be

used in the weight on the right-hand side. It turns

out that W� and R� will require different objects,

the so called Hardy-Littlewood one-sided maximal

operators M� and Mþ. These act on locally

integrable functions f : ½0;1Þ ! R by the formulae

M�fðxÞ ¼ sup
0�u<x

1

x� u

Z x

u

fðtÞdt;

and

MþfðxÞ ¼ sup
u>x

1

u� x

Z u

x

fðtÞdt:

The final comment is that instead of the standard

norming of weak spaces, we will work under slightly

different, but equivalent norms. For any 1 < p <1,

any weight w and any locally integrable function f

on ½0;1Þ, we put

kfkLp;1ðwÞ ¼ sup
1

wðIÞ1�1=p

Z
I

jfðxÞjwðxÞdx
( )

;

the supremum taken over all subsets I � ½0;1Þ
such that 0 < wðIÞ <1.

We are ready to formulate our main results.

Theorem 1.1. For any weight w on ½0;1Þ
and any 0 < � < 1, we have

kW�fkL1=ð1��Þ;1ðwÞ � ��1kfkL1ððM�wÞ1��Þ:

The constant ��1 is the best possible.

Theorem 1.2. For any weight w on ½0;1Þ
and any 0 < � < 1, we have

kR�fkL1=ð1��Þ;1ðwÞ � ��1kfkL1ððMþwÞ1��Þ:

The constant ��1 is the best possible.

Note that both weights M�w and Mþw written

in the L1 norm on the right are raised to the power

1� �. This is a necessary modification in the setting

of fractional integral operators, due to the appear-

ance of L1=ð1��Þ;1 norm on the left.

2. Proofs. We start with the following aux-

iliary fact, a Hardy-type inequality on ½0; 1�.
Lemma 2.1. For any nonnegative function

’ on ½0; 1� and any 1 < q <1, we haveZ 1

0

t�1=q’ðtÞdtð2:1Þ

� q0 sup
0<x�1

1

x

Z x

0

’ðtÞdt
� �1=q Z 1

0

’ðtÞdt
� �1=q0

;

where q0 ¼ q=ðq � 1Þ is the harmonic conjugate to q.

The constant q0 on the right is the best possible.

Proof. By homogeneity, we may assume

that sup0<x�1
1
x

R x
0 ’ðtÞdt ¼ 1. Clearly, this impliesR x

0 ’ðtÞdt �
R x

0 dt for all x 2 ð0; 1�. Hence, by a

classical lemma of Hardy, if f is a nonnegative,

nonincreasing function on ð0; 1�, thenZ 1

0

fðtÞ’ðtÞdt �
Z 1

0

fðtÞdt:

Let us apply this bound to the function fðtÞ ¼
ðt�1=q � c�1=qÞþ, where c > 0 is a fixed constant. As
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the result, we getZ 1

0

ðt�1=q � c�1=qÞþ’ðtÞdt

�
Z 1

0

ðt�1=q � c�1=qÞþdt

¼
ðq � 1Þ�1c1�1=q if 0 < c < 1,
q

q � 1
� c�1=q if c � 1.

8<
:

Denote the latter expression by F ðcÞ. We have

proved thatZ 1

0

t�1=q’ðtÞdt � c�1=q

Z 1

0

’ðtÞdtþ F ðcÞ:

One easily checks that the right-hand side, consid-

ered as a function of c, attains its minimum for c ¼R 1
0 ’ðtÞdt. Plugging this particular value of c, we getZ 1

0

t�1=q’ðtÞdt �
q

q � 1

Z 1

0

’ðtÞdt
� �1�1=q

;

which is (2.1). The optimality of q0 will follow from

the sharpness of the constant ��1 in Theorems 1.1

and 1.2: it will be clear that if q0 could be decreased,

we would obtain an improvement of ��1 in both

theorems. �

Proof of Theorem 1.1. With no loss of general-

ity, we may and do assume that f is nonnegative:

indeed, the passage from f to jfj does not affect the

L1 norm of f , and does not decrease the weak norm

of W�f . Pick I � ½0;1Þ with 0 < wðIÞ <1. Using

the fact that W� and R� are adjoint to each other,

we getZ
I

W�fðxÞwðxÞdx

¼
Z 1

0

fðxÞR�ð�IwÞðxÞdx

� kfkL1ððM�wÞ1��ÞkðM�wÞ
��1R�ð�IwÞkL1 :

To analyze the second factor, observe that for any

x > 0 we have

ðM�wÞ��1R�ð�IwÞðxÞ

¼
R x

0 ðx� tÞ
��1wðtÞ�IðtÞdt�

supu2ð0;x�
1

x�u
R x
u wðtÞdt

�1��

�
R x

0 ðx� tÞ
��1wðtÞ�IðtÞdt�

supu2ð0;x�
1

x�u
R x
u �IðtÞwðtÞdt

�1��

¼
x�
R 1

0 ð1� tÞ
��1�IðtxÞwðtxÞdt�

supu2ð0;1�
1

1�u
R 1
u �IðtxÞwðtxÞdt

�1��

¼
x�
R 1

0 t
��1�Iðð1� tÞxÞwðð1� tÞxÞdt�

supu2ð0;1�
1
u

R u
0 �Iðð1� tÞxÞwðð1� tÞxÞdt

�1�� :

By the preceding lemma, applied to q ¼ 1=ð1� �Þ
and ’ðtÞ ¼ �Iðð1� tÞwÞwðð1� tÞxÞ, t 2 ½0; 1�, the

latter expression does not exceed

1

�
x�

Z 1

0

wðð1� tÞxÞ�Iðð1� tÞxÞdt
� ��

�
1

�
wðIÞ�:

Since x was arbitrary, the combination of the above

arguments gives

1

wðIÞ�
Z
I

W�fðxÞwðxÞdx � ��1kfkL1ððM�wÞ1��Þ;

and it remains to take the supremum over all I to

get the weak-type bound.

To show that the constant ��1 is optimal, take

I ¼ ½0; 1�, w ¼ �½0;1� and f ¼ �½b;1�, where b is an

arbitrary number belonging to ð0; 1Þ. One easily

derives that M�w ¼ 1 on ð0; 1�, which implies

kfkL1ððM�wÞ1��Þ ¼ 1� b. Furthermore,

W�fðxÞ ¼
��1ðð1� xÞ� � ðb� xÞ�Þ if x 2 ð0; bÞ,
��1ð1� xÞ� if x 2 ½b; 1Þ,
0 if x � 1

8><
>:

and hence
R
I W�fðxÞwðxÞdx ¼ ð1� b�þ1Þ=ð�ð�þ

1ÞÞ. Consequently, we see that

kW�fkL1=ð1��Þ;1ðwÞ

kfkL1ððM�wÞ1��Þ
�

1� b�þ1

�ð�þ 1Þð1� bÞ ;

and the latter expression converges to ��1 as b! 1.

This shows the desired sharpness. �

Proof of Theorem 1.2. The argument is similar

to that used in the proof of Theorem 1.1. As pre-

viously, we may restrict ourselves to nonnegative f .

Given I � ½0;1Þ with 0 < wðIÞ <1, we writeZ
I

R�fðxÞwðxÞdx

¼
Z 1

0

fðxÞW�ð�IwÞðxÞdx

� kfkL1ððMþwÞ1��ÞkðMþwÞ
��1W�ð�IwÞkL1 :

Now, for any x � 0,

ðMþwðxÞÞ��1W�ð�IwÞðxÞ

¼
R1
x ðt� xÞ

��1�IðtÞwðtÞdt�
supu>x

1
u�x
R u
x wðtÞdt

�1��

�
R1
x ðt� xÞ

��1�IðtÞwðtÞdt�
supu>x

1
u�x
R u
x �IðtÞwðtÞdt

�1��
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¼
x�
R1

1 ðt� 1Þ��1�IðtxÞwðtxÞdt�
supu>1

1
u�1

R u
1 �IðtxÞwðtxÞdt

�1��

¼
x�
R1

0 t��1�Iððtþ 1ÞxÞwððtþ 1ÞxÞdt�
supu>0

1
u

R u
0 �Iððtþ 1ÞxÞwððtþ 1ÞxÞdt

�1�� :

Fix a positive number K. Note thatRK
0 t��1�Iððtþ 1ÞxÞwððtþ 1ÞxÞdt�

supu>0
1
u

R u
0 �Iððtþ 1ÞxÞwððtþ 1ÞxÞdt

�1��

�
RK

0 t��1�Iððtþ 1ÞxÞwððtþ 1ÞxÞdt�
supu2ð0;K�

1
u

R u
0 �Iððtþ 1ÞxÞwððtþ 1ÞxÞdt

�1��

¼ K�

R 1
0 t

��1’ðtÞdt�
supu2ð0;1�

1
u

R u
0 ’ðtÞdt

�1�� ;

where ’ðtÞ ¼ �IððKtþ 1ÞxÞwððKtþ 1ÞxÞ. By the

preceding lemma, the latter expression above does

not exceed

��1K�

Z 1

0

’ðtÞdt
� ��

¼ ��1

Z K

0

�Iððtþ 1ÞxÞwððtþ 1ÞxÞdt
� ��

� ��1

Z 1
0

�Iððtþ 1ÞxÞwððtþ 1ÞxÞdt
� ��

� ��1x��wðIÞ�:
Since the numbers K and x were arbitrary, we getZ

I

R�fðxÞwðxÞdx � ��1kfkL1ððMþwÞ1��ÞwðIÞ
�;

which gives the weak-type bound for R�.

It remains to prove that the constant ��1

cannot be improved. Take I ¼ ½0; 1�, w ¼ �I and

f ¼ �½0;bÞ, where b is an arbitrary number from

ð0; 1Þ. We easily check that Mþw ¼ 1 on ½0; 1Þ and

hence kfkL1ððMþwÞ1��Þ ¼ b. Furthermore, we have

R�fðxÞ ¼
��1x� if x � b,
��1ðx� � ðx� bÞ�Þ if x > b,

�

so
R
I R�fðxÞdx ¼ ð1� ð1� bÞ�þ1Þ=ð�ð�þ 1ÞÞ. These

calculations give

kR�fkL1=ð1��Þ;1ðwÞ

kfkL1ððMþwÞ1��Þ
�

1� ð1� bÞ�þ1

�ð�þ 1Þb
;

and the expression on the right can be made

arbitrarily close to ��1 by choosing appropriately

small b. This proves the claimed optimality of the

constant ��1 and completes the proof of the

theorem. �
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