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On the growth rate of ideal Coxeter groups in hyperbolic 3-space
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Abstract: We study the set G of growth rates of ideal Coxeter groups in hyperbolic 3-

space; this set consists of real algebraic integers greater than 1. We show that (1) G is unbounded
above while it has the minimum, (2) any element of G is a Perron number, and (3) growth rates of
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ideal Coxeter groups with n generators are located in the closed interval [n — 3,n — 1].
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1. Introduction. Let P be a hyperbolic
Cozeter polytope which is a polytope in hyperbolic
space whose dihedral angles are submultiples of .
The set S of reflections with respects to facets of P
generates a discrete group I' which has P as a
fundamental domain. We call (I',S) the Cozeter
system associated to P. For k€ N, let a; be the
number of elements of I' whose word length with
respects to S is equal to k. Then (T',S) has the
exponential growth rate 7= limsupy,_, ., +/a; which
is a real algebraic integer bigger than 1 ([5]).
Recently arithmetic properties of the growth rate
of hyperbolic Coxeter groups have attracted con-
siderable attention; for two and three-dimensional
cocompact hyperbolic Coxeter groups, Cannon—
Wagreich and Parry showed that their growth rates
are Salem numbers ([2,12]), where a real algebraic
integer 7 > 1 is called a Salem number if 77! is an
algebraic conjugate of 7 and all algebraic conjugates
of 7 other than 7 and 77! lie on the unit circle. Floyd
also proved that the growth rates of two-dimen-
sional cofinite hyperbolic Coxeter groups are
Pisot—Vijayaraghavan numbers, where a real alge-
braic integer 7 > 1 is called a Pisot—Vijayaraghavan
number if all algebraic conjugates of 7 other than 7
lie in the open unit disk ([3]). Kellerhals and Perren
conjectured that the growth rates of hyperbolic
Coxeter groups are Perron numbers in general,
where a real algebraic integer 7> 1 is called a
Perron number if all algebraic conjugates of 7 other
than 7 have moduli less than the modulus of 7 ([9]).
Komori and Umemoto proved their conjecture for
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three-dimensional cofinite hyperbolic Coxeter sim-
plex groups ([10]). In this paper we consider the
growth rate of ideal Coxeter groups in hyperbolic
3-space; a Coxeter polytope P is called ideal if all
vertices of P are located on the ideal boundary of
hyperbolic space. Related to Jakob Steiner’s prob-
lem on the combinatorial characterization of poly-
topes inscribed in the two-sphere S%, ideal poly-
topes in hyperbolic 3-space has been studied
extensively ([4,13]). We consider the distribution
of growth rates of three-dimensional hyperbolic
ideal Coxeter groups; the set G of growth rates will
be shown to be unbounded above while it has the
minimum which is attained by a unique Coxeter
group. Kellerhals studied the same problem for two
and three-dimensional cofinite hyperbolic Coxeter
groups, and Kellerhals and Kolpakov for two and
three-dimensional cocompact hyperbolic Coxeter
groups ([7,8]). We will also prove that any element
of G is a Perron number, which supports the
conjecture of Kellerhals and Perren for three-
dimensional hyperbolic ideal Coxeter groups. More-
over we will show that any ideal Coxeter group I'
with n generators has its growth rate 7 in the closed
interval [n — 3,n — 1], and T is right-angled if and
only if 7 =n — 3. We should remark that Nonaka
also detected the minimum growth rate of ideal
Coxeter groups, and showed all growth rates to be
Perron numbers ([11]). Since we used a criterion for
growth rates to be Perron numbers (Proposition 1)
and a result of Serre (in the proof of Proposition 3),
our arguments are shorter that those of Nonaka.
2. Preliminaries. The wupper half space
H? = {2 = (21, 29,73) € R* | 23 > 0} with the met-
ric |dz|/z3 is a model of hyperbolic 3-space, so called
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the upper half space model. The Euclidean plane
E? = {z = (21, 72,73) € R* | 13 = 0} and the point
at infinity co compose the boundary at infinity OH?
of H3. A subset B ¢ H? is called a hyperplane of H?
if it is a Euclidean hemisphere or a half plane
orthogonal to E?. When we restrict the hyperbolic
metric |dz|/z3 of H® to B, it becomes a model of
hyperbolic plane. We define a polytope as a closed
domain P of H? which can be written as the
intersection of finitely many closed half spaces Hp
bounded by hyperplanes B, say P = () Hp. In this
presentation of P, Fp= PNB is a hyperbolic
polygon of B. Fp is called a facet of P, and B is
called the supporting hyperplane of Fpg. If the
intersection of two facets Fp, and Fp, of P consists
of a geodesic segment, it is called an edge of P; the
intersection [ Fp of more than two facets is a point,
then it is called a wvertex of P. If Fp and Ffp,
intersect only at a point of the boundary 0H? of H?,
it is called an ideal vertex of P. A polytope P is
called ideal if all of its vertices are ideal.

A horosphere ¥ of H? based at v e OH? is
defined by a Euclidean sphere in H? tangent to E?
at v when v e E? or a Euclidean plane in H?
parallel to E* when v = oco. When we restrict the
hyperbolic metric of H? to ¥, it becomes a model of
Euclidean plane. Let v € 9H? be an ideal vertex of a
polytope P in H? and ¥ be a horosphere of H? based
at v such that X meets just the facets of P incident
to v. Then the vertex link L(v) :== PN X ofvin Pis a
Euclidean convex polygon in the horosphere X. If
Fp and Fp, are adjacent facets of P incident to v,
then the Euclidean dihedral angle between Fp NX
and Fp, N X in X is equal to the hyperbolic dihedral
angle between the supporting hyperplanes B; and
By in H? (cf. [13, Theorem 6.4.5]).

An ideal polytope P is called Cozxeter if the
dihedral angles of edges of P are submultiples of .
Since any FEuclidean Coxeter polygon is a rectangle
or a triangle with dihedral angles (7/2,7/3,7/6),
(w/2,7w/4,7/4) or (n/3,7/3,7/3), we see that the
dihedral angles of an ideal Coxeter polytope must
be 7/2, w/3, w/4 or 7/6.

Any Coxeter polytope P is a fundamental
domain of the discrete group I' generated by the
set S consisting of the reflections with respects to its
facets. We call (T, S) the Cozeter system associated
to P. In this situation we can define the word length
ls(z) of x € T with respect to S by the smallest
integer k£ > 0 for which there exist si,89,---,8: €S
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such that = = s189 - - sg. The growth function fs(t)
of (T, S) is the formal power series Y i a;t* where
ay, is the number of elements g € T satisfying ¢5(g) =
k. It is known that the growth rate of (I',S), 7=
limsupy, ., v/ax is bigger than 1 ([5]) and less than
or equal to the cardinality |S| of S from the
definition. By means of Cauchy-Hadamard formula,
the radius of convergence R of fs(t) is the reciprocal
of 7, i.e. 1/|S| < R< 1. In practice the growth
function fg(t) which is analytic on |t| < R extends
to a rational function P(t)/Q(t) on C by analytic
continuation where P(t),Q(t) € Z[t] are relatively
prime. There are formulas due to Solomon and
Steinberg to calculate the rational function
P(t)/Q(t) from the data of finite Coxeter subgroups
of (T, S) ([15,16]. See also [6]).

Theorem 1 (Solomon’s formula). The growth
function fs(t) of an irreducible finite Cozeter group
(T, S) can be written as fs(t) = [my +1,ms +1,---,
my + 1] n]=1+t+- -+t [m,n] =
[m][n], etc. and {mi,mq,---,my} is the set of
exponents of (I, S).

Theorem 2 (Steinberg’s formula). Let (T',.5)
be a hyperbolic Cozeter group. Let us denote the
Cozeter subgroup of (I',S) generated by the subset
T C S by (Tp,T), and denote its growth function by
fr(t). Set F ={T C S : Ty is finite}. Then

1 (-1
fS(til) TeF fT(t) .

In this case, t=R is a pole of fg(t)=
P(t)/Q(t). Hence R is a real zero of the denominator
Q(t) closest to the origin 0 € C of all zeros of Q(1).
Solomon’s formula implies that P(0) = 1. Hence
ap = 1 means that Q(0) = 1. Therefore 7 > 1, the
reciprocal of R, becomes a real algebraic integer
whose conjugates have moduli less than or equal to
the modulus of 7. If ¢ = R is the unique zero of Q(t)
with the smallest modulus, then 7> 1 is a real
algebraic integer whose conjugates have moduli less
than the modulus of 7: such a real algebraic integer
is called a Perron number.

The following result is a criterion for growth
rates to be Perron numbers.

Proposition 1 ([10], Lemma 1).
the following polynomial of degree n > 2

g(t) = Z aith — 1,
k=1

where ay is a non-negative integer. We also assume

where

Consider
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Table I

(p,q,7,9) Denominator polynomial
(2,2,0,2) E-DEC+ + B+ 2+t -1)
(2,0,4,0) (t-1EE+2+t-1)
(0,6,0,0) (t—=1)(B+t-1)
(4,2,0,2) (=14 +t* + 283 + 42 +2t - 1)
(4,0,4,0) (t—1As +2+2t—1)
(2,5,0,2) (t—1)(58 +2t" + 3+ 3t> + 2t — 1)

that the greatest common divisor of {k € N | aj, # 0}
is 1. Then there is a real number rq, 0 <rg <1
which is the unique zero of g(t) having the smallest
absolute value of all zeros of g(t).

3. Ideal Coxeter polytopes with 4 or 5
facets in H3. Let p, ¢, r and s be the number of
edges with dihedral angles /2, 7/3, /4, and 7/6 of
an ideal Coxeter polytope P in H®. By Andreev
theorem [1], we can classify ideal Coxeter polytopes
with 4 or 5 facets, and calculate the growth
functions fs(t) of P by means of Steinberg’s formula
and also growth rates, see Table I. Every denom-
inator polynomial has a form (¢ —1)H(t) and all
coefficients of H(t) satisfy the condition of Propo-
sition 1, so that the growth rates of ideal Coxeter
polytopes with 4 or 5 facets are Perron numbers.

As an application of the data of Table I, we
have the following result.

Proposition 2. The set G of growth rates of
three-dimensional hyperbolic ideal Cozeter poly-
topes is unbounded above.

Proof. After glueing m copies of the ideal
Coxeter pyramid with p =7 =4 along their sides
successively, we can construct a hyperbolic ideal
Coxeter polytope P, with n=m +4 facets. In
Fig. 1 we are looking at the ideal Coxeter polytope
Py with 8 facets from the point at infinity oo, which
consists of 4 copies of ideal Coxeter pyramid with
p =1 =4 whose apexes are located at oco; squares
represent bases of pyramids and disks are support-
ing hyperplanes of these bases. The growth function
of P, has the following denominator polynomial

(t—1)H(t) = (t — 1)(2(n — 3)t*
+(n—4)+(n-3)t—1),
from which we see that the growth rate of P,
diverges when n goes to infinity. ([l

We should remark that all coefficients of H(t)
except its constant term are non-negative. There-
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Fig. 1

fore we can apply Proposition 1 to conclude that
the growth rate of P, is a Perron number. Moreover
H(t) has a unique zero on the unit interval [0, 1] and
the following inequalities hold:

n—2

H<ni3> " (n—3)? =0

1 —n?4n—4
H( >= )
n—1 (n—1)

They imply that the growth rate of P, satisfies

n—-3<7<n-1,

which will be generalized in the next section.

4. The growth rates of ideal Coxeter
polytopes in H3. Recall that p, ¢, 7 and s be
the number of edges with dihedral angles 7/2, 7/3,
7/4, and 7/6 of an ideal Coxeter polytope P in H?.
By means of Steinberg’s formula, we can calculate
the growth function fs(t) of P as

1/fs(1/t) = 1 —=n/2] +p/[2,2]
+q/[2,3] +1/[2,4] + s/[2,6],
where [2, 3] = [2][3], etc. It can be rewritten as
U fs(t) = 1= nt/[2) + p/12,2] + ot 12,3

+rt/[2,4] + st9/]2,6] = 22340 G(t),

where
G(t) = [2,2,3,4,6] — nt[2,3,4, 6] + pt*[3,4, 6]
+ qt3[2,4, 6] + rt'[2,3,6] + st°[2, 3, 4].

Proposition 3. Put a=p/2, b=¢q/3, c=

r/4,d = s/6. Then
(1) a+b+c+d=n-2.

Proof. By a result of Serre ([14]. See also [6])
G(1)=[2,3,4,6](1)(2—n+p/2+q/3+ 1[4+ 5/6)

=0
(]

By using this equality (1) we represent H(t) =
G@)/(t—1) as
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H(t) = —[2,3,4,6] + at[3,4,6] + bt(2t + 1)[2, 4, 6]
+ ct(3t* + 2t +1)[2, 3, 6]

+ dt(5t* + 413 + 312 + 2t +1)[2, 3, 4]
=—-1+(-44+a+b+c+dt

+ (=9 + 3a + 5b + 5¢ + 5d)t*

+ (=15 + 6a + 116 + 14c + 14d)t*
(=20 + 9a + 17b + 25¢ + 29d)t*
(=23 + 11a + 22b + 33¢ + 494d)t°
(—23 +12a + 24b + 36¢ + 66d)t°
(=20 + 11a + 23b + 35¢ + 71d)t"
(—15+9a + 19b + 31c + 61d)t*
(=9 + 6a + 13b + 22¢ + 40d)t°

(=4 +3a+7b+ 11c+ 19d)t"?

+ (=14 a+ 2b+ 3¢+ 5d)t'.

N
n
n
N
+
N
n

From this formula we have the following result
(see also [11], Theorem 3).

Theorem 3. The growth rates of ideal Coz-
eter polytopes in H® are Perron numbers.

Proof. When n the number of facets satisfies
n 2 6, the equality (1) of Proposition 3 implies
a+b+c+d=n—22=4. Then all coefficients of
H(t) except its constant term are non-negative.
Hence Proposition 1 implies the assertion. For n =
4,5, this claim was already proved in the previous
section. (]

Moreover the equality (1) induces the following
two functions H;(t) and H(t) satisfying H;(t) <
H(t) < Hy(t) for any ¢t > 0:

Hi(t)= 14 (=44 (n—2))t + (=9 +3(n — 2))t*
+ (=15 +6(n — 2))t* + (=20 + 9(n — 2))t*

+ (=23 +11(n — 2))t° + (=23 + 12(n — 2))t°
+ (=20 4+ 11(n — 2))t" + (=15 + 9(n — 2))*
+(=9+6(n—2))t° + (=4 +3(n—2))t"°

+ (14 (n=2)t" = (1+1)*(=1 — 3t +nt)

A+ —t+ )1+t +1)7°
Hy(t) = =1+ (=4 + (n—2))t + (=9 + 5(n — 2))t?
+ (=154 14(n — 2))t* + (20 + 29(n — 2))t*
+ (=23 +49(n — 2))¢° + (=23 + 66(n — 2))t°
+ (=204 71(n = 2))t" + (=15 + 61(n — 2))t°

(=94 40(n — 2))t° + (=4 + 19(n — 2))t"°
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+ (=14 5(n —2))t"
=(1+t)°A+ A+t + ) (-
+2nt? — 73 + 3nt® — 9t + Antt —

1 — 3t +nt — 5¢°
11#° + 5nt%).

Now we assume that n = 6. Then all coeffi-
cients of Hi(t) and Hs(t) except their constant
terms are non-negative so that each of them has a
unique zero in (0, 00). The following inequalities

1 1 6
H; =0, H, =— - <0
n—3 n—1 (n—l)‘)

guarantee that the zero of H(t) is located in
[-5, -L5]. Combining with the similar result for n =
4,5 in the previous section, we have the following
theorem which is our main result.

Theorem 4. The growth rate T of an ideal

Cozeter polytope with n facets in H® satisfies
(2) n—3<7<n-1.

Corollary 1. An ideal Coxeter polytope P
with n facets in H® is right-angled if and only if its
growth rate T is equal to n — 3.

Proof. The factor H(t) of the denominator
polynomial G(t) = (¢t — 1)H(t) of the growth func-
tion of P is equal to Hy(¢) if and only if b=rc =
d = 0, which means that all dihedral angles are 7/2.

O

From the inequality (2), we see that the growth
rate 7 of an ideal Coxeter polytope with n facets
with n = 6 satisfies 7 2 3. Therefore combining
with the result of growth rates for n = 4,5 shown
in the previous section, we also have the following
corollary (see also [11], Theorem 4).

Corollary 2. The minimum of the growth
rates of three-dimensional hyperbolic ideal Coxeter
polytopes is 0.492432~1 = 2.03074, which is uniquely
realized by the ideal Coxeter simplexr with p=q=
§=2.
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