
A remark on amenable von Neumann subalgebras in a tracial free product

By Narutaka OZAWA

Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan

(Communicated by Masaki KASHIWARA, M.J.A., June 12, 2015)

Abstract: We give a simple proof of a theorem of C. Houdayer that an amenable

von Neumann subalgebra in a tracial free product von Neumann algebra M ¼M1 �M2 is

contained in M1 whenever it has a diffuse intersection with M1.
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Amenable von Neumann subalgebras provide

key tools in the study of the structure of the

ambient von Neumann algebras. The study of

maximal amenable subalgebras has gained momen-

tum after Popa’s breakthrough in 1983 ([5]) and

culminated in the following recent theorem of

Houdayer ([3]):

Theorem. Let M ¼M1 �M2 be a tracial free

product of finite von Neumann algebras. If A �M is

an amenable subalgebra such that A \M1 is diffuse,

then A �M1.

Most of the results on maximal amenability

so far (including the above) are obtained via the

refinements of [5]. See [3] and the references therein.

Recently however, Boutonnet and Carderi ([2])

have brought an entirely new method. We adapt it

and give a simple proof of the above theorem. Recall

that a finite von Neumann algebra A in BðHÞ is

amenable if there is a state ’ on BðHÞ which is

A-central: ’ðaxÞ ¼ ’ðxaÞ for a 2 A and x 2 BðHÞ.
Lemma. Let A � BðHÞ be a finite amenable

von Neumann subalgebra and ’ be an A-central

state on BðHÞ. If x 2 BðHÞ is such that the norm

closed convex hull of fuxu� � �u�x�u� : u 2 UðAÞg in

BðH� �HÞ contains 0, then ’ðx�AÞ ¼ 0.

Proof. Let us show ’ðx�aÞ ¼ 0 for a given a in

UðAÞ. Approximate ’ by a net ðSiÞi of positive trace

class operators such that k½Si; b�k1 ! 0 for b in A.

Note that k½S1=p
i ; u�kpp � k½Si; u�k1 for any unitary u

and p ¼ 2; 4 ([4]). Thus, for any u1; . . . ; un 2 UðAÞ,
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BðH� �HÞ
:

Now, the assumption implies that ’ðx�aÞ ¼ 0. �

Proof of Theorem. The trace on M extends to

an A-central state ’ on BðL2MÞ by amenability. It

suffices to show ’ðx�AÞ ¼ 0 for every x in M �M1.

We may assume x ¼ v1 � � � vl for some trace zero vj
in UðMiðjÞÞ with iðjþ 1Þ 6¼ iðjÞ. Being diffuse, A \
M1 contains a unitary u whose nonzero powers

are all trace zero. Thus x�ux and u are free Haar

unitaries, and so fx�ukxu	kgk2N is a free family.

Hence,
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by [1]. Therefore ’ðx�AÞ ¼ 0 by Lemma. �
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