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Abstract:

In the present article we discuss necessary and sufficient conditions for concave

functions, i.e. meromorphic functions which map the unit disk conformally on a domain whose
complement is convex. The conditions will be given with respect to an arbitrary point p € (—1,1).
We will also look at representation formulas for the related functions as well as an application of

the derived formula.
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1. Introduction. Let C be the Riemann
sphere and D = {z € C : |2| < 1} the open unit disk
in the complex plane C. A meromorphic function f
is said to be concawve, if it maps D conformally onto
a concave domain, i.e. a\f(D) is convex.

Let ¢ € D. A meromorphic function f, is said to
be in the class Coy, if it is concave and has a simple
pole at q.

In particular, it is commonly known that a
function fj belongs to Coy if and only if

1
Re(l +Z ,°<Z)> <0
fo(2)
for all z € D. For the class Co, the inequality

1 —
(1) Re 1+qu(z)+2+q_1+c{z “0
fiz)  z2—q 1-gqz

is a necessary and sufficient condition, provided by
Pfaltzgraff and Pinchuk in [7].

For simplicity, in this article we will only
consider real ¢, meaning ¢ € (—1,1).

Concave functions of class Co, can be expanded

as

@) fole) = D la

0 o)+ el — )+
Usually normalization considers the Maclaurin
expansion for this class (see e.g. [1,2]). Here
Res, fy = c_1(f,) is the residue of f, at the point
z=¢q. In the special case of ¢ =0 sometimes the
functions are normalized by Resy fo = c-1(fo) = 1.
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In the present article we shall prove the
following:

Theorem 1. Let p,ge (—1,1). A meromor-
phic function f, with simple pole at g belongs to the
class Coy if and only if for all z € D

1+p*2 2z—g

z— z—
() (i)
1—gqz 1—gqz
2 1 _ 1 z
X a + 7 fq( ) < 0.
L+p* 142 fi(2)
For the case ¢ = 0 we actually have
Corollary 2. Let pe (—1,1). A meromor-

phic function fy with a simple pole at the origin
belongs to the class Coy if and only if for all z € D

2p 1

(4) Re<1 +

1 0(2)
+ 1512 (z+p)(1+p2) fé(z)> < 0.

Remark 3. For ¢q=p in (3) we obtain the
original inequality (1) after normalization. If we put
p=01in (3), we have

Re <1 + ¢ — 2z + (-l - qz)fé’(z)) < 0.

f(2)
This is the same result as Livingston obtained in
[4].

The second section will provide the proofs for
the Theorems and in the last section, we take a look
at an application of Theorem 1.
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2. Proofs. 1 ( 2t
1—¢ 1 S
Proof of Theorem 1. Let p,q€ (—1,1) and . q2 (z+ ) +2pz) q/( 1;‘5;) .
fq € Coy. Then there exist both a function fy € Coy TP (1+4¢2) fq(qu)

and a function f, € Co, such that C, - fo(D) = Cj -
fo(D) = f,(D) with constants C;, C, € C\{0}.

Using automorphisms of the unit disk, the
function fy can be described by f, as

+
O )= s )
and f, can be written as
(© B =6 ({2).

For any function of Co, we also know that (1) is
valid.

Setting
2f)(2) z+p 1+pz
Ou(5) =1+ /p() p 1l+p
f(z)  z=p 1-pz

and using (6), we obtain

op (P ()
=1+ +
Q1(2) z=p  (1-p2)°fi(£L)

with respect to fj.

Since Re @1(z) < 0 for all z € D is only valid if
and only if Re Qi({72;) < 0 for all z € D, we obtain
by a short calculation that

() @(”p)

1+ pz

1+4p? N 2p (z+p)(1 + p2) £ (2)
—p?)z

Cl-p (1 (1=p*)f5(2)
Normalizing (7) for z=0 by multiplication with
1722 leads to

I+
1—p° z2+p
(8) 5 @1
1+p 1+ pz
2p 1,1 0 (2)
=+ z+p)(1+pz ,
1+p* 2 1+p2< P(+r )fé(Z)
which has also negative real part for all z € D since
2
% > 0.
Using (5) with

2p 1 1 ()
=+ z+p)(1+pz
T 2 e PRI R

QQ(Z) =1+

we obtain
2p 1 2q

1+ 2 1+¢

(z+p)(1+p2)
1+4qz

Again, we have Re@Qs(z) <0 for all z € D if and
only if Re@(7=%) <0 for all z € D. Therefore we
know that

2p  1—qz

Z—q
Q2<1—q2) 1+p® z—q
z— z—
() i)
1—gqz 1—gqz

N g )
Q+p)1-¢) Q+p)1-¢) fi(2)
has negative real part for all z € D. Multiplying
with 1 — ¢® > 0 results in (3). O
Proof of Corollary 2. The case ¢ = 0 obviously
only requires the step from f, to fy, already
discussed in the previous proof. Equation (8) there-
fore provides the statement of the Corollary. O
Remark 4. The constants C,, ¢ € (—1,1), of
(5) and (6) can be described in terms of an integral
representation formula introduced in [5], giving

B 1-— q2 Res, f,
Co = 1—p2.Resqfq
(1 —-¢) P —2p(¢)
T (-5 Resf, o [ o ©

Using this fact we obtain an alternative integral
representation formula.

A function f,; belongs to Co, if and only if there
exists a holomorphic function ¢:D — D with
¢(p) = p such that f, can be expressed as

, (1—qz+p(z—q))°
9 z) = — Res, f,
O Al (z—)*(1 — q2)* 4
T —20(¢)
. GXPA 1 —¢p(¢) “

for z € D, where T(z) = % is an automor-
phism of the unit disk, mapping T(q) =p with
T(qg) =1-p*>>0.

3. Application. For the expansion (2)
Bhowmik, Ponnusamy and Wirths proved the
following in [3].

Theorem A [3]. Let ¢q€(0,1— ‘/75] and
fq € Coy. Then the variability region of ci(fy) is
given by

Cl(fq) q4 < q2
ai(fy)  1+¢)1-¢2)*| " Q+¢)1-¢)°
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where equality holds if and only if f, is some specific
function.
Here the value ai(f,) is the first coefficient of
the non-normalized Maclaurin expansion of f,.
From [6] we also know the explicit description
of the coefficient body {ai1(f,),c-1(fy),c1(f,)} for
€(0,1).
As an application of Theorem 1, we will
now take a closer look at {c_i(f;),c1(f,)} and

{emi(fo), e2(f) -
First we set for p,q € (—1,1) and 2 € D

o2(1 —¢?) 1—

Pl =— (- ) - B
z— . z—q

+(1 >(“’1qz>
NERREIAC
T+p2 14+ fi(2) )

Let P have the expansion of the form
P(z) = do+di(z— q) + do(z — q)* + -
We calculate

P(q) =1—¢* = dy,

2p
P(q) = 1+(1-¢%)°
W= (1va-a)
and

P"(q) 2

qu((]t;q))) -

2 (1+p*)(1-¢?)

x (—pq — (1 =2pg+p")(1 - ) -
c
c1(fy)
Then the function P(z) defined by

(ire)-o-on e
+ (1 = ¢*)dy — qd1)2* +--)
= (1-¢)P(2)
has positive real part for all z € D with P(0) =
and we can write

P(2) =14 a1z + ap2* + -

+3p(1 —

Since P belongs to the Carathéodory class of
functions, |a,| < 2 for all n € N and

(10) lag + Aax| < 2(1 + |A])
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for A € C. Furthermore, we have a; = d; and ay =
(1 — ¢?)dy — qd; by equating the coefficients.
This immediately leads us to

5 alfy) < 1+p?
ca(f)l = Ipl

(11)

for {c_1(fy), e1(fo)}-
Since (11) is valid for all p € (—1,1), we can

minimize the right hand side by taking p — 1. This
yields

‘H(l—ff)

2 il fy)
C—l(fq)

which is similar to a known result from [6, Theo-
rem 1.1].
In case ¢ = 0 we have

C1(f0)
‘1 * C— 1(f0)

which is the same result as we would have obtained,
if we used the term of Corollary 2 for the definition
of P(z) instead of the term from Theorem 1.

For {c_1(f;),c2(fy)} we calculate
1+p* —2pq
dy+————d
(1—-¢)p
2

T 141 - )

X <1 +p* — 3pg + 3p(1 — ¢*)

<2

)

1)

3 Ci%’ij)) '

In terms of a; and ay we obtain

1 — pq + p*
a2 +7pq P ai
p
CQ(fq)
=— 1—&—;02—3}9q-i-3p1—q23 .
o ( SRR
Therefore using (10) for all p € (—1,1)
1+p’ c2(fy)
—q+(1-¢) —H
3p c-1(fy)
—I—p
< 1+ lpl = pa +p?).
In case ¢ = 0 we have
1+p*  e(f) | _1+p° p
+ < L+ |pl+p7),
Sl e 0

where the area of the disks are minimized for |p|
1, leading to |3 + c°f” |<Qand|—2+c°f“
respectively. The range of {})) therefore hes in the

intersection of these two dlsks giving
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