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Abstract:

We study the inverse Galois problem with restricted ramifications. Let p and ¢

be distinct odd primes such that p =1 mod ¢. Let E(p®) be the non-abelian group of order p?
such that the exponent is equal to p, and let k be a cyclic extension over Q of degree ¢. In this
paper, we study the existence of unramified extensions over k with the Galois group E(p®). We
also give some numerical examples computed with PARI.
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1. Introduction. Let k be an algebraic
number field. Let p be a prime number and G a
p-group. Whether there is an unramified Galois
extension over k with the Galois group G is an
interesting problem in algebraic number theory.
Bachoc-Kwon [1] and Couture-Derhem [3] studied
the case when k is a cyclic cubic field and G is the
quaternion group of order 8. The author [8] studied
the case when k is a cyclic quintic field and G is a
certain non-abelian 2-group of order 32. For an odd
prime p, let E(p®) be the non-abelian group of order
p? such that the exponent is equal to p. In [6], the
author studied the case when k is a quadratic field
and G = E(p*). Let p and ¢ be distinct odd primes
and k/Q a cyclic extension of degree g¢. The
author [9] studied the case when p= —1 mod ¢
and G = E(p*). In this paper, we shall study the
case when p=1 mod ¢ and G = E(p?).

In this paper, we call a field extension L/K/F
is a Galois extension if L/F and K/F are Galois
extensions.

2. Some lemmas. We shall describe some
lemmas which will be needed below.

Lemma 1 ([7, Theorem 8]). Letp be an odd
prime. Assume that the Galois extension K/k/Q
satisfies the conditions:

(1) The degree [k : Q] is prime to p.

(2) K/k is an unramified p-extension.

Let(e):1 —Z/pZ — E — Gal(K/Q) — 1 be a
non-split central extension. Then there exists a

Galois extension L/K/Q such that
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(i) 1— Gal(L/K)— Gal(L/Q) — Gal(K/Q) — 1
coincides with (€), and
(ii) L/ K is unramified.

Since the multiplicative group F; contains a
primitive (p — 1)-th root of unity, it is easy to see
the following lemma.

Lemma 2. Let p and q be odd primes such
that p=1 mod q. Let G be the cyclic group of order
g. Then the p-rank of any irreducible F,[G]-module
is equal to 1.

3. Main theorem. Let p and ¢ be odd
primes such that p =1 mod ¢. Let k/Q be a cyclic
extension of degree ¢, and Ci(k) the ideal class
group of k. Let M= Cl(k)/Cl(k)’ and G =
Gal(k/Q), then M; is a F,[G]-module in a natural
sense. Let o be a generator of G. For 1 £ j < p—1,
we put My(j) := {c € My | ¢ = ¢/}.

It is easy to see that if j2# 1 mod p then
M;.(5) = {1}. Since the class number of Q is 1,
Mk:(l) = {1}

We shall focus on some groups. Let

=y =2 =1, xy =y,
E@®) ={x,vy,z .
(p) < Y Tz = zx, z’lyz:my

This group is a non-abelian p-group of order p? such
that the exponent is p.

Let t be a primitive g-th root of the congruence
t? =1 mod p. Let

o’ =y =w' =1, zy =y,
F(): z,Yy,w )
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These groups are independent of ¢. The center
of I'1 is the cyclic group of order p generated by z.
Let j:I'y = I'y be the homomorphism defined by
r—x,y+— 1y, z2— 1,w+— w. Then j induces a non-
split central extension 1 — Z/pZ — Ty — 'y — 1.
Further, the p-Sylow subgroup of I'y is isomorphic
to E(p?).

For these two groups, we refer Burnside [2] and
Western [13].

Theorem 3. Letp and q be odd primes such
that p =1 mod q, and let k/Q be a cyclic extension
of degree q. Assume that there exist integers o and (3
satisfying the following conditions:

(1)1<O[§p—1, 1<5§p_17

(2) a?=1 mod p, «f =1 mod p,

(3) Mi(a) # {1}, Mi(B) # {1}

Then there exists a Galois extension L/k/Q
such that

(i) L/k is an unramified extension, and

(ii) Gal(L/k) is isomorphic to E(p*).

Proof. By the assumption (3) and Lemma 2,
there exist Galois extensions k,/k/Q and kg/k/Q
satisfying the conditions: (a) k,/k and ksg/k are
unramified cyclic extensions of degree p, (b)
Gal(k,/Q) and Gal(ks/Q) are isomorphic to
(z,wla? = w! =1, w tzw = 2%) and (y, w|y’ = w! =
1,wyw = %), respectively. Let K = k,ks. By the
assumptions (1) and (2), « is a primitive g-th root of
the congruence a? =1 mod p. Then Gal(K/Q) is
isomorphic to I'y. As mentioned above, there exists
a non-split central extension 1 — Z/pZ — T —
Gal(K/Q) — 1. By Lemma 1, there exists a Galois
extension L/K/Q such that Gal(L/Q) =T, and
that L/K is unramified. Since the p-Sylow subgroup
of Ty is isomorphic to E(p*), Gal(L/k) = E(p®).
Therefore L/k/Q is a required extension. O

Remark 4. Let k be a cyclic cubic field, and
p an odd prime such that p =1 mod 3. Let k(p) be
the Hilbert p-class field of k. Miyake [5] studied the
p-rank of the ideal class group Cl(k(p)) and the
action of Gal(k/Q) on Cl(k(p)). Theorem 4 is a
generalization of a part of Miyake’s results in [5].

Let E'(p®) be the non-abelian group of order p?
such that the exponent is equal to p?. The following
proposition is a generalization of [9, Theorem 3].
These proofs are essentially same. For the conven-
ience of the reader, we give a sketch of the proof.
We denote by [G,G] the commutator subgroup
of G.

Proposition 5. Letp be an odd prime and k
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an algebraic number field of finite degree such that
the p-rank of Cl(k) is equal to 2. Assume that there
exists an unramified Galois extension Ly /k such that
Gal(L1/k) = E(p*). Then the following two condi-
tions are equivalent.

(1) Ci(k) has an element of order p>.

(2) There exists an unramified Galois extension
L/k such that Gal(L/k) = E'(p®).

Sketch of the proof. First, we show that the
assertion (1) implies (2). By the condition (1), Ci(k)
has a subgroup isomorphic to Z/p*Z x Z/pZ. Then
there exists an unramified Galois extension Lo/k
such that Gal(Ls/k) = Z/p*Z x Z/pZ. O

Let M = L1Ly and K = Ly N Lo, then M /k is a
p-extension and Gal(K/k) 2 Z/pZ x Z/pZ. Let L
be a subfield of M satisfying the conditions: (i) Lg D
Kand[Ly: K] =p, (ii) Ly # L;(i = 1,2). Then L3 /k
is an unramified Galois extension. We see that L3/k
is a non-abelian extension of degree p® and that the
exponent of Gal(L3/k) is equal to p?. Hence
Gal(L3/k) is isomorphic to E'(p®).

Next, we show that the assertion (2) implies
(1). By the assumption, there exists an unramified
Galois extension Lo/k such that Gal(Lq/k) =
E'(p®). Let M = L;Ly and K = L; N Ly. We put
Gy = Gal(M/k). Let Cyy be the center of Gy. Then
we see that Cy = Gal(M/K). Let K* be the sub-
field of M corresponding to the group Ciy N
[GM,GM}. It is well known that Cy N [GA[,GJW] is
isomorphic to a quotient group of the Schur multi-
plier of G /Cuy. (See for example Karpilovsky
[4, Proposition 2.1.7].) The Schur multiplier of the
group Gy /Cy 2 Z/pZ x Z/pZ is isomorphic to
Z/pZ. Since K /k is abelian, [Gys, G is contained
in Cy = Gal(M/K). Since M/k is non-abelian,
[GM, GM} =CynN [GM, GM} = Z/pZ. Hence
[M : K*] = p, and Gal(K*/k) = Z/p*Z x Z/pZ.

4. Cyclic cubic fields. In this section we
consider the case that ¢ = 3. Let p be an odd prime
such that p =1 mod 3. The number of the primi-
tive roots of the congruence 3 =1 mod p is two.
Let k£/Q be a cyclic cubic field, and K /k/Q a Galois
extension such that K/k is unramified and that
Gal(K /k) =2 Z/pZ x Z/pZ. Then the Galois group
Gal(K/Q) is isomorphic to a group

o =y =w’ =1, ay =y,
— f )
lxw:$a7 w 1yw:yd

F(a’ﬂ) = <‘r7 y7w

w
where a and 3 are primitive roots of t3 =1 mod p.
We call the group I'(«, 3) Type A (resp. Type B), if



No. 4]

Table I
Type of Gal(k(7)/Q) n
Type A 744

Type B 193, 295, 508, 523, 525,

532, 548, 762, 852, 983

a = mod p (resp. « Z f mod p). We remark that
if @« # 3 then af =1 mod p, so that it is nothing
but the group I'y for ¢ = 3.

Remark 6. Let K/k/Q be a Galois exten-
sion such that Gal(K/Q) is Type A. If F is a
number field such that k C ' C K, then F/Q is a
Galois extension.

Proposition 7. Let p be an odd prime such
that p=1 mod 3, and k/Q be a cyclic cubic
extension. Assume that there exists an unramified
Galois extension F [k such that [F : k] = p and that
F/Q is non-Galois. Then there exists a Galois
extension L/k/Q such that

(i) L/k is an unramified extension, and

(i) Gal(L/k) is isomorphic to E(p?).

Proof. Let «a, be distinct primitive roots of
t3 =1 mod p. By the assumption concerning the
existence of F, we see My(«) # {1} and My(B) #
{1}. Thus the proposition follows from Theorem 3.

d

5. Numerical examples. In this section,
we give some examples computed with PARI [10].
Let Cl,(k) be the p-Sylow subgroup of the ideal class
group CI(k).

Example 8. Letn be an integer, and let k& be
the simplest cubic field defined by the equation

22 —nz® — (n+3)z—1=0 (1 <n <1000).

For the simplest cubic fields, we refer Shanks [12].
The number of the field such that the rank of
Cl;(k) is greater than or equal to 2 is 11. The group
Cl;(k) of these fields are isomorphic to Z/7Z x
Z/TZ. Let k(7) be the Hilbert 7-class field of k.
Then for the case n =193, 295, 508, 523,
525, 532, 548, 762, 852, 983, there exists an
unramified Galois extension L/k such that
Gal(L/k) = E(7%). (see Table I).
Example 9. Let k be the simplest cubic field
defined by the equation 2 + 2692% + 266z — 1 = 0.
Then the class number of k is 343, and Cl(k) =
Cl;(k) 2 Z/49Z x Z/TZ. Let o be a generator of
Gal(k/Q). By computing with PARI, we see that
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there exist ideal classes a and b such that a” # 1,
b =1,0(a) = a '%°, o(b) = a™TV%.

Let K/k be the unramified Galois extension
such that Gal(K/k) =2 Z/7Z x Z/7Z. By observing
the action of o on Ci(k)/Cl(k)’, we see that
Gal(K/Q) is Type B. Then there exists an unrami-
fied Galois extension L/k such that Gal(L/k) =
E(7). By Proposition 6, there exists an unramified
Galois extension L' /k such that Gal(L'/k) = E'(7%).

Example 10. Let k be a quintic field defined
by the equation

2° + 3242 + 98902 + 791152> — 4706z + 1 = 0.

The class number of k is calculated in Schoof-
Washington [11]. The class number of k is 37631 =
112 - 311, and Cly (k) = Z/11Z x Z/11Z. The solu-
tion of the congruence t> = 1 mod 11 are 3, 4, 5 and
9. By observing the action of Gal(k/Q) on the group
Clyi(k), we see Gal(k(11)/Q) is isomorphic to
I'(3,4), which is Type B. Thus there exists an
unramified Galois extension L/k such that Gal(L/k)
is B(11%).

Acknowledgment. I should like to express
my gratitude to the referee for her/his careful
reading and for her/his advice.

References

C. Bachoc and S.-H. Kwon, Sur les extensions de
groupe de Galois A4, Acta Arith. 62 (1992),
no. 1, 1-10.

W. Burnside, Theory of groups of finite order,
Cambridge University Press, Cambridge, 1911.

R. Couture and A. Derhem, Un probleme de
capitulation, C. R. Acad. Sci. Paris Sér. I Math.
314 (1992), no. 11, 785-788.

G. Karpilovsky, The Schur multiplier, London
Mathematical Society Monographs. New Series,
2, Oxford Univ. Press, New York, 1987.

K. Miyake, Notes on the ideal class groups of the
p-class fields of some algebraic number fields,
Proc. Japan Acad. Ser. A Math. Sci. 68 (1992),
no. 4, 79-84.

A. Nomura, On the existence of unramified p-
extensions, Osaka J. Math. 28 (1991), no. 1,
55-62.

A. Nomura, On the class numbers of certain
Hilbert class fields, Manuscripta Math. 79
(1993), no. 3—4, 379-390.

A. Nomura, Notes on the existence of certain
unramified 2-extensions, Illinois J. Math. 46
(2002), no. 4, 1279-1286.

A. Nomura, Some remarks on the existence of
certain unramified p-extensions. (to appear in
Tokyo J. Math.).

The PARI Group, PARI/GP, Bordeaux, 2004.
(http://pari.math.u-bordeaux.fr/).



70 A. NOMURA [Vol. 90(A),

[11] R. Schoof and L. C. Washington, Quintic poly- [12] D. Shanks, The simplest cubic fields, Math. Comp.
nomials and real cyclotomic fields with large 28 (1974), 1137-1152.
class numbers, Math. Comp. 50 (1988), no. 182, [13] A.E. Western, Groups of Order p®q, Proc. London
543-556. Math. Soc. S1-30 no. 1, 209-263.



	c_rf1
	c_rf2
	c_rf3
	c_rf4
	c_rf5
	c_rf6
	c_rf7
	c_rf8
	c_rf9
	c_rf10
	c_rf11
	c_rf12
	c_rf13

