On the vanishing of the holomorphic invariants for Kähler-Ricci solitons

By Shunsuke SAITO

Department of Mathematics, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan

(Communicated by Kenji FUKAYA, M.J.A., Feb. 12, 2014)

Abstract: We prove the vanishing of the Futaki-type invariant defined by Tian and Zhu, which is an obstruction to the existence of Kähler-Ricci solitons.

Key words: Kähler-Ricci solitons; holomorphic invariants.

1. Introduction. In Kähler geometry, one of the main problems is to find canonical metrics on Fano manifolds. Our interest is the existence problem of Kähler-Ricci solitons, which have the following importance: Kähler-Ricci solitons are the self-similar solutions of Kähler-Ricci solitons, and are also generalization of Kähler-Einstein metrics different from extremal Kähler metrics.

Let M be an n-dimensional Fano manifold, and ω a Kähler form on M which represents the first Chern class $c_1(M)$ of M. Since both the Ricci form $\operatorname{Ric}(\omega)$ of ω and ω represent $c_1(M)$, there exists a unique smooth real-valued function f_{ω} on M such that

$$\operatorname{Ric}(\omega) - \omega = \frac{\sqrt{-1}}{2\pi} \partial \bar{\partial} f_{\omega}, \quad \int_{M} (e^{f_{\omega}} - 1) \, \omega^{n} = 0$$

Let $\mathfrak{h}(M)$ be the Lie algebra consisting of all holomorphic vector fields on M, and X an element of $\mathfrak{h}(M)$. Since M is Fano, there exists a unique smooth complex-valued function $\theta_X(\omega)$ on M such that

(1)
$$i_X \omega = \frac{\sqrt{-1}}{2\pi} \,\bar{\partial}\theta_X(\omega), \quad \int_M \theta_X(\omega) e^{f_\omega} \,\omega^n = 0.$$

Throughout this paper, we fix the normalization of the Hamiltonian function of X as above. Using these functions, in [5], Tian and Zhu defined a functional $F_X: \mathfrak{h}(M) \to \mathbf{C}$ by

$$F_X(v) := \int_M v(f_\omega - \theta_X(\omega))e^{\theta_X(\omega)}\omega^n, \quad v \in \mathfrak{h}(M).$$

They proved that F_X is independent of the choice of ω and that if M admits a Kähler-Ricci soliton with respect to X, then F_X vanishes. Note that if X is identically zero, then F_X coincides with the original Futaki invariant defined in [1].

Next, let us look for a candidate for the holomorphic vector fields of Kähler-Ricci solitons. Let $\operatorname{Aut}^0(M)$ be the identity component of the holomorphic automorphism group of M, K its maximal compact subgroup. Then the Chevalley decomposition gives us the semi-direct product

$$\operatorname{Aut}^{0}(M) = \operatorname{Aut}_{r}(M) \ltimes R_{u},$$

where $\operatorname{Aut}_r(M)$ is a reductive Lie subgroup of $\operatorname{Aut}^0(M)$ and the complexification of K, and R_u is the unipotent radical of $\operatorname{Aut}^0(M)$. Let $\mathfrak{h}_r(M)$, $\mathfrak{h}_u(M)$ be the Lie algebras of $\operatorname{Aut}_r(M)$, and R_u , respectively. From the decomposition above, we have

$$\mathfrak{h}(M) = \mathfrak{h}_r(M) + \mathfrak{h}_u(M).$$

In [5], Tian and Zhu found a prospective holomorphic vector field: there exists a unique holomorphic vector field X in the reductive part $\mathfrak{h}_r(M)$ such that its imaginary part generates a compact one-parameter subgroup of $\operatorname{Aut}_r(M)$ and F_X vanishes on $\mathfrak{h}_r(M)$. Note that if M has a Kähler-Ricci soliton with respect to some holomorphic vector field X, then X must be this X. Meanwhile, they asked whether, for this vector field X, the obstruction identically vanishes or not ([5, Problem 2.1]). Except for the toric case [6], there has been no investigation for this. Hence, their question has been still open.

On the other hand, in [3], Mabuchi proved that the Futaki invariant vanishes on the unipotent part

²⁰¹⁰ Mathematics Subject Classification. Primary 53C25; Secondary 53C55.

S. SAITO

 $\mathfrak{h}_u(M)$. We extend this result to F_X as follows:

Theorem 1.1. For any holomorphic vector field X in the reductive part $\mathfrak{h}_r(M)$ whose imaginary part generates a compact one-parameter subgroup of $\operatorname{Aut}_r(M)$, the holomorphic invariant F_X vanishes on the unipotent part $\mathfrak{h}_u(M)$. In particular, if we take X as above, then F_X vanishes on $\mathfrak{h}(M)$.

This gives an affirmative answer to the Tian-Zhu problem.

2. Proof of the main theorem. In this section, we complete the proof of Theorem 1.1. Our approach is similar to that of Mabuchi [3] for the Futaki invariant.

Before giving the proof, we note that our normalization convention (1) is equivalent to

$$\theta_X(\omega) + \Delta_\omega \theta_X(\omega) + X f_\omega = 0$$

and using this identity, we can rewrite F_X as

$$F_X(v) = -\int_M \theta_v(\omega) e^{\theta_X(\omega)} \omega^n$$

For the details, see [5, Section 2]. This form is convenient for our purpose.

Now, we prove our main theorem.

Proof of Theorem 1.1. At first, take a sufficiently large integer m, so that K_M^{-m} is very ample. Let Y be a holomorphic vector field in the unipotent part $\mathfrak{h}_u(M)$. Since the infinitesimal action of Y on $H^0(M, K_M^{-m})$ is nilpotent, there exists a basis $\{\sigma_0, \ldots, \sigma_N\}$ for $H^0(M, K_M^{-m})$ such that

$$Y \cdot \sigma_0 = 0, \quad Y \cdot \sigma_i = e_{i-1}\sigma_{i-1} \quad (i = 1, \dots, N),$$

where each e_i is 0 or 1. For any positive number ε , we define a fiber metric h_{ε} on K_M^{-1} by

$$h_{arepsilon} := \left\{ \sum_{i=0}^{N} (arepsilon^{i} \sigma_{i}) \otimes (arepsilon^{i} ar{\sigma}_{i})
ight\}^{-1/m}.$$

Let ω_{ε} be the first Chern form of h_{ε} . By the definition of h_{ε} , ω_{ε} is proportional to a pullback of the Fubini-Study metric ω_{FS} of $\mathbf{P}H^0(M, K_M^{-m})^*$:

$$\omega_{\varepsilon} = \frac{1}{m} \Phi_{\varepsilon}^* \omega_{FS},$$

where $\Phi_{\varepsilon}: M \to \mathbf{P}H^0(M, K_M^{-m})^*$ is a projective embedding defined by a basis $\{\sigma_0, \varepsilon \sigma_1, \ldots, \varepsilon^N \sigma_N\}$. Hence, ω_{ε} is a Kähler form in $c_1(M)$.

By the Calabi-Yau theorem, for ω_{ε} , there exists a Kähler form η_{ε} in $c_1(M)$ such that $\operatorname{Ric}(\eta_{\varepsilon}) = \omega_{\varepsilon}$. Then, h_{ε} coincides with the volume form η_{ε}^n . The infinitesimal action of Y on h_{ε} is written as

$$Y \cdot h_{\varepsilon} = -\frac{1}{m} \left\{ \sum_{i=0}^{N} (\varepsilon^{i} \sigma_{i}) \otimes (\varepsilon^{i} \bar{\sigma}_{i}) \right\}^{-1} \\ \times \left\{ \sum_{i=0}^{N} \varepsilon^{i} (Y \cdot \sigma_{i}) \otimes (\varepsilon^{i} \bar{\sigma}_{i}) \right\} h_{\varepsilon} \\ = -\frac{\varepsilon}{m} \left\{ \sum_{i=0}^{N} (\varepsilon^{i} \sigma_{i}) \otimes (\varepsilon^{i} \bar{\sigma}_{i}) \right\}^{-1} \\ \times \left\{ \sum_{i=1}^{N} (\varepsilon^{i-1} e_{i-1} \sigma_{i-1}) \otimes (\varepsilon^{i} \bar{\sigma}_{i}) \right\} h_{\varepsilon}$$

Since the action of Y on η_{ε}^{n} is just a Lie derivative, we have

$$\operatorname{div}_{\eta_{\varepsilon}} Y = -\frac{\varepsilon}{m} \left\{ \sum_{i=0}^{N} (\varepsilon^{i} \sigma_{i}) \otimes (\varepsilon^{i} \bar{\sigma}_{i}) \right\}^{-1} \\ \times \left\{ \sum_{i=1}^{N} (\varepsilon^{i-1} e_{i-1} \sigma_{i-1}) \otimes (\varepsilon^{i} \bar{\sigma}_{i}) \right\}.$$

On the other hand, by the Theorem 7.1 in [2],

$$heta_Y(\omega_arepsilon) = -\Delta_{\eta_arepsilon} heta_Y(\eta_arepsilon) = -{
m div}_{\eta_arepsilon}Y$$

(For the proof, see [4, p.25].) Hence, we obtain the explicit description of the Hamiltonian function of Y with respect to ω_{ε} :

$$\theta_Y(\omega_{\varepsilon}) = \frac{\varepsilon}{m} \left\{ \sum_{i=0}^N (\varepsilon^i \sigma_i) \otimes (\varepsilon^i \bar{\sigma}_i) \right\}^{-1} \\ \times \left\{ \sum_{i=1}^N (\varepsilon^{i-1} e_{i-1} \sigma_{i-1}) \otimes (\varepsilon^i \bar{\sigma}_i) \right\}.$$

Put $v_i := \varepsilon^{i-1} e_{i-1} \sigma_{i-1}$ (i = 1, ..., N) and $w_i := \varepsilon^i \sigma_i$ (i = 0, ..., N). Using the Cauchy-Schwarz inequality, we get the following estimate:

$$\begin{aligned} |\theta_Y(\omega_{\varepsilon})|^2 &= \frac{\varepsilon^2}{m^2} \frac{\left| \sum_{i=1}^N v_i \otimes \bar{w}_i \right|^2}{\left\{ \sum_{i=0}^N w_i \otimes \bar{w}_i \right\}^2} \\ &\leq \frac{\varepsilon^2}{m^2} \frac{\left| \sum_{i=1}^N v_i \otimes \bar{w}_i \right|^2}{\left\{ \sum_{i=1}^N w_i \otimes \bar{w}_i \right\} \left\{ \sum_{i=1}^N v_i \otimes \bar{v}_i \right\}} \leq \frac{\varepsilon^2}{m^2}. \end{aligned}$$

Therefore, for any positive number ε , we have

No. 3]

(2)
$$|F_X(Y)| = \left| \int_M \theta_Y(\omega_{\varepsilon}) e^{\theta_X(\omega_{\varepsilon})} \omega_{\varepsilon}^n \right|$$
$$\leq \frac{\varepsilon}{m} \|e^{\theta_X(\omega_{\varepsilon})}\|_{C^0} \int_M \omega_{\varepsilon}^n$$
$$= \frac{\varepsilon}{m} \|e^{\theta_X(\omega_{\varepsilon})}\|_{C^0} \langle [M], c_1(M)^n \rangle,$$

where [M] is the fundamental class of M.

To finish the proof, we need the following lemma due to Zhu:

Lemma 2.1 ([7, Corollary 5.3]). Let (M, ω_g) be a Kähler manifold with nontrivial holomorphic vector field X. Suppose that ϕ is a smooth function on M such that $\omega_g + \sqrt{-1}\partial\bar{\partial}\phi$ is a Kähler form and $X\phi$ is a real-valued function. Then, there is a uniform constant C independent of ϕ such that $|X\phi| < C$.

If we fix some reference Kähler form ω_0 in $c_1(M)$, then ω_{ε} can be written as $\omega_{\varepsilon} = \omega_0 + \frac{\sqrt{-1}}{2\pi} \partial \bar{\partial} \varphi_{\varepsilon}$, where φ_{ε} is a smooth real-valued function on M. Then, $\theta_X(\omega_{\varepsilon}) = \theta_X(\omega_0) + X\varphi_{\varepsilon}$. From the assumption on $X, X\varphi_{\varepsilon}$ is real-valued. By the lemma above, there exists a positive constant C independent of ε such that

(3)
$$\|\theta_X(\omega_{\varepsilon})\|_{C^0} \le \|\theta_X(\omega_0)\|_{C^0} + \|X\phi_{\varepsilon}\|_{C^0} < C.$$

Combining (2) and (3), we get $F_X(Y) = 0$.

Acknowledgments. The author would like to express his gratitude to his advisor, Prof. Akito Futaki, for introducing him to the subject of Kähler-Ricci solitons, for many useful suggestions and for his warm encouragements. He also thanks to Kazuma Hashimoto whose master thesis interested him in this problem.

References

- A. Futaki, An obstruction to the existence of Einstein Kähler metrics, Invent. Math. 73 (1983), no. 3, 437–443.
- [2] A. Futaki and S. Morita, Invariant polynomials on compact complex manifolds, Proc. Japan Acad. Ser. A Math. Sci. 60 (1984), no. 10, 369–372.
- [3] T. Mabuchi, An algebraic character associated with the Poisson brackets, in *Recent topics in* differential and analytic geometry, Adv. Stud. Pure Math., 18-I, Academic Press, Boston, MA, 1990, pp. 339–358.
- [4] G. Tian, Canonical metrics in Kähler geometry, Lectures in Mathematics ETH Zürich, Birkhäuser, Basel, 2000.
- [5] G. Tian and X. Zhu, A new holomorphic invariant and uniqueness of Kähler-Ricci solitons, Comment. Math. Helv. 77 (2002), no. 2, 297–325.
- [6] X.-J. Wang and X. Zhu, Kähler-Ricci solitons on toric manifolds with positive first Chern class, Adv. Math. 188 (2004), no. 1, 87–103.
- [7] X. Zhu, Kähler-Ricci soliton typed equations on compact complex manifolds with $C_1(M) > 0$, J. Geom. Anal. **10** (2000), no. 4, 759–774.