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1. Introduction. Fundamental groups of

plane curve complements play an important role

in the study of branched coverings. They may

also be useful to distinguish the connected compo-

nents of equisingular moduli spaces. The systematic

study of these groups goes back to the 1930s

with the founding works of O. Zariski and E. R.

van Kampen. See [9] and [6]. These papers provide a

powerful method to find a presentation of the

fundamental group of (the complement of) any

algebraic curve C in CP2. The generators are loops,

in a generic line L, around the intersection points

of L with C. To find the relations, one considers

a generic pencil containing L and one identifies

each generator with its transforms by monodromy

around the special lines of this pencil. (By ‘special’

line, we mean a line that is tangent to the curve or

that crosses a singularity.) In short, �1ðCP2 n CÞ is

the quotient of �1ðL \ ðCP2 n CÞÞ by the monodro-

my relations. Note that, in practice, it may be

extremely difficult to find the monodromy relations,

especially when the special lines of the pencil are

not over the real numbers.

The fundamental groups of curves of degree �
5 are well known, and there is an abundant

literature dealing with curves of degree 6. In higher

degrees, the systematic study of the group �1ðCP2 n
CÞ is not an easy task. Among the pioneer and most

remarkable results, we should certainly mention the

famous theorem of O. Zariski [9], W. Fulton [5] and

P. Deligne [1]: if C is a curve having only nodes as

singularities, then the fundamental group �1ðCP2 n
CÞ is abelian. We should also quote the following

theorem due to M. V. Nori [7]: if C is an irreducible

curve of degree d having only nodes and cusps as

singularities (say, n nodes and c cusps) such that

2nþ 6c < d2, then �1ðCP2 n CÞ is abelian. (Note

that when the inequality is not satisfied, the group

�1ðCP2 n CÞ may be non-abelian, as shown by the

famous Zariski’s three-cuspidal quartic [9].)

In the series of papers [2–4,8], the authors

investigated another general family of curves called

join-type curves. These curves are defined as

follows:

Definition 1.1. Let �1; . . . ; �‘; �1; . . . ; �m be

positive integers with
P‘

j¼1 �j ¼
Pm

i¼1 �i. A curve C

in CP2 is called a join-type curve with exponents

ð�1; . . . ; �‘;�1; . . . ; �mÞ if it is defined by an equation

of the form

a �
Y‘
j¼1

ðY � �jZÞ�j ¼ b �
Ym
i¼1

ðX � �iZÞ�i ;

where a; b 2 C n f0g, and �1; . . . ; �‘ (respectively,

�1; . . . ; �m) are mutually distinct complex numbers.

(Here, X; Y ; Z are homogeneous coordinates in

CP2.)

In the chart C2 :¼ CP2 n fZ ¼ 0g, with coor-

dinates x ¼ X=Z and y ¼ Y =Z, the curve C is

defined by the equation fðyÞ ¼ gðxÞ, where

fðyÞ :¼ a �
Y‘
j¼1

ðy� �jÞ�j and

gðxÞ :¼ b �
Ym
i¼1

ðx� �iÞ�i :

The aim of the present paper is to give a short

survey and discuss the future perspectives concern-

ing the fundamental groups of these curves. Though
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the paper is of purely expository nature, we do also

announce a new result (Theorem 8.3 and Corollary

8.4 — details of the proof will be given in [4]).

2. Singular points of join-type cur-

ves. The singular points of a join-type curve C

(i.e., the points ðx; yÞ satisfying fðyÞ ¼ gðxÞ and

f 0ðyÞ ¼ g0ðxÞ ¼ 0) divide into two categories: the

points ðx; yÞ which also satisfy fðyÞ ¼ gðxÞ ¼ 0, and

those for which fðyÞ 6¼ 0 and gðxÞ 6¼ 0. Clearly, the

singular points contained in the intersection of

lines fðyÞ ¼ gðxÞ ¼ 0 are the points ð�i; �jÞ with

�i; �j � 2. Hereafter, such singular points will be

called inner singularities, while the singular points

ðx; yÞ with fðyÞ 6¼ 0 and gðxÞ 6¼ 0 will be called outer

or exceptional singularities. It is easy to see that the

singular points of a join-type curve are Brieskorn–

Pham singularities B�;� (normal form y� � x�). For

instance, inner singularities are of type B�j;�i .

Clearly, for generic values of a and b, under any

fixed choice of �1; . . . ; �m; �1; . . . ; �‘, the curve C has

only inner singularities. Hereafter, we shall say that

C is generic if it has only inner singularities.

We say that C is an R-join-type curve if a, b, �i
(1 � i � m) and �j (1 � j � ‘) are real numbers. It

is easy to see that exceptional singularities of

R-join-type curves can be only node singularities

(i.e., Brieskorn–Pham singularities of type B2;2).

Note that a generic curve C with non-real coef-

ficients can always be deformed to an R-join-type

curve C1 by a deformation fCtg0�t�1 such that C0 ¼
C and Ct is generic with the same exponents as C.

(In particular, the topological type of Ct (respec-

tively, of CP2 n Ct) is independent of t.) In general,

this is no longer true for curves having exceptional

singularities.

3. The groups Gðp; qÞ and Gðp; q; rÞ. Let

p; q; r be positive integers. In this section, we recall

the definitions of the groups Gðp; qÞ and Gðp; q; rÞ
introduced in [8] and which appear as the funda-

mental groups of the curves studied in this paper.

The group Gðp; qÞ is defined by the presenta-

tion

h!; ak ðk 2 ZÞ j ! ¼ ap�1ap�2 . . . a0;ð1Þ
akþq ¼ ak; akþp ¼ !ak!�1 ðk 2 ZÞ i:

It is abelian if and only if q ¼ 1 or p ¼ 1 or

p ¼ q ¼ 2. More precisely,

Gðp; qÞ ’
Z if q ¼ 1 or p ¼ 1;

Z2 if p ¼ q ¼ 2.

�

From a purely algebraic point of view, it is not

obvious that the groups Gðp; qÞ and Gðq; pÞ are

isomorphic. However, this is an immediate corollary

of Theorem 4.1 below.

The group Gðp; q; rÞ is defined to be the

quotient of Gðp; qÞ by the normal subgroup gener-

ated by !r. It is abelian if and only if one of the

following conditions is satisfied:

(a) gcdðp; qÞ ¼ gcdðq; rÞ ¼ 1;

(b) p ¼ 1;

(c) gcdðp; qÞ ¼ 2, gcdðq=2; rÞ ¼ 1 and p ¼ 2.

More precisely,

Gðp; q; rÞ ’
Zpr if (a) holds;

Zr if (b) holds;

Z� Zr if (c) holds.

8><
>:

As a consequence of Corollary 4.2 below, if k is

any integer divisible by both p and q, then we have

Gðp; q; k=pÞ ’ Gðq; p; k=qÞ.
4. Generic curves. We use the same nota-

tion as in Section 1. Furthermore, we shall denote

by �0 (respectively, by �0) the greatest common

divisor of �1; . . . ; �‘ (respectively, of �1; . . . ; �m).

The fundamental groups of generic join-type

curves are given as follows:

Theorem 4.1 (cf. [8]). Suppose that C is a

generic join-type curve. Then, the fundamental

group �1ðC2 n CÞ is isomorphic to Gð�0;�0Þ.
Corollary 4.2 (cf. [8]). With the same hy-

potheses as in Theorem 4.1, the group �1ðCP2 n CÞ
is isomorphic to Gð�0;�0; d=�0Þ, where d is the

degree of the curve.

Example 4.3. If C is generic and if �0

or �0 is equal to 1, then �1ðC2 n CÞ ’ Z and

�1ðCP2 n CÞ ’ Zd.

For non-generic join-type curves (i.e., when

exceptional singularities do occur), the classifica-

tion of the fundamental groups is far from being

complete, even for curves having only real coeffi-

cients. However, recently, some progress have been

achieved. So far, if we restrict ourselves to the class

of R-join-type curves, then all the groups are known

up to degree 7 (cf. Sections 5 and 6). (We recall that

in degrees � 5 all the fundamental groups are well

known regardless of the nature of the curve.)

If, furthermore, we restrict our study to so-

called ‘semi-generic’ curves (see Definition 8.1

below), then, regardless of the degree, as in

Theorem 4.1 and Corollary 4.2, the fundamental

groups �1ðC2 n CÞ and �1ðCP2 n CÞ are given by the
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groups Gð�0;�0Þ and Gð�0;�0; d=�0Þ respectively

(cf. Theorem 8.3, Corollary 8.4 and the comment

after Corollary 8.4).

5. R-join-type sextics. Let us start with

the fundamental groups of R-join-type curves of

degree 6 for which the classification is complete.

If C ¼
Sr
i¼1 Ci is the irreducible decomposition

of C, then the r-ple T :¼ fdegðC1Þ; . . . ; degðCrÞg is

called the component type of C. (Here, degðCiÞ is

the degree of Ci.) The next theorem gives the

fundamental groups of R-join-type sextics accord-

ing to their component types.

Theorem 5.1 (cf. [2]). Suppose that C is an

R-join-type sextic with component type T . Again,

let �0 :¼ gcdð�1; . . . ; �‘Þ and �0 :¼ gcdð�1; . . . ; �mÞ.
(a) If �0 ¼ 1 or �0 ¼ 1, then T is one of the sets

f6g, f5; 1g, f4; 2g, f3; 3g, f4; 1; 1g, f3; 2; 1g,
f2; 2; 2g or f2; 2; 1; 1g; as for the fundamental

group, we have:

�1ðCP2 n CÞ ’

Z6 if T ¼ f6g,
Z if T ¼ f5; 1g,
Z� Z2 if T ¼ f4; 2g,
Z� Z3 if T ¼ f3; 3g,
Z2 if T ¼ f4; 1; 1g,
Z2 if T ¼ f3; 2; 1g,
Z2 � Z2 if T ¼ f2; 2; 2g,
Z3 if T ¼ f2; 2; 1; 1g.

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(b) If 2 � �0; �0 < 6 and gcdð�0; �0Þ ¼ 1, then C is

irreducible (i.e., T ¼ f6g) and

�1ðCP2 n CÞ ’ Z2 � Z3;

where Z2 � Z3 is the free product of Z2 and Z3.

(c) If 2 � �0; �0 < 6 and gcdð�0; �0Þ ¼ 2, then T is

one of the sets f3; 3g, f3; 2; 1g or f2; 2; 1; 1g,
and

�1ðCP2 n CÞ ’
Z� Z3 if T ¼ f3; 3g,
Z2 if T ¼ f3; 2; 1g,
Z3 if T ¼ f2; 2; 1; 1g.

8><
>:

(d) If 2 � �0; �0 < 6 and gcdð�0; �0Þ ¼ 3, then T is

either f2; 2; 2g or f2; 2; 1; 1g, and

�1ðCP2 nCÞ ’
Z2 � Fð2Þ if T ¼ f2; 2; 2g,
Z� Fð2Þ if T ¼ f2; 2; 1; 1g,

�

where Fð2Þ is a free group of rank 2.

(e) Finally, if �0 ¼ 6 or �0 ¼ 6, then

�1ðCP2 n CÞ ’ Gð�0;�0; 6=�0Þ:

In the latter case, exceptional singularities do

not occur, and therefore the fundamental group is

also given by Corollary 4.2.

Remark 5.2. Note that weak Zariski pairs

made of curves with the same exponents (but with

different component type) may occur. A weak

Zariski pair means a pair of curves with the same

degree, the same singularities but not the same

embedded topology. In [2], we found an example of

two R-join-type sextics, C and C0, both with 11

nodes and with exponents ð2; 2; 2; 2; 2; 2Þ, such that

�1ðCP2 n CÞ ’ Z� Z3 and �1ðCP2 n C0Þ ’ Z2.

6. R-join-type septics. In degree 7, the

classification of the fundamental groups of R-join-

type curves is also completed.

Theorem 6.1 (cf. [3]). Suppose C is an R-

join-type septic, and let E :¼ ð�1; . . . ; �‘;�1; . . . ; �mÞ
be its set of exponents. (In degree 7, we always have

�0 ¼ 1 or �0 ¼ 1 except when E is the set ð7; 7Þ.)
(a) If E is not the set ð7; 7Þ, then the fundamental

group �1ðCP2 n CÞ is abelian. When, in addi-

tion, E is neither the set ð2; 2; 2; 1; 2; 2; 2; 1Þ
nor the set ð1; . . . ; 1; 1; . . . ; 1Þ, the group

�1ðCP2 n CÞ is isomorphic to Z7 or Z depend-

ing on whether the curve is irreducible or has

two irreducible components. When E is the set

ð2; 2; 2; 1; 2; 2; 2; 1Þ or the set ð1; . . . ; 1; 1; . . . ; 1Þ,
the group �1ðCP2 n CÞ is isomorphic to Z7, Z

or Z3 depending on whether the curve has one,

two or four irreducible components.

(b) If E ¼ ð7; 7Þ, then �1ðCP2 n CÞ is non-abelian,

isomorphic to the free group of rank 6.

Actually, when E is the set ð2; 2; 2; 1; 2; 2; 2; 1Þ
or the set ð1; . . . ; 1; 1; . . . ; 1Þ, the curve C has only

node singularities. The number n of nodes is � 15

except in two special cases where it is equal to 18.

Whenever n � 15, the group �1ðCP2 n CÞ is iso-

morphic to Z7 or Z. When n ¼ 18, �1ðCP2 n CÞ is

isomorphic to Z3.

When E ¼ ð7; 7Þ, exceptional singularities do

not occur, and therefore the fundamental group is

also given by Corollary 4.2. Actually, in this special

case, we can also observe that the curve is a union of

seven concurrent lines, and hence its complement is

C� ðC n f6 pointsgÞ. By Corollary 4.2, when E is

not the set ð7; 7Þ and the curve C does not have any

exceptional singularity, the group �1ðCP2 n CÞ is

always isomorphic to Z7. (In particular, this is the

case when E is of the form ð7;�1; . . . ; �mÞ with

m � 2.)
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The next two sections concern our recent work

on ‘semi-generic’ join-type curves. Theorem 8.3 and

Corollary 8.4 are new. (We shall not give the proofs

here; details will be published in [4].) In fact, these

two results can be stated in the more general setting

of ‘generalized’ join-type curves. We introduce this

new class of curves in the next section.

7. Generalized join-type curves. Let

again �1; . . . ; �‘; �1; . . . ; �m be positive integers,

�0 :¼ gcdð�1; . . . ; �‘Þ and �0 :¼ gcdð�1; . . . ; �mÞ. Set

n :¼
P‘

j¼1 �j and n0 :¼
Pm

i¼1 �i. Here, we no longer

assume n ¼ n0. A curve C is called a generalized

join-type curve with exponents ð�1; . . . ; �‘;

�1; . . . ; �mÞ if it is defined by an equation of the

form

a � Zd�n �
Y‘
j¼1

ðY � �jZÞ�j ¼ b � Zd�n0 �
Ym
i¼1

ðX � �iZÞ�i ;

where, as above, a; b 2 C n f0g, �1; . . . ; �‘ (respec-

tively, �1; . . . ; �m) are mutually distinct complex

numbers, and d :¼ maxfn; n0g. (When n ¼ n0, this

definition coincides with Definition 1.1.) If, further-

more, all these coefficients are real, then we say that

C is a generalized R-join-type curve. In the chart

C2 :¼ CP2 n fZ ¼ 0g, the curve C is given by the

equation fðyÞ ¼ gðxÞ, where

fðyÞ :¼ a �
Y‘
j¼1

ðy� �jÞ�j and gðxÞ :¼ b �
Ym
i¼1

ðx� �iÞ�i :

8. Semi-generic curves. In this section, we

assume that C is a generalized R-join-type curve.

Without loss of generality, we can assume that the

real numbers �i (1 � i � m) and �j (1 � j � ‘)
satisfy the inequalities �1 < . . . < �m and

�1 < . . . < �‘. By considering the restriction of the

function gðxÞ to the real numbers, it is easy to see

that the equation g0ðxÞ ¼ 0 has at least one real

root �i in the open interval ð�i; �iþ1Þ for each

i ¼ 1; . . . ;m� 1. Since the degree of

g0ðxÞ
�Ym

i¼1

ðx� �iÞ�i�1

is m� 1, it follows that the roots of g0ðxÞ ¼ 0 are

exactly �1; . . . ; �m�1 and the �i’s with �i � 2. In

particular, this shows that �1; . . . ; �m�1 are simple

roots of g0ðxÞ ¼ 0: Similarly, the equation f 0ðyÞ ¼ 0
has ‘� 1 simple roots �1; . . . ; �‘�1 such that �j <

�j < �jþ1 for 1 � j � ‘� 1. Of course, the �j’s with

�j � 2 are also roots of f 0ðyÞ ¼ 0. (They are simple

for �j ¼ 2.)

Definition 8.1. Suppose that C is a gener-

alized R-join-type curve.

(a) We say that C is generic if, for any

1 � i � m� 1, gð�iÞ is a regular value for f

(i.e., gð�iÞ 6¼ fð�jÞ for any 1 � j � ‘� 1). Of

course, this is equivalent to the condition that,

for any 1 � j � ‘� 1, fð�jÞ is a regular value

for g. When n ¼ n0, this definition of the

genericity coincides with the one given in

Section 2.

(b) We say that C is semi-generic with respect to g

if there exists an integer i0 (1 � i0 � m) such

that gð�i0�1Þ and gð�i0Þ are regular values for f .

(When i0 ¼ 1, the condition for gð�i0�1Þ is

empty; when i0 ¼ m, the condition for gð�i0Þ is

empty.) The semi-genericity with respect to f

is defined similarly by exchanging the roles of

f and g.

Observe that a generic curve is always semi-

generic with respect to both g and f , while the

converse is not true. Also, note that C can be semi-

generic with respect to g without being semi-generic

with respect to f .

The proof of Theorem 4.1 above, which is given

in [8], also works in the case n 6¼ n0. More precisely,

we have the following theorem.

Theorem 8.2 (cf. [8]). If C is a generalized

generic join-type curve, then �1ðC2 n CÞ ’ Gð�0;�0Þ.
The following two results extend Theorems 8.2

(and 4.1) and Corollary 4.2 to semi-generic gener-

alized R-join-type curves. (Details of the proof will

be given in [4].)

Theorem 8.3. Let C be a generalized

R-join-type curve. If C is semi-generic with respect

to g, then �1ðC2 n CÞ is isomorphic to Gð�0;�0Þ.
Corollary 8.4. With the same hypotheses as

in Theorem 8.3, we have:

�1ðCP2 n CÞ ’
Gð�0;�0;n=�0Þ if n � n0,
Gð�0; �0;n0=�0Þ if n0 � n.

�

In particular, as announced at the end of

Section 4, if C is an ‘ordinary’ R-join-type curve

(i.e., n ¼ n0) which is semi-generic with respect to g,

then

�1ðCP2 n CÞ ’ Gð�0;�0; d=�0Þ ’ Gð�0; �0; d=�0Þ;

where d is the degree of the curve (cf. Section 3).

Note that the conclusions of Theorem 8.3 and

Corollary 8.4 are still valid if we suppose that C is

semi-generic with respect to f .
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Example 8.5. With the same hypotheses as

in Theorem 8.3, if n is a prime number and ‘ � 2,

then �0 ¼ 1, and hence �1ðC2 n CÞ is isomorphic to

Gð1;�0Þ ’ Z while �1ðCP2 n CÞ is isomorphic to Zn

or Zn0 depending on whether n � n0 or n0 � n. (Of

course, if n0 is a prime number and m � 2, then

�0 ¼ 1, and we get the same conclusions.)

Example 8.6. Consider the generalized

R-join-type curve C defined by the (affine) equation

fðyÞ ¼ gðxÞ, where fðyÞ ¼ cðyþ 1Þ2y3ðy� 1Þ; with

c > 0, and gðxÞ ¼ ðxþ 2Þ2x4ðx� 2Þ. Clearly, f has

four critical points �1 ¼ �1 < �1 < �2 ¼ 0 < �2. The

function g also has four critical points �1 ¼
�2 < �1 < �2 ¼ 0 < �2. We choose the coefficient c

so that fð�2Þ ¼ gð�2Þ. Then, the curve C is not

generic. However, as gð�1Þ is a regular value for f ,

the curve is semi-generic with respect to g.

Then, by Theorem 8.3 and Corollary 8.4, we

have �1ðC2 n CÞ ’ Gð1; 1Þ ’ Z and �1ðCP2 n CÞ ’
Gð1; 1; 7Þ ’ Z7.

9. Future perspectives. We conclude this

paper with a conjecture that extends to general-

ized R-join-type curves a former conjecture made

in [2]. (The statement given in [2] (which includes

join-type curves with non-real coefficients) is

incorrect. It should be replaced by the statement

given here.)

Conjecture 9.1. Let C and C0 be two gen-

eralized R-join-type curves with the same set of

exponents ð�1; . . . ; �‘;�1; . . . ; �mÞ and the same

component type (see Section 5 for the definition).

We suppose that at least one of these two curves is

generic. Then, we have the isomorphisms:

� �1ðC2 n CÞ ’ �1ðC2 n C0Þ ’ Gð�0;�0Þ;

� �1ðCP2 n CÞ ’
Gð�0;�0;n=�0Þ if n � n0,
Gð�0; �0;n0=�0Þ if n0 � n.

�

The conjecture is true for (ordinary) R-join-

type curves of degree 6 or 7 as well as for

generalized semi-generic R-join-type curves.
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