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Abstract:

In this paper, we obtain an analog of Younis’s Theorem 5.2 in [7] for the Dunkl

transform on the real line for functions satisfying the (/,7)-Dunkl Lipschitz condition in the

space L/(R, |z|***'dz), where a > — 1.

Key words:

1. Introduction and preliminaries. Dunkl
operators provide an essential tool to extend Four-
ier analysis on Euclidean spaces. These operators
have been introduced in 1989, by C. Dunkl in [2],
the Dunkl kernel e, is used to define the Dunkl
transform F, which was introduced by C. Dunkl
in [3]. The Dunkl transform on the real line, which
enjoys properties similar to those of Fourier trans-
form, is generalization of the Fourier transform.

Younis ([7], Theorem 5.2) characterized the set
of functions in L?(R) satisfying the Dini-Lipschitz
condition by means of an asymptotic estimate
growth of the norm of their Fourier transforms,
namely we have

Theorem 1.1 ([7], Theorem 5.2).
L?(R). Then the following are equivalents:

1. |If(.+h)— f(')||L2(R) = O(@) as h — 0,
0<a<l,B>0, "
2. [y IF (NN = O (logr) ™) as r —

—+o00,
where F stands for the Fourier transform of f.

In this paper, we obtain an analog of Theorem
1.1 for the Dunkl transform on the real line. For this
purpose, we use a generalized translation operator.

Let L, = L’(R, |z|**"'dz), where a > — 1 de-
note the L” space of functions f defined on R
endowed with the following finite norm

_ 1 P 2a+1 ip
e = (g L P o)

where 1 < p < 2.

Let fe
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Let j,(z) denote the normalized Bessel function
of the first kind of order « given by

FEEET SE S
«(2) =T« — (=) , 2 ,
J —nll'(n+a+1) \2

where C denotes the complex plane. Define the
Dunkl kernel e, by

ea(x) = ]a(m) + 1CaTJat1 (:17),

where ¢, = (2a4+2)7!, i = v/—1.
We define a differential-difference Dunkl oper-
ator

D) = 2 @)+ (a4 1) LD,

feC'(R).

So the function y = e, (z) satisfies the equation
D,y — iy = 0 with the initial condition y(0) = 1 and
it is the unique solution (see [4]). In the limit case
with a = —% the Dunkl kernel coincides with the
usual exponential function e'*.

Lemma 1.2. For xz € R the following in-
equalities are fulfilled

1. |eq(x)] <1, and the equality is attained only
with x =0,

2. |1 —eq(x)] < 2],

3. |1 —eq(x)| > ¢, with |z|>1, where ¢ is a
certain constant which depends only on a.
Proof. See Lemma 2.9 in [1]. O

The Dunkl transform of order o for feL,, is
defined by

Fol ) = g o f@eaOlaf s

For a = —%, F. coincides with the classical
Fourier transform.

The inverse Dunkl transform is defined by the
formula
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1 o+
F#) = G T /R Fulh)Nea(=Aa) AP,

By Plancherel’s theorem and Marcinkiewics
interpolation theorem (see [5]) we get for feL,,
with 1 <p§2andqsuchthat%+%:1,

(1) [Fa(Dga < Cillfllpar

where C is a positive constant.

K. Trimeche introduced in [6] the generalized
translation operator Ty, on L,,. For feL,, we
have

(2) fa(Thf)(A) = ea()‘h)]:a(f)()‘)

2. Main results. In this section we give the
main results of this paper. We need first to define
(8,v)-Dunkl Lipschitz class.

Definition 2.1. A function f € L,, is said
to be in the (3,7)-Dunkl Lipschitz class, denoted by
DLip(p, 8,7); if

IThf() = FOllpa
h?
O(@) G,Sh—>0, B,’Y>O

Theorem 2.2.
DLip(p, 3,7). Then

/M IR

= O(r*(logr)™™) as 1 — +o0,
where L +1=1.
Proof. Let f € DLip(p,3,7). Then

hp
IThf(.) — f(.)||p3a = O(W) as h — 0.

If [\ €[},7] then [Ah|>1 and (3) of Lemma
1.2 implies that

Let

f(@) belong to

1
1< |1 —ea(AR)[".
cd

Therefore
/ Ful )N AZ A
1/h<IN<2/h
1
<= 11— e R Fa(F)(N)FAZ A

T 1< <2/h
1 Q

e LR CUILENE VRS
¢ JR

From formulas (1) and (2) we have

[Vol. 90(A),

/R 11— ea(AR)IF o ()N dA
< CHThf() = FOI o

Then there exists a positive constant K such
that

has
/ Fa(DOIAP N < K

1/h<|A<2/h (log3)
We obtain

—qB

Ful IV PN < K —— .
/ o B DO < K
So that
[ 1A iy
[Al>r
[ o L
r<|A|<2r 2r<|A|<dr Ar<|A|<8r
X | Fa(HOIAPT A
K B . (QT)*qﬂ (47,)%15 .
~ (logn)?” (log 2r)? (log 4r)?
-k a8 (271)*115 (47”)711:3
~— (logn)? (log )™ (logr)?
r=9 —q8 —qB\2 —qB\3
48
Ki
(logr)™’

where C' = (1 —2799) ",
Finally, we get

/)\|>,, |F o (H VYA

r—90
= O(W) as r — +0o0.

Thus, the proof is finished. O

Definition 2.3. A function f € L,, is said
to be in the (p,,~)-Dini Lipschitz Dunkl, denoted
by DLip(p,1,7); if

P(h)
IThf() = fFOll,0 = O<(10g%)7 as h — 0, v>0,
where
1. 9¥(t) a continuous increasing function on
[0, 00),
2. $(0) =0,

3. P(ts) = Y(t)(s) for all ¢, s € [0, 00).
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Theorem 2.4.
DLip(p,v,7). Then

[

= O((r 9 (logr) ) as r — +o0,

Let

f(z) belong to

where 1—1) + % =1.
Proof. Let f € DLip(p,,~). Then we have

ITf () = FOllpe = 0<M> as h— 0.
(log ﬁ)

If |\l €[},2] then [Ah[>1 and from (3) of

Lemma 1.2, we obtain

1
1< |1 —ea(MR)]".
c?

Then
/ Fal AP dA
L/h<|A<2/h
1 (%
<L 11— ealAR)7IF (F) VAR dA

ot Jiyn<in<2/n
1

S L EECOILENE VR
¢l Jr

Wy
=0 <<log w)

where K is a positive constant.
We obtain

/ o DO = o(gorr).

(logr)™

Then there exists a positive constant C' such
that

G|

Fo (HON*ax < © .
/r<|x<27-' (NI r < 0ot

So that

/*l>~ Fal YA ax

_ [ [ e e
r<|\|<2r 2r<|A|<4r Ar<|A|<8r
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X |Fa (AP dA

<C w(r*q)A »((2r)79) H(dr))
= (logr)? (log 2r)" (ogdr)™
<C 1/’(7“*‘1)N w((%)*‘j) 1#((47”)7:1)
- (logm)” (logr)™ (logr)™
<2 (14 gy LR £ 4
(logr)
Therefore
/M» IFL(H) WA N < ¢ (;/Jo(gri;;‘?””

where Cy = C(1 — 1/1(27‘1))71 since 1(277) < 1.
Finally, we get

/A|>r \Fa( £V ar
- O((d)(r—q)> as r — +00.

logr)?

and this ends the proof. O
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