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Determination of a nonlinearity from blow-up time

By Yutaka KAMIMURA® and Hiroyuki USAMI*™

(Communicated by Kenji FUKAYA, M.J.A., Oct. 14, 2014)

Abstract:

We study an inverse problem to determine a nonlinearity of an autonomous

equation from a blow-up time of solutions of the equation. A local well-posedness of the inverse

problem near a nonlinearity of the type u!™

, 0 > 0, is established. The paper also suggests that

the inverse problem has a good, mathematical structure from a viewpoint of the Wiener-Hopf

theory in integral equations.

Key words:

1. Problem and result. Let a€ R and

consider an initial value problem

d*u
(1.1) u(0) = h, a < h < oo;
du
—(0)=0
o=,

where f is a continuous, positive function on the
interval (a,00). We impose on f the super-linearity
condition

0 du
(1.2) / —< X
by F&)dg
for each b > a. A typical example of functions
satisfying (1.2) is given by f(u) =u!'"", ¢ >0 or
those behaving like u!*”
Because of f > 0, the solution of (1.1) is given

by an inverse function of ¢(u) determined by
dt 1

NN

for h > a. Therefore, under the condition (1.2), the
solution of (1.1) for each h € (a,00) blows up at the

time
1 e du
R e

for each h € (a,00). We call Tf the blow-up time
function associated with f, and let B be a map

as u — OQ.

t(h) =0

(1.3) Ty

2000 Mathematics Subject Classification.
Secondary 45GO05.

*) Department of Ocean Sciences, Tokyo University of
Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo
108-8477, Japan.

**) Applied Physics Course, Faculty of Engineering, Gifu
University, 1-1 Yanagido, Gifu 501-1193, Japan.

Primary 34A55;

doi: 10.3792/pjaa.90.127
©2014 The Japan Academy

Inverse problem; blow-up time; multiplicative Wiener-Hopf.

assigning the blow-up time function Ty to f,
namely, B: f— T}.

We now pose an inverse problem discussed in
the present paper:

Problem 1.1. Given a function T = T(h),
a < h < 0o, determine a nonlinearity f of equation
(1.1) so that Bf =T.

We assume that a = 1 without loss of general-
ity because the shift 4:=u—a+1, h:=h—a+1
and setting f(@) = f(@+ a — 1) change (1.1) to

RITRN

d—;;:f(ﬁ), 0<t< oo
a@(0)=h, 1<h<oo;
di

—(0)=0

70 =0

where f is a continuous, positive function on the
interval (1,00). Therefore, throughout the paper,
we fix a as a = 1. Then Problem 1.1 is equivalent to
finding a solution f of

1< h< o0,

1 e U
(14) — [ ———— =T(h),
ﬁ/fv [ f(€)de

where T'(h) is a prescribed, positive function on the
interval (1,00).

For the typical case fo(u) = cu'™® with ¢, > 0,
the blow-up time function is calculated as

To(h) = ¢h7%,

where

, 1 ( o 1)
c = B ,= .
V2c(2+0) \2(2+0) 2
In the present paper we discuss Problem 1.1 near
this correspondence

(1.5)  B: fo(u) = cu'™ — Ty(h) = Jdh7s.
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To define function spaces for f and for T in a
unified manner, we introduce a function space. Let
I C (0,00) be an interval, a € (0,1], n € R, and let

(1.6)  c*(I), ={d € C): ¢, +|ls, < oo},

where |- |, and |-, are semi-norms defined by

|¢(z)]
= su ,
P =S
o |sTe(E) — gt e ()
|¢‘(}’J} ‘= sup a :
zyel |:L' - y|
T#y
Equipped with the norm |||, , := [¢], + |#],,, th

space C*(I ) is a Banach space When I is an open
interval such as I = (1,00), we omit the bracket of
C*(), such as C*(1,00),.
We can now state our main result (Fig. 1):
Theorem 1.2. Let a be any number fized
such that 0 < a < % Then B maps a sufficiently

small neighborhood of fo in C*(1,00),,, homeo-
morph@cally onto a mneighborhood of Ty in
Ca+2(]. OO) a.

Problem 1.1 is motivated by a use of blowing
up solutions to various types of differential equa-
tions. We explain it in an aspect of a comparison
method. Let R > 0 and consider positive C?-solu-
tions u(z) of the elliptic inequality

Au>g(u) in B(0,R),

where A is the N-dimensional Laplace oper-
ator, N >2 B(0,R)={x € R :|z| <R}, and g:
(0,00) — (0,00) is a continuous function satisfying
g(+0) € [0,00). We want to get upper bounds to
u(z) under the assumption that there is a strictly
increasing, locally Lipschitz continuous function
g« : [0,00) — [0,00) satisfying 0 < g.(u) < g(u) in
(0, 00),

00 1
/ G(u)f%du < 00, and / G(u)f%du = 00.
1

0
Here G(u) := [ g.(v)dv. It is known (see Keller (3],
Usami [5]) that there is a positive, monotonically
increasing C%-solution v(r) to the problem

d d
rl—Nd_ (erd_v> =g.(v), 0<r<R,
(1.7) " "

—(0) =0, andwv(r) oo as r— R.
(The constant R is the “blow-up time” of v(r).) So

the function v(|z|) satisfies
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flu)
B B!
T'(h)
1 u, h
Fig. 1. Local homeomorphism.

Av=g.(v), in B(O,R),

lim v = oo.

|z|—R

Noting the inequality A(u—v) > g.(u) — g.(v),

we can show that w(x) <wv(|z|) in B(0,R) as in
Usami [6]. On the other hand, the monotonicity of
v(r) implies that

%(T) < g:(v(r)) /OT (;)Nld&

. Returning to (1.7), we find that

v g:(v)
dr = N

Note that this is an inequality version of the form
(1.1). By the same computations as for (1.3) we
obtain

[, ﬁ =\

ThlS is equlvalent to v(0) <G~ (\/%R), where

=[x \/-——_—. Since u(z) <wv(|z|) as seen
above, we have u(0) < G~'(/2R). If 2y € B(0, R),

then Au > g(u) in B(gcg, — |xg]). Therefore argu-
ing as above, we have an upper estimate

u(zg) < G! ( %(R— |xo|)>

Our success in getting this estimate depended on
the existence of the solution v(r) that blows up at
the time R. In view of this observation, a general
question arises: in what situation a prescribed time
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becomes the blow-up time. This question leads to
Problem 1.1.

The present paper is organized as follows: In
Section 2, we give our strategy for proving Theorem
1.2, that is, we show it is enough to prove a mapping
F defined by (2.2) maps a small neighborhood of a
constant function ¢ in C%(0,1), homeomorphically
onto a neighborhood of v2¢ in C”+2(O 1), To
prove this, we apply an inverse mapping theorem to
the mapping F. Proposition 3.1 in Section 3 shows
that our function spaces setting is appropriate.
Proposition 4.1 shows that the Fréchet derivative
of 7 at c is a homeomorphism of Cc*(0,1), onto
c e (0,1),. The proof of Theorem 1.2 is given at the
end of Section 4.

Throughout the paper, we use the notation
A < B, which implies that there exists a positive
constant M independent of variables of A, B such
that A < MB.

2. Reduction. Via a change of variables
z=h' u=y", equation (1.4) can be recast as

Al (07 -

By using a change of variables y = xr, n = zt, and
introducing a new function

(%), 0<z<l.

1
ga(x)::x1+"f<x>, 0<z<1, where o>0,

this equation can be written as
1
1 Y o(at 2dr 4
il / elet) Zaf =1,
\/§ 0 r t3+a 72 ¢

Moreover we set
P(x) = \/ix_%T(%)

Then the resultant equation becomes

2 dr
) — =9(), 0<z <L

(2.1) /;(/Tl ﬁgﬁ) dt __T

By defining a mapping F by

(22)  Fol) = /0 1( / 1i§fi)dt) -4

where 0 < x < 1, equation (2.1) is written simply as
(2.3) Fo =1

Let * denote a transformation defined by

¢*(z) = (1) for a function ¢, and let ma'- denote

the multiplication operator by the function ma?.

NIH
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Then the reduction procedure described above is
illustrated by the following commutative diagram:

(2.4)
B

feca(laoo)l+0 CaJr% (1700)_% >T
* =~ * o
1 1
JeCh(0,1) 1y €T (0,1)5 5 T"
| V2 T |
1
p€C(0, 1), L ot (0,1) 3 0.

The vertical arrows in the diagram (2.4) are
homeomorphisms, which is guaranteed by

Lemma 2.1. LetC"(I), be the function space
defined by (1.6) for each a € (0,1], n € R. Then:
(1) The multiplication operator by z' gives a
homeomorphism of C*(I), onto C*(I),,, for each
tc R.

(2) A transformation x: ¢*(z) = ¢(L) gives a ho-
meomorphism of C*(1,00)_, onto C*(0,1),.

Proof. Because (1) is direct from the definition
(1.6), we shall prove only (2). Let ¢ € C*(1,00)_,.
Then, by a change of variables z = h™!, y = k!, we
obtain

o |z 7"9" (x) — y* 9" (y)]
|¢ |a',7] = Ssup «a
O<z,y<1 |='E - y‘
TFY
[k h1¢(h) — kK¢ ()|
= Sup «
1<h,k<oo ‘h - k'
h#k
< 2(9]_, + [la_y
because |h* — k| < |h—K|* for 1< hk< oo,
0 < a < 1. This shows that ¢* € C*(0,1), and the

correspondence ¢ — ¢* : C*(1,00)_, — C*(0,1), 1is
continuous. In a similar way we can show that the
inverse ¢*+— ¢ gives a continuous map from
(0, 1) to C*(1,00)_ - O

Thus we have:

Proposition 2.2. There is a commutative
diagram (2.4), where the vertical arrows are homeo-
morphisms.

Proposition 2.2 tells us that the proof of
Theorem 1.2 is reduced to showing that F defined
by (2.2) maps a sufficiently small neighborhood of
a positive, constant function ¢ in C*(0, 1), homeo-
morphlcally onto a mneighborhood of \/§c
C‘”?(O 1),
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3. Mapping F. In this section we study the
mapping F to establish the following

Proposition 3.1. Let 0<a< 1, o>0 and
set

U:={peC0,1),: iI}f o(x) > 0}.

Then F defined by (2.2) is a C'-mapping of U to
C‘”Z(O 1), The Fréchet derivative F'(py) of F at a
function oy € U is given by

(3-1) F' (o) ()
3
1 [t Ot Zdr
:__/’Mxhﬁ/ /‘%@$d8 dr
2 0 t3+0 0 ” 33+U 7.2
where 0 < x < 1. In particular, the Fréchet deriva-
tive F'(c) of F at a constant function c with ¢ > 0 is

written as

1
(32 Flelr) = - / B(t)p(xt)dt,

where ®(t) is a function defined by

3
240)2 1 t 81+§o
o) = 20 3+0/73ds.
2c2 t 0 (1 _ 82—0—0)5

The proof of Proposition 3.1 is a combination
of four lemmas.
Lemma 3.2.

st i= Foe = [ ([ A a

belongs to C‘”%(O7 1),-

o) L .
Proof. By ¢ e U, (frl *jﬁﬁ dt)? < Z—=. This

yields [¢], < oo. To prove [¢] 1, < oo, we assume
x > y without loss of generality.2 Since

2(x) — Y I (y)
— (@™ =y (@) + 5 (@) — d(y)

and |(z atg y(”%) P(x)| S |o— y|o‘+%, it suffices to
show that [y (6(z) — v(y)| S o — y|**2.

By an elementary calculation with an inter-
change of the order of integration, we get

() = Y(y)

f ([
=—%/ AT
L[ [ ettt

(3.3)

If ¢ € U then the function

_1
2 dr
2

a
1+2

(1= 0009) ) S
r2

€3+(7

o(yt)

3
"2 4 1 t) —
) [,
7 , t3+(7

([ )

[Vol. 90(A),

Therefore, by putting

(34) O(z,y;t) := — St

(]

we obtain

0209 ) i

$(z) — Ply) = / B(a, ;1) (o (at) — p(y))dt.
This leads to
Y () — (y))

=yt / B, ;1) (plat) — ply)dt

gt / B, ;1) (plut) — ()t
0

=1+ D,
where
1 % d.
ni= "o (5 ) el - o)
y x x
e Cofend) ()
0 \T x Yy Yy
(p(s) — ¢(y))ds.
Since, in (3.4), Op(xf) + (1 —0)p(yé) > infp >0,

O (z,y;t) satisfies

1 t 7,1+§0
e
0 (

3
1— T2+U)§

(3.5)

1
<l (1 -0
Moreover it follows from (3.4) that the derivative
D' (x,y;t) of ®(x,y;t) with respect to ¢ satisfies
g 1
(3.6) (1 -t)® (z,yst)| St2TH(1 1) 2
Because of ¢ € C*(0,1),, ¢ satisfies
3.7 - <(1-Y)" <
67 e el (1-1) y<s

Hence, by (3.5) and a substitution s = y + n(z — y),
we have

T Z1 —; @
e [ () o2y
y x T S T
1
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Because of an <y+n(z—y) <z, y/z <1, we get
L S (z—vy) oty Moreover, I is rewritten as

I =y} /0 / ) () = (o)

which can be evaluated by using (3.5), (3.6), (3.7)
and the substitution ¢ = (1 — s)/(1 — ns) so that

1 1 g 3
L] <y / / ()5~ (1 = pt) 2 (1 — 1)t
0 y/x
1 o o 3
= y“%/ Tldn/ 271 —mt)2(1 — t)dt
1

y/x

1 1 cof1 _ o\3—

:y(ﬁ%/ n2- (1 _ )a*% dn/ s*(1—s) _ds.
y/z 0 ( n8)2+a—§

Taking the assumption a < % into account, we get

1
1 o
IIQISy‘”?/ nz (1 —n)*"
y/x

1
a+y
Sy (1 - Q) <@yt

T

Thus [, 1, < oo, and so, ¢ € C”+2(0 1), O
In order to show that F is Fréchet differenti-
able, the following generalization of Lemma 3.2 is
useful.
Lemma 3.3. Let ¢g €U, ¢1,¢2 € C*(0,1),,

and let x(x) be a function defined by
1/ p1 -3 2 1
¢o(xs) 2 o;(xt) dr
X(l‘) :A < , g3to ds 211 , {3to dt ﬁ
Then x belongs to CH%(O 1), with the norm
IXllasto S Idolla l9rllao €2l 0-

q

1
an

=

Proof. This lemma can be proved by the same
method as in the proof of Lemma 3.2. (|
Lemma 3.4. Letpy € U and let F'(py) be an
operator defined by (3.1). Then:
(1) For each ¢ € C*(0,1),,

. Flpo+ 0p) — Feo
lim

6—0 0
in the norm of C"*%(O, 1),
(2) For @1 €U near ¢y, the operator norm of
F'(p1) — F'(po) is evaluated as

17" (p1) = F' ()| < lleen

In particular, F'(py) is continuous in py in the sense
of the operator norm.

Proof. Let 6 be so small that ¢y + 0p € U and
let A;(z,0),i=0,1,2, be functions defined by

= F'(po)p

- SDOHQ,O'
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(v + b¢) (xs)
sdJrU

AvA >( =

Then, by (2.2), for each z € (0,
F o+ 00)(x) — Feo(z)

(4 d 1 [
:/ — Ag(z,7)dT = — = Az, 7)dT.
o dr 0

On the other hand, if we define () by (3.1) then,
by an interchange of the order of integration,

[\)

B8 Flael) = -5 M(0)

Hence

F(po + 9@)( ) — Feo(x)

= F'(po)e(x)

/ /—Alxw
:4_9/ dr/ Qo (2, w)dw

In view of Lemma 3.3, the norm of Ay(-,w) in
CG‘LZ(O 1), is bounded uniformly with respect to w
near 0. This proves (1).

By (3.8), we have, for ¢, 1 € U, ¢ € C*(0,1),,

F(p1)p(x) = F'(po)p(z)

/d@/(/
([ e ([ ) 2.

This, combined with Lemma 3.3, proves (2). O
Lemma 3.5. The mapping F is Fréchet
differentiable. The Fréchet derivative F'(py), which
is given by (3.1), is continuous in ¢q.
Proof. We prove the lemma by a standard
discussion (see, e.g., [4,Lemma 1.15]). Lemma
3.4(1) implies that, for small ¢ and 6 € [0,1],

rojot

0) o + Op1)(xs) )
ds

S3+(7

@ F (o + 0p) = F' (00 + Op)p
in the space C‘”?(O, 1), This leads to
Flpo +¢) = Flpo)

1
= / F' (00 + Op)p do
0

= F'(po)e + /O (F'(po + 0p) — F'(¢0) ) db

for small ¢ € C*(0,1),. This, together with Lemma
3.4(2), proves the lemma. O
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4. Proof of the main theorem. We first
prove a proposition that is crucial for the proof of
Theorem 1.2.

Proposition 4.1. Let 0<a< %, o> 0.
Then the operator F'(c) given by (3.2) is a homeo-
morphism of C*(0,1), onto C*2(0,1),.

Proof. We define an operator Jg by

1
(4.1) Joo(z) = /O B(t)p(wt)dt.
Then F'(c) = —Jop.

The operator Jg of the form (4.1) is a multi-
plicative Wiener-Hopf integral operator. The rea-
son for the use of this terminology and a general
theory of the operator may be found in Iwasaki and
Kamimura [2,p. 115] and [1]. We here use a result
for a singular multiplicative Wiener-Hopf integral
operator:

Lemma 4.2 (Theorem B in [1]).

(t) = At N1 =)+ R(t), B,e>0,0<6< 1
with A # 0 satisfy

R(t) € C(0,1]n C*(0,1), |R(t)| <t

IRt S0 —0) R S0 —0)7,

withv,p >0, and let 0 < o <1 — 8. Then Jg, which
is a bounded linear operator from C*(0,1), to
C*(0,1),, is a homeomorphism of C*(0,1), onto
cor(0, 1)y if and only if

Let

1
(4.2) / O(t)t*dt #0, Rez>0.

0
Let us verify that ® defined by (3.3) satisfies
conditions in the lemma. By means of the hyper-
geometric function F(a, 8,7; -), we can compute

/t 31+%0 p 2t% { ( 1 1)
——ds= —
0 (1— 32+g)§ 240 (\V1—1t>e

t(1or(t 2 2439 e )L
244204+ 20

Therefore the function ®(¢) in (3.3) is expressed as

31 V2
B(t)= A 1 R1t), A=Y
V1 — t2to c2

in terms of a function R(t) with
R(t) € C(0,1]NC*(0,1), |R(t) S#2°1,
ROISE20-07% RO SE501 -0

To prove that ®(¢) in (3.3) satisfies the con-
dition (4.2), we employ the following (see [1, Lemma

[Vol. 90(A),

1.9]): If ®(t) € L*(0,1) N C*(0,1) satisfies
(4.3)  ®(t), (t®(t)) >0, te(0,1), @(t) £0,
then (4.2) is fulfilled.

In what follows, we shall show that (t®(t))" >0

for ¢ € (0,1). By the definition (3.3) and an elemen-
tary computation, we have

+ T
4 + 30 (1 _ t2+a)%

Since, for 0 < s <t, —L— - —L >0, we get
(1_t2+{7)§ (1_32+(7)§

(t®(t)) > 0 for t € (0,1). Thus ® defined by (3.3)

satisfies (4.3), and so (4.2). O

Proof of Theorem 1.2. By Propositions 3.1, 4.1
we can apply the implicit function theorem (see,
e.g., [4, Theorem 1.20]) to conclude that F maps a
sufficiently small neighborhood of a positive, con-
stant function ¢ in C*(0, 1), homeomorphically onto
a neighborhood of v/2 ¢ in C**%(0, 1),. This, togeth-
er with Proposition 2.2, proves Theorem 1.2. (I
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