Determination of a nonlinearity from blow-up time

By Yutaka Kamimura*) and Hiroyuki Usami**)

(Communicated by Kenji Fukaya, M.J.A., Oct. 14, 2014)

Abstract: We study an inverse problem to determine a nonlinearity of an autonomous equation from a blow-up time of solutions of the equation. A local well-posedness of the inverse problem near a nonlinearity of the type $u^{1+\sigma}$, $\sigma > 0$, is established. The paper also suggests that the inverse problem has a good, mathematical structure from a viewpoint of the Wiener-Hopf theory in integral equations.

Key words: Inverse problem; blow-up time; multiplicative Wiener-Hopf.

1. Problem and result. Let $a \in \mathbb{R}$ and consider an initial value problem

(1.1)
$$\begin{cases} \frac{d^2u}{dt^2} = f(u), & 0 < t < \infty; \\ u(0) = h, & a < h < \infty; \\ \frac{du}{dt}(0) = 0, \end{cases}$$

where f is a continuous, positive function on the interval (a, ∞) . We impose on f the super-linearity condition

for each b > a. A typical example of functions satisfying (1.2) is given by $f(u) = u^{1+\sigma}$, $\sigma > 0$ or those behaving like $u^{1+\sigma}$ as $u \to \infty$.

Because of f > 0, the solution of (1.1) is given by an inverse function of t(u) determined by

$$\frac{dt}{du} = \frac{1}{\sqrt{2}\sqrt{\int_h^u f(\xi)d\xi}}, \quad t(h) = 0$$

for h > a. Therefore, under the condition (1.2), the solution of (1.1) for each $h \in (a, \infty)$ blows up at the time

(1.3)
$$T_f(h) := \frac{1}{\sqrt{2}} \int_h^\infty \frac{du}{\sqrt{\int_h^u f(\xi) d\xi}}$$

for each $h \in (a, \infty)$. We call T_f the blow-up time function associated with f, and let \mathcal{B} be a map assigning the blow-up time function T_f to f, namely, $\mathcal{B}: f \mapsto T_f$.

We now pose an inverse problem discussed in the present paper:

Problem 1.1. Given a function T = T(h), $a < h < \infty$, determine a nonlinearity f of equation (1.1) so that $\mathcal{B}f = T$.

We assume that a = 1 without loss of generality because the shift $\tilde{u} := u - a + 1$, $\tilde{h} := h - a + 1$ and setting $\tilde{f}(\tilde{u}) = f(\tilde{u} + a - 1)$ change (1.1) to

$$\begin{cases} \frac{d^2 \tilde{u}}{dt^2} = \tilde{f}(\tilde{u}), & 0 < t < \infty; \\ \tilde{u}(0) = \tilde{h}, & 1 < \tilde{h} < \infty; \\ \frac{d\tilde{u}}{dt}(0) = 0, \end{cases}$$

where \tilde{f} is a continuous, positive function on the interval $(1, \infty)$. Therefore, throughout the paper, we fix a as a=1. Then Problem 1.1 is equivalent to finding a solution f of

(1.4)
$$\frac{1}{\sqrt{2}} \int_{h}^{\infty} \frac{du}{\sqrt{\int_{h}^{u} f(\xi) d\xi}} = T(h), \quad 1 < h < \infty,$$

where T(h) is a prescribed, positive function on the interval $(1, \infty)$.

For the typical case $f_0(u) = cu^{1+\sigma}$ with $c, \sigma > 0$, the blow-up time function is calculated as

$$T_0(h) = c' h^{-\frac{\sigma}{2}},$$

where

$$c' = \frac{1}{\sqrt{2c(2+\sigma)}} B\left(\frac{\sigma}{2(2+\sigma)}, \frac{1}{2}\right).$$

In the present paper we discuss Problem 1.1 near this correspondence

(1.5)
$$\mathcal{B}: f_0(u) = cu^{1+\sigma} \mapsto T_0(h) = c'h^{-\frac{\sigma}{2}}.$$

²⁰⁰⁰ Mathematics Subject Classification. Primary 34A55; Secondary 45G05.

Department of Ocean Sciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan.

**) Applied Physics Course, Faculty of Engineering, Gifu

University, 1-1 Yanagido, Gifu 501-1193, Japan.

To define function spaces for f and for T in a unified manner, we introduce a function space. Let $I \subset (0, \infty)$ be an interval, $\alpha \in (0, 1]$, $\eta \in \mathbf{R}$, and let

$$(1.6) \qquad \mathcal{C}^{\alpha}(I)_{\eta} = \{ \phi \in C(I) : |\phi|_{\eta} + |\phi|_{\alpha,\eta} < \infty \},$$

where $|\cdot|_{\eta}$ and $|\cdot|_{\alpha,\eta}$ are semi-norms defined by

$$\begin{aligned} |\phi|_{\eta} &:= \sup_{x \in I} \frac{|\phi(x)|}{|x|^{\eta}}, \\ |\phi|_{\alpha,\eta} &:= \sup_{\substack{x,y \in I \\ x \neq y}} \frac{|x^{\alpha - \eta}\phi(x) - y^{\alpha - \eta}\phi(y)|}{|x - y|^{\alpha}}. \end{aligned}$$

Equipped with the norm $\|\phi\|_{\alpha,\eta} := |\phi|_{\eta} + |\phi|_{\alpha,\eta}$, the space $\mathcal{C}^{\alpha}(I)_{\eta}$ is a Banach space. When I is an open interval such as $I = (1, \infty)$, we omit the bracket of $\mathcal{C}^{\alpha}(I)_{\eta}$ such as $\mathcal{C}^{\alpha}(1, \infty)_{\eta}$.

We can now state our main result (Fig. 1):

Theorem 1.2. Let α be any number fixed such that $0 < \alpha < \frac{1}{2}$. Then \mathcal{B} maps a sufficiently small neighborhood of f_0 in $\mathcal{C}^{\alpha}(1,\infty)_{1+\sigma}$ homeomorphically onto a neighborhood of T_0 in $\mathcal{C}^{\alpha+\frac{1}{2}}(1,\infty)_{-\frac{\sigma}{2}}$.

Problem 1.1 is motivated by a use of blowing up solutions to various types of differential equations. We explain it in an aspect of a comparison method. Let R > 0 and consider positive C^2 -solutions u(x) of the elliptic inequality

$$\Delta u \ge g(u)$$
 in $\overline{B(0,R)}$,

where Δ is the N-dimensional Laplace operator, $N \geq 2$, $B(0,R) = \{x \in \mathbf{R}^N : |x| < R\}$, and $g: (0,\infty) \to (0,\infty)$ is a continuous function satisfying $g(+0) \in [0,\infty)$. We want to get upper bounds to u(x) under the assumption that there is a strictly increasing, locally Lipschitz continuous function $g_*: [0,\infty) \to [0,\infty)$ satisfying $0 < g_*(u) \leq g(u)$ in $(0,\infty)$,

$$\int_{1}^{\infty} G(u)^{-\frac{1}{2}} du < \infty, \text{ and } \int_{0}^{1} G(u)^{-\frac{1}{2}} du = \infty.$$

Here $G(u) := \int_0^u g_*(v) dv$. It is known (see Keller [3], Usami [5]) that there is a positive, monotonically increasing C^2 -solution v(r) to the problem

(1.7)
$$\begin{cases} r^{1-N} \frac{d}{dr} \left(r^{N-1} \frac{dv}{dr} \right) = g_*(v), & 0 < r < R, \\ \frac{dv}{dr}(0) = 0, & \text{and } v(r) \to \infty & \text{as} \quad r \to R. \end{cases}$$

(The constant R is the "blow-up time" of v(r).) So the function v(|x|) satisfies

Fig. 1. Local homeomorphism.

$$\begin{cases} \Delta v = g_*(v), & \text{in } B(0, R), \\ \lim_{|x| \to R} v = \infty. \end{cases}$$

Noting the inequality $\Delta(u-v) \geq g_*(u) - g_*(v)$, we can show that $u(x) \leq v(|x|)$ in B(0,R) as in Usami [6]. On the other hand, the monotonicity of v(r) implies that

$$\frac{dv}{dr}(r) \le g_*(v(r)) \int_0^r \left(\frac{s}{r}\right)^{N-1} ds,$$

and so, $\frac{1}{r}\frac{dv}{dr} \leq \frac{g_*(v)}{N}$. Returning to (1.7), we find that

$$\frac{d^2v}{dr^2} \ge \frac{g_*(v)}{N} \,.$$

Note that this is an inequality version of the form (1.1). By the same computations as for (1.3) we obtain

$$\int_{v(0)}^{\infty} \frac{dz}{\sqrt{G(z) - G(v(0))}} \ge \sqrt{\frac{2}{N}} R.$$

This is equivalent to $v(0) \leq \tilde{G}^{-1}(\sqrt{\frac{2}{N}}R)$, where $\tilde{G}(u) = \int_u^\infty \frac{dz}{\sqrt{G(z) - G(u)}}$. Since $u(x) \leq v(|x|)$ as seen above, we have $u(0) \leq \tilde{G}^{-1}(\sqrt{\frac{2}{N}}R)$. If $x_0 \in B(0,R)$, then $\Delta u \geq g(u)$ in $B(x_0,R-|x_0|)$. Therefore arguing as above, we have an upper estimate

$$u(x_0) \le \tilde{G}^{-1}\left(\sqrt{\frac{2}{N}}\left(R - |x_0|\right)\right).$$

Our success in getting this estimate depended on the existence of the solution v(r) that blows up at the time R. In view of this observation, a general question arises: in what situation a prescribed time becomes the blow-up time. This question leads to Problem 1.1.

The present paper is organized as follows: In Section 2, we give our strategy for proving Theorem 1.2, that is, we show it is enough to prove a mapping \mathcal{F} defined by (2.2) maps a small neighborhood of a constant function c in $\mathcal{C}^{\alpha}(0,1)_0$ homeomorphically onto a neighborhood of $\sqrt{2}\,c'$ in $\mathcal{C}^{\alpha+\frac{1}{2}}(0,1)_0$. To prove this, we apply an inverse mapping theorem to the mapping \mathcal{F} . Proposition 3.1 in Section 3 shows that our function spaces setting is appropriate. Proposition 4.1 shows that the Fréchet derivative of \mathcal{F} at c is a homeomorphism of $\mathcal{C}^{\alpha}(0,1)_0$ onto $\mathcal{C}^{\alpha+\frac{1}{2}}(0,1)_0$. The proof of Theorem 1.2 is given at the end of Section 4.

Throughout the paper, we use the notation $A \lesssim B$, which implies that there exists a positive constant M independent of variables of A, B such that $A \leq MB$.

2. Reduction. Via a change of variables $x = h^{-1}$, $u = y^{-1}$, equation (1.4) can be recast as

$$\frac{1}{\sqrt{2}} \int_0^x \left(\int_y^x f\left(\frac{1}{\eta}\right) \frac{d\eta}{\eta^2} \right)^{-\frac{1}{2}} \frac{dy}{y^2} = T\left(\frac{1}{x}\right), \ 0 < x < 1.$$

By using a change of variables y = xr, $\eta = xt$, and introducing a new function

$$\varphi(x) := x^{1+\sigma} f\left(\frac{1}{x}\right), \quad 0 < x < 1, \quad \text{where} \quad \sigma > 0,$$

this equation can be written as

$$\frac{1}{\sqrt{2}} \int_0^1 \left(\int_r^1 \frac{\varphi(xt)}{t^{3+\sigma}} dt \right)^{-\frac{1}{2}} \frac{dr}{r^2} x^{\frac{\sigma}{2}} = T(\frac{1}{x}).$$

Moreover we set

$$\psi(x) = \sqrt{2} \, x^{-\frac{\sigma}{2}} T\left(\frac{1}{x}\right).$$

Then the resultant equation becomes

(2.1)
$$\int_0^1 \left(\int_r^1 \frac{\varphi(xt)}{t^{3+\sigma}} dt \right)^{-\frac{1}{2}} \frac{dr}{r^2} = \psi(x), \ 0 < x < 1.$$

By defining a mapping \mathcal{F} by

$$(2.2) \qquad \mathcal{F}\varphi(x) := \int_0^1 \left(\int_r^1 \frac{\varphi(xt)}{t^{3+\sigma}} dt \right)^{-\frac{1}{2}} \frac{dr}{r^2},$$

where 0 < x < 1, equation (2.1) is written simply as

$$(2.3) \mathcal{F}\varphi = \psi.$$

Let * denote a transformation defined by $\phi^*(x) = \phi(\frac{1}{x})$ for a function ϕ , and let mx^{ℓ} denote the multiplication operator by the function mx^{ℓ} .

Then the reduction procedure described above is illustrated by the following commutative diagram: (2.4)

The vertical arrows in the diagram (2.4) are homeomorphisms, which is guaranteed by

Lemma 2.1. Let $C^{\alpha}(I)_{\eta}$ be the function space defined by (1.6) for each $\alpha \in (0,1], \eta \in \mathbf{R}$. Then:

- (1) The multiplication operator by x^{ℓ} gives a homeomorphism of $\mathcal{C}^{\alpha}(I)_{\eta}$ onto $\mathcal{C}^{\alpha}(I)_{\eta+\ell}$ for each $\ell \in \mathbf{R}$.
- (2) A transformation $*: \phi^*(x) = \phi(\frac{1}{x})$ gives a homeomorphism of $C^{\alpha}(1, \infty)_{-n}$ onto $C^{\alpha}(0, 1)_{n}$.

Proof. Because (1) is direct from the definition (1.6), we shall prove only (2). Let $\phi \in \mathcal{C}^{\alpha}(1, \infty)_{-\eta}$. Then, by a change of variables $x = h^{-1}$, $y = k^{-1}$, we obtain

$$\begin{aligned} |\phi^*|_{\alpha,\eta} &= \sup_{\substack{0 < x, y < 1 \\ x \neq y}} \frac{|x^{\alpha - \eta} \phi^*(x) - y^{\alpha - \eta} \phi^*(y)|}{|x - y|^{\alpha}} \\ &= \sup_{\substack{1 < h, k < \infty \\ h \neq k}} \frac{|k^{\alpha} h^{\eta} \phi(h) - h^{\alpha} k^{\eta} \phi(k)|}{|h - k|^{\alpha}} \\ &\leq 2|\phi|_{-n} + |\phi|_{\alpha - n}, \end{aligned}$$

because $|h^{\alpha} - k^{\alpha}| \leq |h - k|^{\alpha}$ for $1 < h, k < \infty$, $0 < \alpha \leq 1$. This shows that $\phi^* \in \mathcal{C}^{\alpha}(0,1)_{\eta}$ and the correspondence $\phi \mapsto \phi^* : \mathcal{C}^{\alpha}(1,\infty)_{-\eta} \to \mathcal{C}^{\alpha}(0,1)_{\eta}$ is continuous. In a similar way we can show that the inverse $\phi^* \mapsto \phi$ gives a continuous map from $\mathcal{C}^{\alpha}(0,1)_{\eta}$ to $\mathcal{C}^{\alpha}(1,\infty)_{-\eta}$.

Thus we have:

Proposition 2.2. There is a commutative diagram (2.4), where the vertical arrows are homeomorphisms.

Proposition 2.2 tells us that the proof of Theorem 1.2 is reduced to showing that \mathcal{F} defined by (2.2) maps a sufficiently small neighborhood of a positive, constant function c in $C^{\alpha}(0,1)_0$ homeomorphically onto a neighborhood of $\sqrt{2} c'$ in $C^{\alpha+\frac{1}{2}}(0,1)_0$.

3. Mapping \mathcal{F} . In this section we study the mapping \mathcal{F} to establish the following

Proposition 3.1. Let $0 < \alpha < \frac{1}{2}$, $\sigma > 0$ and set

$$U := \{ \varphi \in \mathcal{C}^{\alpha}(0,1)_0 : \inf_{0 < r < 1} \varphi(x) > 0 \}.$$

Then \mathcal{F} defined by (2.2) is a C^1 -mapping of U to $\mathcal{C}^{\alpha+\frac{1}{2}}(0,1)_0$. The Fréchet derivative $\mathcal{F}'(\varphi_0)$ of \mathcal{F} at a function $\varphi_0 \in U$ is given by

 $(3.1) \mathcal{F}'(\varphi_0)\varphi(x)$

$$= -\frac{1}{2} \int_0^1 \frac{\varphi(xt)}{t^{3+\sigma}} dt \int_0^t \left(\int_r^1 \frac{\varphi_0(xs)}{s^{3+\sigma}} ds \right)^{-\frac{3}{2}} \frac{dr}{r^2},$$

where 0 < x < 1. In particular, the Fréchet derivative $\mathcal{F}'(c)$ of \mathcal{F} at a constant function c with c > 0 is written as

(3.2)
$$\mathcal{F}'(c)\varphi(x) = -\int_0^1 \Phi(t)\varphi(xt)dt,$$

where $\Phi(t)$ is a function defined by

(3.3)
$$\Phi(t) := \frac{(2+\sigma)^{\frac{3}{2}}}{2c^{\frac{3}{2}}} \frac{1}{t^{3+\sigma}} \int_0^t \frac{s^{1+\frac{3}{2}\sigma}}{(1-s^{2+\sigma})^{\frac{3}{2}}} ds.$$

The proof of Proposition 3.1 is a combination of four lemmas.

Lemma 3.2. If $\varphi \in U$ then the function

$$\psi(x) := (\mathcal{F}\varphi)(x) = \int_0^1 \left(\int_r^1 \frac{\varphi(xt)}{t^{3+\sigma}} dt \right)^{-\frac{1}{2}} \frac{dr}{r^2}$$

belongs to $C^{\alpha+\frac{1}{2}}(0,1)_0$.

Proof. By $\varphi \in U$, $\left(\int_{r}^{1} \frac{\varphi(xt)}{t^{3+\sigma}} dt\right)^{-\frac{1}{2}} \lesssim \frac{r^{1+\frac{\sigma}{2}}}{\sqrt{1-r}}$. This yields $|\psi|_{0} < \infty$. To prove $|\psi|_{\alpha+\frac{1}{2},0} < \infty$, we assume x > y without loss of generality. Since

$$x^{\alpha + \frac{1}{2}}\psi(x) - y^{\alpha + \frac{1}{2}}\psi(y)$$

$$= (x^{\alpha + \frac{1}{2}} - y^{\alpha + \frac{1}{2}})\psi(x) + y^{\alpha + \frac{1}{2}}(\psi(x) - \psi(y))$$

and $|(x^{\alpha+\frac{1}{2}} - y^{\alpha+\frac{1}{2}})\psi(x)| \lesssim |x - y|^{\alpha+\frac{1}{2}}$, it suffices to show that $|y^{\alpha+\frac{1}{2}}(\psi(x) - \psi(y))| \lesssim |x - y|^{\alpha+\frac{1}{2}}$.

By an elementary calculation with an interchange of the order of integration, we get $\psi(x) = \psi(y)$

$$\begin{split} &= \int_0^1 d\theta \, \frac{d}{d\theta} \int_0^1 \left(\int_r^1 \frac{\theta \varphi(x\xi) + (1-\theta)\varphi(y\xi)}{\xi^{3+\sigma}} \, d\xi \right)^{-\frac{1}{2}} \frac{dr}{r^2} \\ &= -\frac{1}{2} \int_0^1 d\theta \int_0^1 \left(\int_r^1 \cdots d\xi \right)^{-\frac{3}{2}} \frac{dr}{r^2} \int_r^1 \frac{\varphi(xt) - \varphi(yt)}{t^{3+\sigma}} \, dt \\ &= -\frac{1}{2} \int_0^1 d\theta \int_0^1 \frac{\varphi(xt) - \varphi(yt)}{t^{3+\sigma}} \, dt \int_0^t \left(\int_r^1 \cdots d\xi \right)^{-\frac{3}{2}} \frac{dr}{r^2}. \end{split}$$

Therefore, by putting

$$(3.4) \Phi(x, y; t) := -\frac{1}{2t^{3+\sigma}} \times \int_0^t \frac{dr}{r^2} \int_0^1 \left(\int_r^1 \frac{\theta \varphi(x\xi) + (1-\theta)\varphi(y\xi)}{\xi^{3+\sigma}} d\xi \right)^{-\frac{3}{2}} d\theta,$$

we obtain

$$\psi(x) - \psi(y) = \int_0^1 \Phi(x, y; t) (\varphi(xt) - \varphi(yt)) dt.$$

This leads to

$$y^{\alpha + \frac{1}{2}}(\psi(x) - \psi(y))$$

$$= y^{\alpha + \frac{1}{2}} \int_0^1 \Phi(x, y; t) (\varphi(xt) - \varphi(y)) dt$$

$$- y^{\alpha + \frac{1}{2}} \int_0^1 \Phi(x, y; t) (\varphi(yt) - \varphi(y)) dt$$

$$= I_1 + I_2,$$

where

$$I_{1} := y^{\alpha + \frac{1}{2}} \int_{y}^{x} \Phi\left(x, y; \frac{s}{x}\right) (\varphi(s) - \varphi(y)) \frac{ds}{x},$$

$$I_{2} := y^{\alpha + \frac{1}{2}} \int_{0}^{y} \left(\frac{1}{x} \Phi\left(x, y; \frac{s}{x}\right) - \frac{1}{y} \Phi\left(x, y; \frac{s}{y}\right)\right)$$

$$(\varphi(s) - \varphi(y)) ds.$$

Since, in (3.4), $\theta \varphi(x\xi) + (1-\theta)\varphi(y\xi) \ge \inf \varphi > 0$, $\Phi(x, y; t)$ satisfies

(3.5)
$$|\Phi(x,y;t)| \lesssim \frac{1}{t^{3+\sigma}} \int_0^t \frac{r^{1+\frac{3}{2}\sigma}}{(1-r^{2+\sigma})^{\frac{3}{2}}} dr$$
$$\lesssim t^{\frac{\sigma}{2}-1} (1-t)^{-\frac{1}{2}}.$$

Moreover it follows from (3.4) that the derivative $\Phi'(x, y; t)$ of $\Phi(x, y; t)$ with respect to t satisfies

$$(3.6) |t(1-t)\Phi'(x,y;t)| \lesssim t^{\frac{\sigma}{2}-1}(1-t)^{-\frac{1}{2}}.$$

Because of $\varphi \in \mathcal{C}^{\alpha}(0,1)_0$, φ satisfies

$$(3.7) |\varphi(s) - \varphi(y)| \lesssim \left(1 - \frac{y}{s}\right)^{\alpha}, y \le s.$$

Hence, by (3.5) and a substitution $s = y + \eta(x - y)$, we have

$$|I_1| \lesssim y^{\alpha + \frac{1}{2}} \int_y^x \left(\frac{s}{x}\right)^{\frac{\sigma}{2} - 1} \left(1 - \frac{s}{x}\right)^{-\frac{1}{2}} \left(1 - \frac{y}{s}\right)^{\alpha} \frac{ds}{x}$$

$$= (x - y)^{\alpha + \frac{1}{2}} \left(\frac{y}{x}\right)^{\alpha + \frac{1}{2}}$$

$$\times \int_0^1 \left(\frac{y + \eta(x - y)}{x}\right)^{\frac{\sigma}{2} - \alpha - 1} \frac{\eta^{\alpha}}{(1 - \eta)^{\frac{1}{2}}} d\eta.$$

Because of $x\eta \le y + \eta(x-y) \le x$, $y/x \le 1$, we get $I_1 \lesssim (x-y)^{\alpha+\frac{1}{2}}$. Moreover, I_2 is rewritten as

$$I_2 = y^{\alpha + \frac{1}{2}} \int_0^1 \int_{y/x}^1 \frac{d}{d\eta} (\eta \Phi(x, y, \eta t)) d\eta (\varphi(y) - \varphi(yt)) dt,$$

which can be evaluated by using (3.5), (3.6), (3.7) and the substitution $t = (1 - s)/(1 - \eta s)$ so that

$$\begin{split} |I_2| &\lesssim y^{\alpha + \frac{1}{2}} \int_0^1 \int_{y/x}^1 (\eta t)^{\frac{\sigma}{2} - 1} (1 - \eta t)^{-\frac{3}{2}} d\eta \, (1 - t)^{\alpha} dt \\ &= y^{\alpha + \frac{1}{2}} \int_{y/x}^1 \eta^{\frac{\sigma}{2} - 1} d\eta \int_0^1 t^{\frac{\sigma}{2} - 1} (1 - \eta t)^{-\frac{3}{2}} (1 - t)^{\alpha} dt \\ &= y^{\alpha + \frac{1}{2}} \int_{y/x}^1 \eta^{\frac{\sigma}{2} - 1} (1 - \eta)^{\alpha - \frac{1}{2}} d\eta \int_0^1 \frac{s^{\alpha} (1 - s)^{\frac{\sigma}{2} - 1}}{(1 - \eta s)^{\frac{\sigma}{2} + \alpha - \frac{1}{2}}} ds. \end{split}$$

Taking the assumption $\alpha < \frac{1}{2}$ into account, we get

$$|I_2| \lesssim y^{\alpha + \frac{1}{2}} \int_{y/x}^1 \eta^{\frac{\sigma}{2} - 1} (1 - \eta)^{\alpha - \frac{1}{2}} d\eta$$
$$\lesssim y^{\alpha + \frac{1}{2}} \left(1 - \frac{y}{x} \right)^{\alpha + \frac{1}{2}} \le (x - y)^{\alpha + \frac{1}{2}}.$$

Thus $|\psi|_{\alpha+\frac{1}{2},0} < \infty$, and so, $\psi \in \mathcal{C}^{\alpha+\frac{1}{2}}(0,1)_0$.

In order to show that \mathcal{F} is Fréchet differentiable, the following generalization of Lemma 3.2 is useful.

Lemma 3.3. Let $\phi_0 \in U$, $\phi_1, \phi_2 \in C^{\alpha}(0,1)_0$, and let $\chi(x)$ be a function defined by

$$\chi(x) = \int_0^1 \left(\int_r^1 \frac{\phi_0(xs)}{s^{3+\sigma}} \, ds \right)^{-\frac{5}{2}} \prod_{i=1}^2 \left(\int_r^1 \frac{\phi_i(xt)}{t^{3+\sigma}} \, dt \right) \frac{dr}{r^2}.$$

Then χ belongs to $C^{\alpha+\frac{1}{2}}(0,1)_0$ with the norm $\|\chi\|_{\alpha+\frac{1}{2}0} \lesssim \|\phi_0\|_{\alpha,0} \|\phi_1\|_{\alpha,0} \|\phi_2\|_{\alpha,0}.$

Proof. This lemma can be proved by the same method as in the proof of Lemma 3.2.

Lemma 3.4. Let $\varphi_0 \in U$ and let $\mathcal{F}'(\varphi_0)$ be an operator defined by (3.1). Then:

(1) For each $\varphi \in \mathcal{C}^{\alpha}(0,1)_0$,

$$\lim_{\theta \to 0} \frac{\mathcal{F}(\varphi_0 + \theta \varphi) - \mathcal{F}\varphi_0}{\theta} = \mathcal{F}'(\varphi_0)\varphi$$

in the norm of $C^{\alpha+\frac{1}{2}}(0,1)_0$.

(2) For $\varphi_1 \in U$ near φ_0 , the operator norm of $\mathcal{F}'(\varphi_1) - \mathcal{F}'(\varphi_0)$ is evaluated as

$$\|\mathcal{F}'(\varphi_1) - \mathcal{F}'(\varphi_0)\| \lesssim \|\varphi_1 - \varphi_0\|_{\alpha,0}.$$

In particular, $\mathcal{F}'(\varphi_0)$ is continuous in φ_0 in the sense of the operator norm.

Proof. Let θ be so small that $\varphi_0 + \theta \varphi \in U$ and let $\Delta_i(x,\theta)$, i=0,1,2, be functions defined by

$$\int_0^1 \left(\int_r^1 \frac{(\varphi_0 + \theta \varphi)(xs)}{s^{3+\sigma}} \, ds \right)^{-\frac{1}{2} - i} \left(\int_r^1 \frac{\varphi(xt)}{t^{3+\sigma}} \, dt \right)^i \frac{dr}{r^2}.$$

Then, by (2.2), for each $x \in (0,1)$,

$$\mathcal{F}(\varphi_0 + \theta\varphi)(x) - \mathcal{F}\varphi_0(x)$$

$$= \int_0^\theta \frac{d}{d\tau} \Delta_0(x, \tau) d\tau = -\frac{1}{2} \int_0^\theta \Delta_1(x, \tau) d\tau.$$

On the other hand, if we define $\mathcal{F}'(\varphi_0)$ by (3.1) then, by an interchange of the order of integration,

(3.8)
$$\mathcal{F}'(\varphi_0)\varphi(x) = -\frac{1}{2}\Delta_1(x,0).$$

Hence

$$\frac{\mathcal{F}(\varphi_0 + \theta\varphi)(x) - \mathcal{F}\varphi_0(x)}{\theta} - \mathcal{F}'(\varphi_0)\varphi(x)$$

$$= -\frac{1}{2\theta} \int_0^\theta d\tau \int_0^\tau \frac{d}{d\omega} \Delta_1(x,\omega)d\omega$$

$$= \frac{3}{4\theta} \int_0^\theta d\tau \int_0^\tau \Delta_2(x,\omega)d\omega.$$

In view of Lemma 3.3, the norm of $\Delta_2(\cdot,\omega)$ in $C^{\alpha+\frac{1}{2}}(0,1)_0$ is bounded uniformly with respect to ω near 0. This proves (1).

By (3.8), we have, for $\varphi_0, \varphi_1 \in U$, $\varphi \in \mathcal{C}^{\alpha}(0,1)_0$, $\mathcal{F}'(\varphi_1)\varphi(x) - \mathcal{F}'(\varphi_0)\varphi(x)$

$$= \frac{3}{4} \int_0^1 d\theta \int_0^1 \left(\int_r^1 \frac{((1-\theta)\varphi_0 + \theta\varphi_1)(xs)}{s^{3+\sigma}} ds \right)^{-\frac{5}{2}}$$
$$\left(\int_r^1 \frac{(\varphi_1 - \varphi_0)(xs)}{s^{3+\sigma}} ds \right) \left(\int_r^1 \frac{\varphi(xt)}{t^{3+\sigma}} dt \right) \frac{dr}{r^2}.$$

This, combined with Lemma 3.3, proves (2).

Lemma 3.5. The mapping \mathcal{F} is Fréchet differentiable. The Fréchet derivative $\mathcal{F}'(\varphi_0)$, which is given by (3.1), is continuous in φ_0 .

Proof. We prove the lemma by a standard discussion (see, e.g., [4, Lemma 1.15]). Lemma 3.4(1) implies that, for small φ and $\theta \in [0, 1]$,

$$\frac{d}{d\theta} \mathcal{F}(\varphi_0 + \theta \varphi) = \mathcal{F}'(\varphi_0 + \theta \varphi)\varphi$$

in the space $C^{\alpha+\frac{1}{2}}(0,1)_0$. This leads to

$$\mathcal{F}(\varphi_0 + \varphi) - \mathcal{F}(\varphi_0)$$

$$= \int_0^1 \mathcal{F}'(\varphi_0 + \theta \varphi) \varphi \, d\theta$$

$$= \mathcal{F}'(\varphi_0) \varphi + \int_0^1 (\mathcal{F}'(\varphi_0 + \theta \varphi) - \mathcal{F}'(\varphi_0)) \varphi \, d\theta$$

for small $\varphi \in \mathcal{C}^{\alpha}(0,1)_0$. This, together with Lemma 3.4(2), proves the lemma.

4. Proof of the main theorem. We first prove a proposition that is crucial for the proof of Theorem 1.2.

Proposition 4.1. Let $0 < \alpha < \frac{1}{2}$, $\sigma > 0$. Then the operator $\mathcal{F}'(c)$ given by (3.2) is a homeomorphism of $\mathcal{C}^{\alpha}(0,1)_0$ onto $\mathcal{C}^{\alpha+\frac{1}{2}}(0,1)_0$.

Proof. We define an operator J_{Φ} by

(4.1)
$$J_{\Phi}\varphi(x) = \int_{0}^{1} \Phi(t)\varphi(xt)dt.$$

Then $\mathcal{F}'(c) = -J_{\Phi}$.

The operator J_{Φ} of the form (4.1) is a multiplicative Wiener-Hopf integral operator. The reason for the use of this terminology and a general theory of the operator may be found in Iwasaki and Kamimura [2, p. 115] and [1]. We here use a result for a singular multiplicative Wiener-Hopf integral operator:

Lemma 4.2 (Theorem B in [1]). Let $\Phi(t) = At^{\epsilon-1}(1 - t^{\beta})^{\delta-1} + R(t), \ \beta, \epsilon > 0, \ 0 < \delta < 1$ with $A \neq 0$ satisfy $R(t) \in C(0,1] \cap C^{2}(0,1), \quad |R(t)| \leq t^{\nu-1},$

$$\begin{split} |R'(t)| &\lesssim t^{\nu-2} (1-t)^{\rho-1}, \quad |R''(t)| \lesssim t^{\nu-3} (1-t)^{\rho-2}, \\ with \ \nu, \rho &> 0, \ and \ let \ 0 < \alpha < 1-\delta. \ Then \ J_\Phi, \ which \\ is \ a \ bounded \ linear \ operator \ from \ \mathcal{C}^\alpha(0,1)_0 \ to \\ \mathcal{C}^{\alpha+\delta}(0,1)_0, \ is \ a \ homeomorphism \ of \ \mathcal{C}^\alpha(0,1)_0 \ onto \\ \mathcal{C}^{\alpha+\delta}(0,1)_0 \ if \ and \ only \ if \end{split}$$

(4.2)
$$\int_0^1 \Phi(t)t^z dt \neq 0, \quad \text{Re } z \ge 0.$$

Let us verify that Φ defined by (3.3) satisfies conditions in the lemma. By means of the hypergeometric function $F(\alpha, \beta, \gamma; \cdot)$, we can compute

$$\int_{0}^{t} \frac{s^{1+\frac{3}{2}\sigma}}{(1-s^{2+\sigma})^{\frac{3}{2}}} ds = \frac{2t^{\frac{\sigma}{2}}}{2+\sigma} \left\{ \left(\frac{1}{\sqrt{1-t^{2+\sigma}}} - 1 \right) + \left(1 - F\left(\frac{1}{2}, \frac{\sigma}{4+2\sigma}, \frac{4+3\sigma}{4+2\sigma}; t^{2+\sigma} \right) \right) \right\}.$$

Therefore the function $\Phi(t)$ in (3.3) is expressed as

$$\Phi(t) = A \frac{t^{\frac{\sigma}{2} - 1}}{\sqrt{1 - t^{2 + \sigma}}} + R(t), \quad A := \frac{\sqrt{2 + \sigma}}{\frac{3}{2}},$$

in terms of a function R(t) with

$$R(t) \in C(0,1] \cap C^2(0,1), \quad |R(t)| \lesssim t^{\frac{\sigma}{2}-1},$$

$$|R'(t)| \lesssim t^{\frac{\sigma}{2}-2} (1-t)^{-\frac{1}{2}}, \quad |R''(t)| \lesssim t^{\frac{\sigma}{2}-3} (1-t)^{-\frac{3}{2}}.$$

To prove that $\Phi(t)$ in (3.3) satisfies the condition (4.2), we employ the following (see [1, Lemma

1.9]): If $\Phi(t) \in L^1(0,1) \cap C^1(0,1)$ satisfies

(4.3)
$$\Phi(t), (t\Phi(t))' \ge 0, \quad t \in (0,1), \quad \Phi(t) \ne 0$$

then (4.2) is fulfilled.

In what follows, we shall show that $(t\Phi(t))' \geq 0$ for $t \in (0,1)$. By the definition (3.3) and an elementary computation, we have

$$\frac{2c^{\frac{3}{2}}}{(2+\sigma)^{\frac{3}{2}}}(t\Phi(t))' = \left(\frac{1}{t^{2+\sigma}} \int_0^t \frac{s^{1+\frac{3}{2}\sigma}}{(1-s^{2+\sigma})^{\frac{3}{2}}} ds\right)'$$

$$= \left(\frac{1}{t^{2+\sigma}} \int_0^t \frac{s^{1+\frac{3}{2}\sigma}}{(1-s^{2+\sigma})^{\frac{3}{2}}} ds\right)'$$

$$= \frac{2+\sigma}{t^{3+\sigma}} \int_0^t \left(\frac{1}{(1-t^{2+\sigma})^{\frac{3}{2}}} - \frac{1}{(1-s^{2+\sigma})^{\frac{3}{2}}}\right) s^{1+\frac{3}{2}\sigma} ds$$

$$+ \frac{\sigma}{4+3\sigma} \frac{t^{\frac{\sigma}{2}-1}}{(1-t^{2+\sigma})^{\frac{3}{2}}}.$$

Since, for 0 < s < t, $\frac{1}{(1-t^{2+\sigma})^{\frac{3}{2}}} - \frac{1}{(1-s^{2+\sigma})^{\frac{3}{2}}} > 0$, we get $(t\Phi(t))' > 0$ for $t \in (0,1)$. Thus Φ defined by (3.3) satisfies (4.3), and so (4.2).

Proof of Theorem 1.2. By Propositions 3.1, 4.1 we can apply the implicit function theorem (see, e.g., [4, Theorem 1.20]) to conclude that \mathcal{F} maps a sufficiently small neighborhood of a positive, constant function c in $C^{\alpha}(0,1)_0$ homeomorphically onto a neighborhood of $\sqrt{2} c'$ in $C^{\alpha+\frac{1}{2}}(0,1)_0$. This, together with Proposition 2.2, proves Theorem 1.2.

Acknowledgements. This research was supported by JSPS KAKENHI Grant Numbers 23540196, 26400159.

References

- K. Iwasaki and Y. Kamimura, Convolution calculus for a class of singular Volterra integral equations, J. Integral Equations Appl. 11 (1999), no. 4, 461–499.
- [2] K. Iwasaki and Y. Kamimura, Inverse bifurcation problem, singular Wiener-Hopf equations, and mathematical models in ecology, J. Math. Biol. 43 (2001), no. 2, 101–143.
- [3] J. B. Keller, On solutions of $\Delta u = f(u)$, Comm. Pure Appl. Math. **10** (1957), 503–510.
- [4] J. T. Schwartz, Nonlinear functional analysis, Gordon and Breach, New York, 1969.
- [5] H. Usami, On strongly increasing entire solutions of even order semilinear elliptic equations, Hiroshima Math. J. 17 (1987), no. 1, 175–217.
- [6] H. Usami, Nonexistence results of entire solutions for superlinear elliptic inequalities, J. Math. Anal. Appl. 164 (1992), no. 1, 59–82.