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Abstract: Let f be a nonconstant meromorphic functions, n, k be two positive integers.
Suppose that f" and (f"™ share the value a(# 0,00) CM. If either (1) n > k+2,0r (2)n > k+1
and N(r, f) = NT'(r, f)(A € [0,3)), then f" = (fM™ and f assumes the form

f(2) = cei®

where ¢ is a nonzero constant and \* = 1.
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1. Introduction and main results. In this
paper, a meromorphic function will mean mero-
morphic in the whole complex plane. We assume
that the reader is familiar with the standard
notations of the Nevanlinna theory such as
T(r, ), N(r, ), m(r, f) ([1,2)).

For any nonconstant meromorphic function f,
we denote by S(r, f) any quantity satisfying

S(va) = O{T(’I‘,f)},’l" — 0

possibly outside of a set of finite linear measure.
Let f(z) and g(z) be two meromorphic functions,
and let a be a finite complex number. If f(z) —a
and ¢(z) — a assume the same zeros with the same
multiplicities, then we say that f and g share the
value ¢ CM (counting multiplicities) (see [2]
pp. 115-116).

In 1959, W. K. Hayman [3] proposed the
following conjecture and until 1995 it was proved
by W. Bergweiler and A. Eremenko [4], H. H. Chen
and M. L. Fang [5] separately.

Theorem A. If f is a transcendental mero-
morphic function, then f"f assumes every finite
non-zero complex wvalue infinitely often for any
positive integer n.

In 1998, Y. F. Wang and M. L. Fang [6] proved
the following result.

Theorem B. If f is a transcendental mero-
morphic function, n,k be two positive integers and
n>k+1, then (f”)<k) assumes every finite non-zero
complex value infinitely often.

The uniqueness theory of entire and meromor-
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phic functions has grown up to an extensive subfield
of the value distribution theory. In particular, the
subtopic that a meromorphic function f and its
derivative f() share one finite non-zero value a CM
is well investigated (see [7-12]).

Theorem C ([7]). Let f be a nonconstant
entire function and k:,ngz k4 1) be two positive
integers. If f* and (f"’)(k share 1 CM, then f"=
(f"’)(k) and f assumes the form

f(2) = cor’
where ¢ is a nonzero constant and \F = 1.
Theorem D ([8, Theorem 1]). Let f be a
nonconstant meromorphic function and n > 4 be a
positive integer. If f* and (f*) share 1 CM, then
"= (f"" and f assumes the form

f(2) = cer®
where ¢ s a nonzero constant.

Theorem E ([8, Theorem 2]). Let f be a non-
constant meromorphic function and n(> k+5),k be
two positive integers. If f* and (f”)(k) share 1 CM,
then f* = (f”)(k) and f assumes the form

f(2) = cer’
where c is a nonzero constant and \¥ = 1.
Theorem F ([11, Theorem 1.2]). Let f be a
nonconstant meromorphic function andn(>k+ 1+
VE+ 1),k be two positive integers. If f* and (f)*
share 1 CM, then f"= (f")<k) and f assumes the
form

£(z) = cei*

where ¢ is a nonzero constant and \* = 1.
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J. Zhang and L. Yang [11] asked a question:
Can n in Theorem E be reduced? Recently, S. Li
and Z. Gao [12, Theorem 1.1] answered this ques-
tion in the case of N(r, f) = S(r, f), they proved the
following theorem.

Theorem G. Let f be a nonconstant mero-
morphic function, such that N(r,f) = S(r, f). Sup-
pose that f* and (f*) share 1 CM. If either (1)
n>3,o0r(2)n=2and N(r,%) = O(N(r, %)), then
"= (f"" and f assumes the form

J7) = cer*
where ¢ is a nonzero constant.

It is thus natural to ask whether the conditions
in Theorem D and Theorem G holds for the ky,
derivative, namely, Can n in Theorem E and
Theorem F be reduced? In this paper we investigate
this problem and prove the following result.

Theorem 1. Let f be a nonconstant mero-
morphic functions, n,k be two positive integers.
Suppose that f" and (f”)<k) share the walue
a(#0,00) CM. If either (1) n>k+2, or (2)
n>k+1 and N(r,f)=AT(r, f)(A€[0,)), then
M= (f")(k) and f assumes the form

f(2) = ceit
where ¢ is a nonzero constant and \* = 1.

2. Some lemmas. To prove our results, we
need some preliminary results.

Lemma 1 ([7, Lemma 3]). Let f be a non-
constant meromorphic function and ngz k+2),k
be two positive integers. If f* and (f”)<k share the
value a(# 0,00) CM, then one of the following two
cases must occur:

W=

(2) N(r,9) < 5oy N(r ) + S(, f).

Lemma 2 ([10, Lemma 2.10]). Let f be a
nonconstant meromorphic function and
n(>k+2), k be two positive integers. If
= (f”)(k), then f assumes the form

f(2) = cei®

where ¢ is a nonzero constant and \* = 1.

Lemma 3 ([1, Theorem 3.1]). Let f be a
nonconstant meromorphic function in the complex
plane and k be a positive integer. If f" = (f”)(k),
Then
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3. Proof of Theorem.
3.1. Proof of Theorem 1. Suppose a = 1 (the
general case following by considering L instead of

f") and f" # (f”)(k). We set B

po L™y
f”/ (fn)(k) -1 f” —1 '

From the fundamental estimate of logarithmic
derivative it follows that
(fn)(k+1) )

™ 1)
(")
*mOﬂwm4Q
(fn)(k+1) (fn)(k)
:mQﬂﬂwwﬂW—w r )
(f’n,)’
#m(r o)
(fn)(kﬂ) (fn)(kH) (fn)(k)
< m(r, ((fn)(k) 1 N (fn)(k) ) fr )
oy
*m(“qw—l‘.ﬁ>
(fn)(k+1) (fn)(kJrl)
SmGWMW—1+mTWﬂW
(fm" (f"
+m&’ﬁ%>+m@uw—ﬂ

()
< S0 §).

From (3.1), if 2y is a pole of f with multiplicity
> m, then zj is a zero of F' with multiplicity at least
nm — 1, i.e.,

(3.3)

(3.1)

(32) m(r,F) < m(r

F(z)=0((z—

Zo)nmfl)'

We consider the following two cases:
Case 1. F?2 — I’ = 0. Solving this equation, we
have
1

cC—Zz

(3.4) F(z) =

where ¢ is a constant. Substituting (3.4) into (3.1)

gives
Loy
(3.5) c—z fn <(f'”)(k)—1 1)
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From (3.5), it is easy to deduce that f(z) is a entire

function.
From Theorem C, we get that

=y
This is a contradiction.
Case 2. F? — F' # 0. Since m(r, F)
m(r, F') < m(r, F) +m(r, ) = S(r, f).
From (3.3), we deduce that

(3.6) N(r, f") —2N(r, f) < N( T ! F’)

1
e +0(1)
1
< N(r,F?—F) - ( o F’) + S(r, f).
Since f" and (f"’)(k) share 1 CM, so
(fn)(k) -1 1
p

<T(r,F*—F') -

(3.7 3
where g(2)(# 0) is a entire function. It is easy to see
that all of zeros of g(z) are poles of f(z) and are
simple. Substituting this into (3.1), we get
/
(3.8) po LM
frg

From (3.8), we can get that the poles of F2 — F’
can only occur at the zeros of f. However, from
(3.1), we can deduce that the zeros of f with
multiplicity m are all poles of F? — F' with multi-
plicity 2(k + 1), at most, thus

(39)  N(rF—F)<2(k+1) N(T, %)

2(k+1) 1
<5 ()

From (3.8), we get F' = f'f,’il kg + 4 (%{/)/ It
follows that
F2_F/ . k2<gl>2_kfn -ni/g/_ (1)’]
f L Sy g
- ANy} -
F27F/*— kQ(l>2kfn nﬂg,@g_,
f fg L og|f]
i.e.,
1 s\ 2 i ! ] g_’ ! /]
f2n: : ) k2(9> 7kfn nig,@g .
F?—F g  f9 2 g

It follows that

= S(r, f), so
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(3.10) 2m(r,f")§m( le F)

m(r, f*) + 5(r, f)-
From (3.6), (3.9), (3.10) and Lemma 1, we get

(3.11) T(r, f") =m(r, f") + N(r, f")
<m T’F21F’) +2N(r, f)
+ N(r, F* — F')
_m(r F2 1 F/) +S(T,f)
=2N(r, f) +N(T,F2 —F')+ S(r, f)
_ 2k +1) 1 .
<N f) + = N(r, fn> +5(r, f)
<280 )+ 25 NG )+ 50 )
< NG )+ 50 ),
312)  T(r,f) < N(r,f)+S(r, f)

n—k—1
< 2N(r, f) + S(r, f).

Case 2.1. n > k+ 1 and N(r, f) = \T(
[0,3)). By (3.12), we get

(1 =2XNT(r, f) < S(r, f)

which contradicts the fact that f is nonconstant
function.

Case 2.2. n > k+ 2.

It follows from (3.1) and (3.8) that the poles
of F' can only occur at the zeros of f. If zj is a zero of
f with multiplicity [, then z; is a pole of F with
multiplicity at most k+ 1, so

N(r,F) < (k+ 1)N<r, %)

<nN<rl)—N(ri>
=) )

Suppose that z is a poles of f with multiplicity
m. By (3.1), we deduce that z; is a zero of F' with
multiplicity at least nm — 1. From Lemma 1 and
(3.2), we get

r, Y\ €

(3.13)

L 1T(r,F) +0(1)
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N(r7 %) + S(r, f)

n—1
n 1

< - -
“n—1n—-k-1
n

<7_1)N(7’,f)+5(7",f)

1 _
2+2(TL_1)>N(T7f)+S(7”,f)

N(r, f)+8(r, f)

|
~
S

1 1 _

< NG )+ S, 5)

which implies that N(r, f) = S(r, f).
By (3.12), we get

T(r, f) < S(r, f)

which contradicts the fact that f is nonconstant
function.

Thus f" = (f”)(k), from Lemma 2, we can get
Theorem 1.
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