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Abstract: Let ðK;’Þ be a perfect valued field of rank 1, let ’ be an extension of the

absolute (multiplicative) value ’ to a fixed algebraic closure K and let k:k’ be the corresponding

spectral norm on K. Let ð eKK; k:k~
’Þ be a fixed completion of ðK; k:k’Þ. In this paper we generalize a

result of A. Ostrowski [8] relative to the absorbent property of a subfield, from the case of a

complete non-Archimedian valued field of characteristic 0 to our ring ð eKK; k:k~
’Þ (see Theorem 1,

Theorem 4). We also apply these results to discuss in a more general context the following

conjecture due to A. Zaharescu (2009): hFor any x; y 2 Cp-the complex p-adic field, there exists

t 2 Qp-the p-adic number field, such that gQpðx; yÞQpðx; yÞ ¼ gQpðxþ tyÞQpðxþ tyÞ, where eLL means the p-adic

topological closure of a subfield L of Cp in Cp i.
Key words: Valued fields; Krasner Lemma; spectral norms.

Introduction. In [8] (see also [11] or [5]) A.

Ostrowski proved the following ‘‘mysterious’’ result:

hLet ðK;’Þ be a perfect complete non-Archimedian

valued field relative to a nontrivial multiplicative

valuation ’ and let ’ be the unique extension of ’

to a fixed algebraic closure K of K. Let � 2 K�K
and let L be a subfield of K which contains K, such

that the distance from � to L is strictly less than the

distance of � to the nearest conjugate of �. Then L

‘‘absorbs’’ �, i.e., � 2 Li.
It appears that this result is stronger than the

classical Krasner Lemma. We shall prove later (see

Section 2) that in fact they are equivalent in a more

general context. The main point in proving the

above result of Ostrowski or that one of Krasner

is the equivariance property of the valuation ’

with respect to the absolute Galois group G ¼
GalðK=KÞ. This means that ’ð�ðxÞÞ ¼ ’ðxÞ for any

x 2 K and � 2 G (see [7], [5], or [4]). If ðK;’Þ is not

a henselian field, this ’ can be substituted with a

special equivariant norm k:k’ which extends ’ from

K to K. Now ’ is not unique and a candidate for

such a norm is the so called ’-spectral norm

(Archimedean or non-Archimedean) defined on K

as follows:

kxk’ ¼ max ’ð�ðxÞÞ : � 2 Gf g; x 2 K:ð0:1Þ

(See also [1], [2], [9], [10]). In the case of a henselian

field ðK;’Þ, since for any � 2 G, ’ � � is a new

multiplicative absolute value on K, one has that

’ � � ¼ ’ and then kxk’ ¼ ’ðxÞ for any x 2 K. It is

very easy to see that the ’-spectral norm depends

only on ’ and not on the fixed extension ’ of it (see

also [1]). This is true because any other valuation

on K which extends ’ is of the form ’ � � for a

K-automorphism � of K (see for instance [7], or [5]).

The philosophy of this paper is to substitute the

unique extension ’ of ’ in the complete or henselian

cases with the above defined ’-spectral norm in

the case of a general separable valued field of rank 1

(non-Archimedian or Archimedean).

Some other interesting results connected with

this paper one can find, for the particular case K ¼
Qp-the p-adic number field, in [6] and in [3].

By using the above defined ’-spectral norm

k:k’ on a fixed algebraic closure K of K, in both

cases, non-Archimedian or Archimedean, we gen-

eralize Ostrowski’s and Krasner’s results (Theorem

1 and Theorem 2) for the valued field ðK; k:k’Þ. If

instead of ðK; k:k’Þ one takes its completion

ð eKK; k:k~
’Þ relative to the ’-spectral norm k:k’, one
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obtains another two variants for Ostrowki’s and

Krasner’s results, this time for a class of closed

subrings of the ring eKK (Theorem 4 and Corollary 1).

In Section 2 we prove that the class of triplets

ðK;’; k:kÞ, where k:k is an arbitrary equivariant

(relative to G ¼ GalðK=KÞ norm, for which the

Ostrowski’s absorbent property for closed subrings

of eKKk:k (the completion of ðK; k:kÞ) works, is

the same with the class of triplets ðK;’; k:kÞ for

which Krasner’s Lemma works (Theorem 5). In

Definition 4 we introduce a new class of triplets

ðK;’; k:kÞ, called appropriate triples. Shortly speak-

ing, for such a triplet, any closed subring L of eKKk:k
is completely defined by its algebraic part, i.e., L ¼gL \KL \K. They are important because for such triples

one could have a Galois type theory which connects

the set of closed subfields of eKKk:k and the set of

closed subgroups of G. Moreover, this last group

can be identified with the group of all continuous

K-automorphisms of eKK. In 1 we discuss such a

situation.

We also discuss the state of art of a Zaharescu’s

conjecture (Conjecture 1) for a more general case

(see Corollary 2).

1. The spectral norm case. Let ðK;’Þ be a

perfect valued field of rank 1, where ’ is a nontrivial

multiplicative Archimedean or non-Archimedean

absolute value on K. Let K be a fixed algebraic

closure of K and let ’ be a fixed extension of ’ to K.

We define on K the following norm, which will be

called the ’-spectral norm of K (it does not depend

on ’!):

kxk’ ¼ max ’ð�ðxÞÞ : � 2 Gf g;ð1:1Þ

where x 2 K and G ¼ GalðK=KÞ is the absolute

Galois group of K.

Remark 1. Since any other multiplicative

valuation on K is of the form ’ � �, where � 2 G
(see [7] or [5]) the ’-spectral norm does not depend

on the choice of extension ’ of ’ to K. It is not

complicated to prove (see also [1]) that this ’-

spectral norm is indeed a K-norm on K:

i) kxk’ ¼ 0 if and only if x ¼ 0 for any x in K.

ii) k�xk’ ¼ ’ð�Þkxk’ for any x in K and for

any � 2 K.

iii) kxyk’ � kxk’kyk’ for any x and y in K.

iv) kxþ yk’ � maxfkxk’; kyk’g, if ’ is non-

Archimedean and kxþ yk’ � kxk’ þ kyk’, if ’ is

Archimedean.

v) k�ðxÞk’ ¼ kxk’ for any x in K and for any

� 2 G, i.e., the ’-spectral norm is G-equivariant.

Let c� be equal to 1=2 if ’ is Archimedean and

c� ¼ 1 if ’ is non-Archimedean. Let L � K be a

subfield of the algebraic closure K of K such that

K � L. For any � 2 K we define the ’-spectral

distance of � to L as follows:

distspec’ðL; �Þ ¼ inf
�2L
k�� �k’:ð1:2Þ

We shall prove later that � 2 L if and only if

distspec’ðL; �Þ ¼ 0. Using a deep idea of Ostrowski

([8], or [5]) and looking at it at a more general level,

we find the following result.

Theorem 1 (The absorbent theorem). Let

K � L � K as above and let

!ð�Þ ¼ min
�2G

k�� �ð�Þk’ : � 6¼ �ð�Þ
n o

;

if � =2 K and !ð�Þ ¼ 0 if � 2 K. Let now � 2 K�K
such that distspec’ðL; �Þ < c�!ð�Þ. Then � 2 L, i.e.,

L absorbs �. The same statement is true if instead of

the ’-spectral norm k:k’ we take any ’-norm k:k on

K, which is G-equivariant.

Proof. We assume on contrary that � =2 L.

Then, by using the classical Galois theory, there

exists at least one �0 2 G such that �0ðxÞ ¼ x for all

x 2 L and �0ð�Þ 6¼ �. a) If ’ is a non-Archimedean

valuation (c� ¼ 1) then,

distspec’ðL; �Þ < !ð�Þ � k�� �0ð�Þk’

� max k�� xk’; kx� �0ð�Þk’
n o

;

for any x 2 L. Since �0ðxÞ ¼ x for any x 2 L and since

k�� xk’ ¼ k�0ð�Þ � �0ðxÞk’ ¼ k�0ð�Þ � xk’;ð1:3Þ

we finally get:

distspec’ðL; �Þ < !ð�Þ � k�� xk’
for any x 2 L. Taking infimum on the right, we

obtain:

distspec’ðL; �Þ < !ð�Þ � distspec’ðL; �Þ;

a contradiction. b) If ’ is an Archimedean valuation

(c� ¼ 1=2) then:

distspec’ðL; �Þ <
1

2
!ð�Þ �

1

2
k�� �0ð�Þk’

�
1

2
k�� xk’ þ

1

2
kx� �0ð�Þk’:

But, as in (1.3), one has that
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k�� xk’ ¼ kx� �0ð�Þk’
for any x 2 L. So

distspec’ðL; �Þ <
1

2
!ð�Þ � k�� xk’

for any x 2 L. Taking infimum on the right, we get:

distspec’ðL; �Þ <
1

2
!ð�Þ � distspec’ðL; �Þ;

a contradiction. Thus, in any of the two cases we

obtain a contradiction. So � 2 L. �

Remark 2. Let K;K;L, � be as above and

assume that � 2 eLL \K, where eLL is the topological

completion of L with respect to the ’-spectral norm

k:k’. Then distspec’ðL; �Þ ¼ 0 and, from the last

theorem, one has that � 2 L. This means that L is

topologically closed in K. But this does not mean

that L is complete relative to the ’-spectral norm,

i.e., it is not closed in eKK, the completion of K

relative to the same ’-spectral norm. In other

words, its closure in eKK does not contain algebraic

elements besides those of L itself. To see that L is

not complete in general, let us take K ¼ Qp and

L ¼ K ¼ Qp. Then eLL ¼ Cp and we know (see [4] for

instance) that L 6¼ eLL in this case. Moreover, it is not

difficult to prove that for any infinite extension L of

Qp, L 6¼ eLL, where eLL is the topological closure of L in

Cp, the complex p-adic number field.

In particular we also get a generalization of the

classical Krasner’s lemma ([7], [4] or [5]).

Theorem 2 (Krasner’s Lemma for K). Let

K, K, ’, ’ be as above and let � be an element of

K�K. Let y 2 K be such that k�� yk’ < c�!ð�Þ,
where !ð�Þ ¼ min

�2G
fk�� �ð�Þk’ : � 6¼ �ð�Þg. Then

Kð�Þ � KðyÞ.
Proof. It is sufficient to prove that � 2 KðyÞ.

In view of Theorem 1, it is also sufficient to prove

that distspec’ðKðyÞ; �Þ < c�!ð�Þ. Since

distspec’ðKðyÞ; �Þ � k�� yk’ < c�!ð�Þ;

the desired condition is satisfied and the proof of the

theorem is completed. �

Let eKK be the completion of K with respect to

the ’-spectral norm k:k’. It is easy to see that eKK is

in general a ring and that it is a field if and only if

k:k’ is a multiplicative absolute value, i.e., if and

only if ’ is the unique extension of ’ to K, i.e., if

and only if ðK;’Þ is henselian (see also [1]). SinceeKK, the topological closure of K in eKK, is a completion

of ðK;’Þ, we have enough (infinite) transcendental

elements in eKK over K. eKK becomes a normed ring as

follows. Let x ¼ fcxnxng be the class of a Cauchy

sequence fxng with respect to the ’-spectral norm

on K, xn 2 K for any n 2 N. Since

kxnþpk’ � kxnk’
��� ��� � kxnþp � xnk’;

the sequence fkxnk’g is a Cauchy sequence and one

can easily define

kxk~
’ ¼
def

lim
n!1
kxnk’:

This definition does not depend on the choice of

the Cauchy sequence fxng in the class of x. Now, if

x 2 K, we can embed x in eKK by the following ring

morphism x ðx; x; . . . ; x; . . .Þ. It is easy to see that

kxk~
’ ¼ kxk’ for any x 2 K.

Assume in the following that eKK 6¼ K, i.e., that

there exists at least one element y in eKK which is

transcendental over K. Moreover, if � 2 K, y 2 eKK,

transcendental over K, and if " > 0, the ‘‘spectral

open ball’’

Bð�; "Þ ¼ fz 2 eKK : kz� �k~
’ < "g

contains an infinite number of transcendental

elements of the form: �þ ty, t 2 K, with ’ðtÞ <
"
kyk~

’

. Since ’ is not the trivial absolute value, the set

t 2 K : ’ðtÞ <
"

kyk~
’

( )
is infinite.

Therefore, one can find in eKK subfields L  eKK
such that

distspec~ðL; �Þ ¼ inf
z2L
fkz� �k~

’g

is as small as we want. Take for instance t 2 K with

’ðtÞ < "
kyk~

’

and put L ¼ Kð�þ tyÞ. Then

distspec~ðL; �Þ � k�þ ty� �k~
’ ¼ ’ðtÞkyk

~
’ < ":

Let us denote by the same letter G the group of all

continuous (with respect to k:k~
’) automorphisms ofeKK over K. Each such automorphism � is completely

determined by its restriction to K. Since k�ðxÞk’ ¼
kxk’ for any ring automorphism � of eKK over K and

for any x 2 K, we see that the restriction to K of

any such ring automorphism of eKK is continuous on

K, even it is not continuous on eKK. But, given

� 2 GalðK=KÞ, there is a unique extension of � to a

ring continuous automorphism e�� of eKK over K. In

what follows we consider only such continuous

extensions. This is why G ¼ GalðK=KÞ.
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Theorem 3. For any � 2 G and x 2 eKK one

has that

k�ðxÞk~
’ ¼ kxk

~
’;

i.e., k:k~
’ is an equivariant norm with respect to G.

Proof. Let xn ! x, xn 2 K, relative to k:k~
’.

Since � is continuous, one has that

k�ðxnÞk’ ! k�ðxÞk
~
’:

But k:k’ is equivariant with respect to G ¼
GalðK=KÞ (see Remark 1), so k�ðxnÞk’ ¼ kxnk’.

Since xn ! x relative to k:k~
’, one has that

kxnk’ ¼ kxnk
~
’ ! kxk

~
’:

The uniqueness of the limit of a sequence in a metric

space implies that

k�ðxÞk~
’ ¼ kxk

~
’;

i.e., the statement of the theorem. �

Definition 1. A perfect valued field ðK;’Þ
of rank 1 with a nontrivial absolute value ’ is said

to be an appropriate field if for any closed subring

L � eKK one has that gL \KL \K ¼ L:
Here eMM means the topological closure of M in eKK
with respect to the norm k:k~

’ on eKK.

For instance, if ðK;’Þ is a perfect complete

field, then in [6] it is proved that ðK;’Þ is an

appropriate field.

Remark 3. If ðK;’Þ is a henselian field then

it is an appropriate field.

Example 1. Let K ¼ Q be the rational

number field and let ’ ¼ j:jp be the p-adic absolute

value on Q for a fixed prime number p. Let k:kp be

the j:jp-spectral norm on Q, the field of algebraic

numbers. Let ðeQQp; k:k~
pÞ be the completion of Q

with respect to k:kp. Then, Theorem 6.3 of [10] says

that ðQ, j:jpÞ is an appropriate field which is not

henselian.

Remark 4. If ðK;’Þ is an appropriate field

and if for any subring L, K � L � eKK, one defines:

distspec~
’ðL; zÞ ¼ inf

y2L
ky� zk~

’

n o
;

for any z 2 eKK, the extended spectral distance with

respect to ’, then we easily get:

distspec~
’ðL; zÞ ¼ distspec~

’ð eLL; zÞð1:4Þ

¼ distspec~
’ð

geLL \KeLL \K; zÞ ¼ distspec~
’ð eLL \K; zÞ:

We now extend Theorem 1 to closed subrings

L � eKK which are not necessarily algebraic over K.

Theorem 4. Let ðK;’Þ be an appropriate

field and L be a closed subring of eKK, K � L. Let

� 2 K�K such that distspec~
’ðL; �Þ < c�!ð�Þ. Then

� 2 L.

Proof. Assume by contradiction that � =2 L.

Then � =2 L \K which is an algebraic extension of

K. Being a ring and an algebraic extension of K, it

is a field. Then, the classical Galois theory says

that there exists �0 2 G ¼ GalðK=KÞ such that

�0ð�Þ 6¼ � and �0ðxÞ ¼ x for all x 2 L \K.

Now the proof follows in the same manner like

the proof of Theorem 1 by simply substituting L

with L \K. Finally we obtain that � 2 L \K,

i.e., � 2 L and the proof of the theorem is com-

pleted. �

Corollary 1 (Krasner’s Lemma for eKK). Let

ðK;’Þ be an appropriate field and let y be an element

of eKK. Let � be in K�K such that k�� yk~
’ <

c�!ð�Þ, where !ð�Þ ¼ min
�2G
fk�� �ð�Þk’ : � 6¼ �ð�Þg.

Then Kð�Þ � gKðyÞKðyÞ.
The proof of this corollary is similar to the

proof of Theorem 2 and we omit it.

Corollary 2 (a primitive element theorem foreKK). Let ðK;’Þ be an appropriate field and let

� 2 K, y 2 eKK. Then there exists an infinite number

of elements t 2 K such that gKð�; yÞKð�; yÞ ¼ gKð�þ tyÞKð�þ tyÞ.
Proof. Since �þ ty 2 Kð�; yÞ for any t 2 K, it

remains to prove that for some restrictions on t 2 K
one has that � 2 gKð�þ tyÞKð�þ tyÞ. In Theorem 4 we take

L ¼ gKð�þ tyÞKð�þ tyÞ. If y ¼ 0 we have nothing to prove.

The same is true if � 2 K. Assume that y 6¼ 0 and

� =2 K. There exists an infinite number of elements

t 6¼ 0 in K such that ’ðtÞ < c�!ð�Þ
kyk~

’

(’ is a nontrivial

multiplicative absolute value!). For such a t one

has:

distspec~
’ðL; �Þ � k�þ ty� �k

~
’

¼ ’ðtÞkyk~
’ < c�!ð�Þ:

Let us apply now Theorem 4 and find that � 2 L
and the theorem is completely proved. �

Remark 5. Let K ¼ Qp, the p-adic number

field and let ’ ¼ j:jp be the usual p-adic absolute

value on Qp. Let Qp be a fixed algebraic closure of

Qp and let denote by the same letter ’ the unique

extension of ’ to Qp. Since Qp is complete, the

corresponding spectral norm on Qp is exactly ’.

Hence, eQQp, the completion of Qp with respect to this

No. 10] Absorbent property, Krasner type lemmas and spectral norms 141



last spectral norm is exactly Cp, the complex p-adic

number field. Now, if one takes an arbitrary y 2 Cp

and an element � 2 Qp, then Corollary 2 says that

for any t small enough (’ðtÞ < !ð�Þ
kyk~

’

, if y 6¼ 0 and

� =2 QpÞ one has that gQpð�; yÞQpð�; yÞ ¼ gQpð�þ tyÞQpð�þ tyÞ. This is

a proof of a particular case of an intricate conjecture

proposed by Prof. Alexandru Zaharescu (Illinois

University) in 2009.

Conjecture 1 (Zaharescu’s conjecture). Let

x; y be two arbitrary elements in Cp, the complex

p-adic number field. Then there exists t 2 Qp, the p-

adic number field, such that gQpðx; yÞQpðx; yÞ ¼ gQpðxþ tyÞQpðxþ tyÞ.
Here, tilde means the topological closure of the

corresponding subfield of Cp with respect to the

p-adic topology.

From [6] we know that there exists an element

z 2 Cp with gQpðx; yÞQpðx; yÞ ¼ gQpðzÞQpðzÞ, but we do not know if

there exists such a z (called a topological gener-

ator!) of the particular form z ¼ xþ ty, t 2 Qp like

in the primitive element theorem case. Remark 5

says that Zaharescu’s conjecture is true if one of

the two elements x or y is algebraic over Qp. In

general we have no answer for this interesting

conjecture.

2. The case of a general norm. Let ðK;’Þ
be a perfect valued field with a nontrivial multi-

plicative valuation ’. Let K be a fixed algebraic

closure of K and let k:k be an equivariant norm on

K with respect to G ¼ GalðK=KÞ, which extends ’.

Let eKKk:k be a completion of K relative to k:k and let

k:k~ be the canonical extension of k:k to eKKk:k.
Definition 2. We say that the triplet ðK;

’; k:kÞ has the absorbent property if for any closed

subring L of eKKk:k, K � L, and for any � 2 K�K
with

distk:k~ðL; �Þ < c�!ð�Þ

one has that � 2 L. Here

distk:k~ðL; �Þ ¼ inf
y2L
ky� �k~
n o

and c� ¼ 1 or c� ¼ 1
2 whenever ’ is non-Archime-

dean or Archimedean respectively.

For instance, if ðK;’Þ is complete then, rela-

tive to the unique extension ’ of ’ to K the triplet

ðK;’; ’Þ has the absorbent property (see [6] and

Theorem 4).

Definition 3. Let us preserve the above

notation and hypotheses. We say that the triplet

ðK;’; k:kÞ verifies Krasner’s Lemma if for any

� 2 K�K and y 2 eKKk:k with ky� �k~< c�!ð�Þ
one has that � 2 gKðyÞKðyÞ.

Theorem 5. The triplet ðK;’; k:kÞ has the

absorbent property if and only if it verifies Krasner’s

Lemma.

Proof. a) Assume that ðK;’; k:kÞ has the

absorbent property. Let � 2 K�K and y 2 eKKk:k
with ky� �k~< c�!ð�Þ. Since

distk:k~ð gKðyÞKðyÞ; �Þ � ky� �k~< c�!ð�Þ
and since ðK;’; k:kÞ has the absorbent property,

one obtain that � 2 gKðyÞKðyÞ.
b) Conversely, we suppose that ðK;’; k:kÞ

verifies Krasner’s Lemma. Let L, K � L � eKKk:k be

a closed subring in eKKk:k, which contains K. Let � 2
K�K be such that distk:k~ðL; �Þ < c�!ð�Þ. Then

there exists at least one � 2 L with

k� � �k~< c�!ð�Þ:

Since ðK;’; k:kÞ verifies Krasner’s Lemma we get

that � 2 gKð�ÞKð�Þ � L, because L is closed, i.e., � 2 L,

so ðK;’; k:kÞ has the absorbent property and the

proof is completed. �

Definition 4. With the above notation and

hypotheses, we say that the triplet ðK;’; k:kÞ is an

appropriate triplet if for any closed subring L,

K � L � eKKk:k one has that gL \KL \K ¼ L.

For instance, if ðK;’Þ is complete and if kxk ¼
’ðxÞ for any x 2 K, where ’ is the unique extension

of ’ to K, then the triplet ðK;’; ’Þ is an appro-

priate triplet (see [6]).

It is not so difficult to prove the corresponding

generalization of Theorem 4.

Theorem 6. Let ðK;’; k:kÞ be an appropri-

ate triple. Then ðK;’; k:kÞ has the absorbent

property.

Proof. Let ðK;’; k:kÞ be an appropriate triple

and let L a closed subring of eKKk:k. Let � be in K�K

such that distk:k~ðL; �Þ < c�!ð�Þ. Since L ¼ gL \KL \K
one has that

distk:k~ðL; �Þ ¼ distk:k~ðL \K;�Þ < c�!ð�Þ:

From Theorem 1 we get that � 2 L \K � L, i.e.,

ðK;’; k:kÞ has the absorbent property. �

Acknowledgement. The author express his

gratitude to the referee(s) for some advises which

led to the improvement of the statement of Re-

mark 2 and the proof of Theorem 4.

142 S. A. POPESCU [Vol. 89(A),



The ideas of this paper are deeply connected

with the activity of our Seminar of Algebra

and Number Theory ‘‘Nicolae Popescu’’-IMAR,

Bucharest.

References

[ 1 ] V. Alexandru and A. Popescu, v-maximal exten-
sions, Henselian fields and conservative fields,
Bull. Math. Soc. Sci. Math. Roumanie (N.S.)
56(104) (2013), no. 1, 55–64.

[ 2 ] V. Alexandru, A. Popescu, E. L. Popescu and S.
Sultana, v-adic maximal extensions, spectral
norms and absolute Galois groups, Monatsh.
Math. 158 (2009), no. 3, 223–233.

[ 3 ] V. Alexandru, N. Popescu and A. Zaharescu, On
the closed subfields of Cp, J. Number Theory 68
(1998), no. 2, 131–150.

[ 4 ] E. Artin, Algebraic numbers and algebraic func-
tions, Gordon and Breach, New York, 1967.

[ 5 ] G. Groza and A. Popescu, Extensions of valued
fields (Romanian), Editura Academiei Romane,
Bucharest, 2011.
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