On the subordination under Bernardi operator

By Janusz SokÓŁ** ${ }^{*)}$ and Mamoru Nunokawa**
(Communicated by Kenji Fukaya, M.J.A., Dec. 12, 2012)

Abstract

Let \mathcal{H} denote the class of analytic functions in the unit disc on the complex plane \mathbf{C}. Let \mathcal{E} be a subclass of \mathcal{H}. If the operator $I: \mathcal{E} \rightarrow \mathcal{H}$ satisfies $$
f(z) \prec g(z) \Rightarrow I[f](z) \prec I[g](z)
$$ for all $f, g \in \mathcal{E}$, then it is called subordination-preserving operator on the class \mathcal{E}. In this work we consider the convexity of the Bernardi operator. We prove also that the Bernardi is the subordination-preserving operator on the class of starlike functions. The applications of main results are also presented.

Key words: Convex functions; Hadamard product; Bernardi operator; Libera operator; preserving operator; subordination.

1. Introduction. Let \mathcal{H} denote the class of analytic functions in the unit disc $\mathbf{U}=\{z:|z|<1\}$ on the complex plane \mathbf{C}. For $a \in \mathbf{C}$ and $n \in \mathbf{N}$ we denote by

$$
\mathcal{H}[a, n]=\left\{f \in \mathcal{H}: f(z)=a+a_{n} z^{n}+\cdots\right\}
$$

and

$$
\mathcal{A}_{n}=\left\{f \in \mathcal{H}: f(z)=z+a_{n+1} z^{n+1}+\cdots\right\},
$$

so $\mathcal{A}=\mathcal{A}_{1}$. Let \mathcal{S} be the subclass of \mathcal{A} whose members are univalent in \mathbf{U}.

The class \mathcal{S}_{α}^{*} of starlike functions of order $\alpha<1$ may be defined as

$$
\mathcal{S}_{\alpha}^{*}=\left\{f \in \mathcal{A}: \mathfrak{R e} \frac{z f^{\prime}(z)}{f(z)}>\alpha, z \in \mathbf{U}\right\} .
$$

The class \mathcal{S}_{α}^{*} and the class \mathcal{K}_{α} of convex functions of order $\alpha<1$

$$
\begin{aligned}
\mathcal{K}_{\alpha} & :=\left\{f \in \mathcal{A}: \mathfrak{R e}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha, z \in \mathbf{U}\right\} \\
& =\left\{f \in \mathcal{A}: z f^{\prime} \in \mathcal{S}_{\alpha}^{*}\right\}
\end{aligned}
$$

were introduced by Robertson in [7]. If $\alpha \in[0,1)$, then a function in either of these sets is univalent, if $\alpha<0$ it may fail to be univalent. In particular we denote $\mathcal{S}_{0}^{*}=\mathcal{S}^{*}, \mathcal{K}_{0}=\mathcal{K}$, the classes of starlike and

[^0]convex functions, respectively. Recall that $f \in \mathcal{A}$ is said to be in the class \mathcal{C}_{α}, [3], of close-to-convex functions of order $\alpha, \alpha<1$, if and only if there exist $g \in \mathcal{S}_{\alpha}^{*}, \varphi \in \mathbf{R}$, such that
$$
\mathfrak{R e} e^{i \varphi} \frac{z f^{\prime}(z)}{g(z)}>0, \quad z \in \mathbf{U}
$$

For $f(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots$ and $g(z)=b_{0}+$ $b_{1} z+b_{2} z^{2}+\cdots$ the Hadamard product (or convolution) is defined by $(f * g)(z)=a_{0} b_{0}+a_{1} b_{1} z+$ $a_{2} b_{2} z^{2}+\cdots$. If $X, Y \subset \mathcal{H}$ we also use the notation

$$
X * Y:=\{f * g: f \in X, g \in Y\} .
$$

The convolution has the algebraic properties of ordinary multiplication. The class \mathcal{A} of analytic functions is closed under convolution, that is $\mathcal{A} * \mathcal{A}=\mathcal{A}$. In 1973, Rusheweyh and Sheil-Small [10] proved the Pòlya-Schoenberg conjecture that the class of convex functions is preserved under convolution: $\mathcal{K} * \mathcal{K}=\mathcal{K}$. Many other convolution problems were studied by St. Rusheweyh in [9] and have found many applications in various fields.

We say that the $f \in \mathcal{H}$ is subordinate to $g \in \mathcal{H}$ in the unit disc \mathbf{U}, written $f \prec g$ if and only if there exits an analytic function $w \in \mathcal{H}$ such that $w(0)=$ $0,|w(z)|<1$ and $f(z)=g[w(z)]$ for $z \in \mathbf{U}$. Therefore, $f \prec g$ in \mathbf{U} implies $f(\mathbf{U}) \subset g(\mathbf{U})$. In particular if g is univalent in \mathbf{U}, then

$$
\begin{equation*}
f \prec g \Leftrightarrow[f(0)=g(0) \text { and } f(\mathbf{U}) \subset g(\mathbf{U})] . \tag{1.1}
\end{equation*}
$$

2. Main result. The Alexander integral operator is defined by

$$
\mathrm{A}: \mathcal{A}_{n} \rightarrow \mathcal{A}_{n}, \quad \mathrm{~A}[f](z)=\int_{0}^{z} \frac{f(t)}{t} \mathrm{~d} t
$$

while

$$
\mathrm{L}: \mathcal{H} \rightarrow \mathcal{H}, \quad \mathrm{L}[f](z)=\frac{2}{z} \int_{0}^{z} f(t) \mathrm{d} t
$$

is the Libera operator [5]. The above operators A and L are the special cases of the Bernardi operator [1] which is defined for $k=0$ and for $k \in \mathbf{C}, \mathfrak{R e}\{k\}>0$, by

$$
\mathrm{L}_{k}: \mathcal{H} \rightarrow \mathcal{H}, \quad \mathrm{L}_{k}[f](z)=\frac{1+k}{z^{k}} \int_{0}^{z} f(t) t^{k-1} \mathrm{~d} t
$$

It is easy to see that

$$
\mathrm{L}_{k}: \mathcal{A}_{n} \rightarrow \mathcal{A}_{n}, \quad \mathrm{~L}_{k}: \mathcal{H}[a, n] \rightarrow \mathcal{H}[a(1+k) / k, n] .
$$

Using the convolution we can write for $f \in \mathcal{H}[a, n]$

$$
\begin{equation*}
\mathrm{L}_{k}[f](z)=f(z) * \sum_{n=0}^{\infty} \frac{k+1}{k+n} z^{n} \tag{2.1}
\end{equation*}
$$

The classes \mathcal{S}^{*} and \mathcal{K} are preserved under each of these operators whenever $\mathfrak{R e}\{k\}>0$, Ruscheweyh [8] (earlier Bernardi [1] if k is a positive integer), i.e.: $\mathrm{L}_{k}[\mathcal{K}] \subset \mathcal{K}, \mathrm{L}_{k}\left[\mathcal{S}^{*}\right] \subset \mathcal{S}^{*}$.

We shall need the following lemma.
Lemma 2.1 ([6, p. 35]). Suppose that the function $\Psi: \mathbf{C}^{2} \times \mathbf{U} \rightarrow \mathbf{C}$ satisfies the condition $\mathfrak{R e}\{\Psi(i \varrho, \sigma)\} \leq \delta$ for real $\varrho, \sigma \leq-n\left(1+\varrho^{2}\right) / 2$ and all $z \in \mathbf{U}$. If $q(z)=1+a_{n} z^{n}+\ldots$ is analytic in \mathbf{U} and

$$
\mathfrak{R e}\left\{\Psi\left(q(z), z q^{\prime}(z)\right)\right\}>\delta
$$

for $z \in \mathcal{U} y$, then $\mathfrak{R e}\{q(z)\}>0$ in \mathbf{U}.
We note that Lemma 2.1 is a corollary of the fundamental result in theory of differential subordinations deeply developed by Miller and Mocanu [6]. The function Ψ is called admissible function.

Theorem 2.2. Let f be in the class \mathcal{A}_{n} and k be a non-negative real number. If
(2.2) $\mathfrak{R e}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\delta_{0}(k)$

$$
=\left\{\begin{array}{l}
-n k / 2 \text { for } 0 \leq k \leq 1 \\
-n /(2 k) \text { for } k>1
\end{array}\right.
$$

for $z \in \mathbf{U}$, then $\mathrm{L}_{k}[f]$ is convex univalent function.
Proof. After some calculation we obtain

$$
\begin{equation*}
q(z)+\frac{z q^{\prime}(z)}{k+q(z)}=1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
q(z)=1+\frac{z\left(\mathrm{~L}_{k}[f](z)\right)^{\prime \prime}}{\left(\mathrm{L}_{k}[f](z)\right)^{\prime}} \tag{2.4}
\end{equation*}
$$

It is known that $\mathrm{L}_{k}: \mathcal{A}_{n} \rightarrow \mathcal{A}_{n}$, thus $\mathrm{L}_{k}[f]$ is of the form $\mathrm{L}_{k}[f](z)=z+a_{n+1} z^{n+1}+\cdots$. If q is of the form $q(z)=1+c_{1} z+c_{2} z^{2}+\cdots$, then differentiating

$$
z\left(\mathrm{~L}_{k}[f](z)\right)^{\prime \prime}=(q(z)-1)\left(\mathrm{L}_{k}[f](z)\right)^{\prime}
$$

and comparing the coefficients of both sides we obtain one after the other

$$
c_{1}=c_{2}=\ldots=c_{n-1}=0, \quad c_{n}=n(n+1) a_{n+1}, \ldots
$$

Therefore, $\quad q(z)=1+n(n+1) a_{n+1} z^{n}+\cdots$. To make use of Lemma 2.1 we consider the function

$$
\Psi(r, s)=r+\frac{s}{k+r}
$$

and $\delta=\delta_{0}(k)$. Then by (2.2), (2.3) we have $\mathfrak{R e}\left\{\Psi\left(q(z), z q^{\prime}(z)\right)\right\}>\delta$, furthermore

$$
\mathfrak{R e}\{\Psi(i \varrho, \sigma)\}=\mathfrak{R e}\left(i \varrho+\frac{\sigma}{k+i \varrho}\right)=\frac{k \sigma}{k^{2}+\varrho^{2}}
$$

If $\sigma \leq-n\left(1+\varrho^{2}\right) / 2$, then

$$
\frac{k \sigma}{k^{2}+\varrho^{2}} \leq-\frac{n k\left(1+\varrho^{2}\right)}{2\left(k^{2}+\varrho^{2}\right)} \leq \delta_{0}(k)
$$

Applying Lemma 2.1 with we obtain that $\mathfrak{R e}\{q(z)\}>0$ for $z \in \mathbf{U}$, hence trough (2.4) we see that $\mathrm{L}_{k}[f]$ is the convex univalent function whenever f satisfies (2.2).

The above theorem is a generalization of the following one which is obtained from Theorem 2.2 with $k=n=1$.

Corollary 2.3 ([6, p. 66]). Let f be in the class \mathcal{A}. If

$$
\mathfrak{R e}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>-\frac{1}{2}
$$

for $z \in \mathbf{U}$, then the function

$$
\mathrm{L}[f](z)=\frac{2}{z} \int_{0}^{z} f(t) \mathrm{d} t
$$

is in the class \mathcal{K} of convex univalent functions.
The above property of the Libera operator L extends an earlier result in [5] that $\mathrm{L}[\mathcal{K}] \subset \mathcal{K}$. Note that the operator L is well defined in the whole class \mathcal{H}.

Corollary 2.4. Let f be in the class \mathcal{A}_{n} and let k be a non-negative real number. Assume also
that f satisfies condition (2.2). Then we have
(i) If $g \in \mathcal{C}_{\alpha}$ then $\mathrm{L}_{k}[g * f] \in \mathcal{C}_{\alpha}$,
(ii) If $g \in \mathcal{S}_{\alpha}^{*}$ then $\mathrm{L}_{k}[g * f] \in \mathcal{S}_{\alpha}^{*}$,
(iii) If $g \in \mathcal{K}_{\alpha}$ then $\mathrm{L}_{k}[g * f] \in \mathcal{K}_{\alpha}$.

Proof. It is known [10], that the classes $\mathcal{C}_{\alpha}, \mathcal{S}_{\alpha}^{*}$ and \mathcal{K}_{α} are closed under convolution with convex univalent and normalized functions. Because $\mathrm{L}_{k}[g * f]=g * \mathrm{~L}_{k}[f]$ and by Theorem $2.2 \mathrm{~L}_{k}[f] \in \mathcal{K}$ the results (i)-(iii) becomes obvious.

Corollary 2.5. Let f be in the class \mathcal{S} and let k be a non-negative real number. If $r>0$ satisfies

$$
\frac{r^{2}-4 r+1}{1-r^{2}} \geq \delta_{0}(k)
$$

with $\delta_{0}(k)$ given in (2.2), then $\mathrm{L}_{k}[f]$ is convex univalent in the disc $|z|<r$.

Proof. It is known that $f \in \mathcal{S}$, then for $z=r e^{i t}$

$$
\mathfrak{R e}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\frac{r^{2}-4 r+1}{1-r^{2}}
$$

Therefore, by Theorem 2.2 the function $\mathrm{L}_{k}[f]$ is convex univalent in the disc $|z|<r$.

We have $r^{2}-4 r+1>0$ for $0 \leq r<2-\sqrt{3} \approx$ 0.2679 , while $\delta_{0}(k) \leq 0$. Therefore, if $f \in \mathcal{S}, k$ is a non-negative real number, and $0 \leq r<2-\sqrt{3}$, then $\mathrm{L}_{k}[f]$ is convex univalent in the disc $|z|<r$. The above corollary for the Koebe function $f(z)=$ $z /(1-z)^{2}$ and $k=1$ becomes the following one.

Corollary 2.6. The function

$$
\begin{aligned}
\mathrm{L}_{1}\left[z /(1-z)^{2}\right] & =2\left\{\frac{1}{1-z}+\frac{1}{z} \log (1-z)\right\} \\
& =\sum_{n=1}^{\infty} \frac{2 n}{n+1} z^{n}
\end{aligned}
$$

is convex univalent in the disc $|z|<4-\sqrt{13} \approx 0.39$.
Corollary 2.7. Let h be in the class \mathcal{A}_{n} and k be a non-negative real number. Assume that
(2.5) $\mathfrak{R e}\left\{1+\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right\}>\delta_{0}(k)$

$$
=\left\{\begin{array}{l}
-n k / 2 \text { for } 0 \leq k \leq 1, \\
-n /(2 k) \text { for } k>1
\end{array}\right.
$$

for $z \in \mathbf{U}$. Assume also that $g(z)=a+b_{n} z^{n}+$ $b_{n+1} z^{n+1}+\cdots$ is analytic in \mathbf{U}. If

$$
\begin{equation*}
g(z)+\frac{z g^{\prime}(z)}{c} \prec \mathrm{~L}_{k}[h] \quad(z \in \mathbf{U}) \tag{2.6}
\end{equation*}
$$

for $\mathfrak{R e}[c] \geq 0, c \neq 0$, then

$$
\begin{equation*}
g(z) \prec q_{n}(z) \prec \mathrm{L}_{k}[h] \quad(z \in \mathbf{U}), \tag{2.7}
\end{equation*}
$$

where $q_{n}(z)=\frac{c}{n z^{c / n}} \int_{0}^{z} t^{c / n-1} \mathrm{~L}_{k}[h](t) \mathrm{d} t$. Moreover, the function $q_{n}(z)$ is convex univalent and is the best dominant of (2.6) in the sense that $g \prec q_{n}$ for all g satisfying (2.6), and if there exists q such that $g \prec q$ for all g satisfying (2.6), then $q_{n} \prec q$.

Proof. It is known [2] that the subordination (2.6) with convex univalent right-hand side is sufficient for (2.7) with the best dominant $q_{n}(z)$. By Theorem 2.2 the function $\mathrm{L}_{k}[h]$ is convex univalent in the unit disc and we get the result.

Notice that the function $q_{n}(z)$ is the Bernardi integral operator on the function $\mathrm{L}_{k}[h]$:

$$
q_{n}(z)=\frac{1}{1+n} \mathrm{~L}_{c / n}\left[\mathrm{~L}_{k}[h]-a\right](z)+a .
$$

Theorem 2.8. Assume that k is a complex number with $\mathfrak{R e}\{k\}>0$, or $k=0$. If $g \in \mathcal{H}$ and f is in the class \mathcal{S}^{*} of starlike functions, then

$$
\begin{equation*}
g \prec f \Rightarrow \mathrm{~L}_{k}[g] \prec \mathrm{L}_{k}[f] . \tag{2.8}
\end{equation*}
$$

Proof. The class \mathcal{S}^{*} is preserved under the operator $\mathrm{L}_{k} \quad$ whenever $\quad k=0 \quad$ or $\quad \mathfrak{R e}\{k\}>0$, Ruscheweyh [8], i.e.: $\mathrm{L}_{k}\left[\mathcal{S}^{*}\right] \subset \mathcal{S}^{*}$. This fact was proved in [4] too. Note that if $f \in \mathcal{S}$ only, then $\mathrm{L}_{k}[f]$ may be infinite-valent in the unit disc. Because $\mathrm{L}_{k}[f]$ is univalent, then there exists a function w, $w(0)=0$, such that in a disc $|z|<r_{0} \leq 1$

$$
\begin{equation*}
\mathrm{L}_{k}[g](z)=\mathrm{L}_{k}[f](w(z)) \tag{2.9}
\end{equation*}
$$

If $\mathrm{L}_{k}[g] \nprec \mathrm{L}_{k}[f]$, then there exists a $z_{0} \in \mathcal{U}$, such that $\left|w\left(z_{0}\right)\right|=1$.

From (2.9) we have

$$
z^{k} \mathrm{~L}_{k}[g](z)=z^{k} \mathrm{~L}_{k}[f](w(z)),
$$

hence by (2.1)

$$
\begin{align*}
& z^{k} g(z) * \sum_{n=1}^{\infty} \frac{k+1}{k+n} z^{k+n} \tag{2.10}\\
& \quad=z^{k} f(w(z)) * \sum_{n=1}^{\infty} \frac{k+1}{k+n} z^{k+n} .
\end{align*}
$$

The property $z(p(z) * q(z))^{\prime}=p(z) * z q^{\prime}(z)$ used in (2.10) yields

$$
\begin{align*}
& z^{k} g(z) * \sum_{n=1}^{\infty}(k+1) z^{k+n} \tag{2.11}\\
& \quad=z^{k} f(w(z)) * \sum_{n=1}^{\infty}(k+1) z^{k+n}
\end{align*}
$$

or, equivalently

$$
\begin{equation*}
g(z)=f(w(z)) \tag{2.12}
\end{equation*}
$$

Because f is starlike univalent and there exists a $z_{0} \in \mathbf{U}$, such that $\left|w\left(z_{0}\right)\right|=1$, we obtain a contradiction with $g \prec f$.

Finally, we give the two applications of Theorem 2.2. If we consider for $a \in[1,2]$ the function

$$
\begin{align*}
p_{a}(z) & =\frac{1}{a}\left\{\frac{1}{(1-z)^{a}}-1\right\} \tag{2.13}\\
& =z+\frac{a+1}{2!} z^{2}+\cdots \\
& =\sum_{n=1}^{\infty} \frac{(a)_{n}}{n!a} z^{n} \quad z \in \mathbf{U},
\end{align*}
$$

then $p_{a} \in \mathcal{A}_{1}$ and it satisfies

$$
\mathfrak{R e}\left(1+\frac{z p_{a}^{\prime \prime}(z)}{p_{a}^{\prime}(z)}\right)=\mathfrak{R e} \frac{1+a z}{1-z}>-\frac{a-1}{2} \quad z \in \mathbf{U}
$$

thus p_{a} satisfies condition (2.2) with $k=a-1$ such that $0 \leq k \leq 1$. Therefore, in this case, by Theorem 2.2 and by (2.1) the function

$$
\begin{aligned}
\mathrm{L}_{a-1}\left[p_{a}\right](z) & =p_{a}(z) * \sum_{n=0}^{\infty} \frac{a}{a-1+n} z^{n} \\
& =\sum_{n=1}^{\infty} \frac{(a)_{n}}{(a-1+n) n!} z^{n}
\end{aligned}
$$

is convex univalent function.
Secondly, considering for $l \in[1,2]$ the function

$$
r_{l}(z)=\frac{z}{\left(1+z^{l}\right)^{1 / l}}=z\left(\sum_{n=0}^{\infty} \frac{(1 / l)_{n}}{n!} z^{l n}\right) \quad z \in \mathbf{U}
$$

it is easy to check that $r_{l} \in \mathcal{A}_{1}$ and

$$
\mathfrak{R e}\left(1+\frac{z r_{l}^{\prime \prime}(z)}{r_{l}^{\prime}(z)}\right)=\frac{1-l z^{l}}{1+z^{l}}>-\frac{l-1}{2} \quad z \in \mathbf{U}
$$

Therefore, r_{l} satisfies condition (2.2) with $k=l-1$ such that $0 \leq k \leq 1$. By Theorem 2.2 the function

$$
\mathrm{L}_{l-1}\left[r_{l}\right](z)=r_{l}(z) * \sum_{n=0}^{\infty} \frac{l}{l-1+n} z^{n}
$$

$$
\begin{aligned}
& =\sum_{n=0}^{\infty} \frac{l(1 / l)_{n}}{(l-1+l n+1) n!} z^{l n+1} \\
& =\sum_{n=0}^{\infty} \frac{(1 / l)_{n}}{(1+n) n!} z^{l n+1}
\end{aligned}
$$

is convex univalent function.
Acknowledgment. The authors would like to express their sincerest thanks to the referees for a careful reading and various suggestions made for the improvement of the paper.

References

[1] S. D. Bernardi, Convex and starlike univalent functions, Trans. Am. Math. Soc. 135 (1969), 429-446.
[2] D. J. Hallenbeck and St. Ruscheweyh, Subordination by convex functions, Proc. Am. Math. Soc. 52 (1975), 191-195.
[3] W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1 (1952), issue 2, 169-185.
[4] Z. Lewandowski, S. Miller and E. Złotkiewicz, Generating functions for some classes of univalent functions, Proc. Am. Math. Soc. 56 (1976), 111-117.
[5] R. J. Libera, Some classes of regular univalent functions, Proc. Am. Math. Soc. 16 (1965), 755-758.
[6] S. S. Miller and P. T. Mocanu, Differential subordinations, Monographs and Textbooks in Pure and Applied Mathematics, 225, Dekker, New York, 2000.
[7] M. I. S. Robertson, On the theory of univalent functions, Ann. of Math. (2) $\mathbf{3 7}$ (1936), no. 2, 374-408.
[8] St. Ruscheweyh, New criteria for univalent functions, Proc. Am. Math. Soc. 49 (1975), 109115.
[9] St. Ruscheweyh, Convolutions in geometric function theory, Séminaire de Mathématiques Supérieures, 83, Presses Univ. Montréal, Montreal, QC, 1982.
[10] St. Ruscheweyh and T. Sheil-Small, Hadamard products of Schlicht functions and the PólyaSchoenberg conjecture, Comment. Math. Helv. 48 (1973), 119-135.

[^0]: 2010 Mathematics Subject Classification. Primary 30C45; Secondary 30C80.
 *) Department of Mathematics, Rzeszów University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland.
 **) University of Gunma, Hoshikuki-cho 798-8, ChuouWard, Chiba 260-0808, Japan.

