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Abstract: It is known that infinitely many imaginary quadratic fields allow Hermitian

lattices which are generated by minimal vectors but have no basis of minimal vectors. In this

article we construct systematically such Hermitian lattices over other imaginary quadratic fields.

These lattices are binary and unimodular. This construction requires specific non-principal

ideals.
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Kim and the author [4] found two types of

binary free Hermitian lattices which are generated

by their minimal vectors, but are not generated by

any 3 minimal vectors. It was a variant of Conway-

Sloane’s answer [1].

However, it has not been analyzed how the

Hermitian lattices were constructed yet. In this

article, we show the structure of those lattices and

construct other lattices of the same property.

Let E denote an imaginary quadratic field

Qð ffiffiffiffiffiffiffiffi�mp Þ with m squarefree positive integer. Let O
be the ring of algebraic integers in E. Then,
O ¼ Z½!�, where ! ¼ ffiffiffiffiffiffiffiffi�mp

if m � 1; 2 (mod 4Þ or

! ¼ 1þ
ffiffiffiffiffiffi
�m
p

2
if m � 3 (mod 4Þ.

A Hermitian lattice is an O-module equipped

with a Hermitian map. In general, every Hermitian

lattice L can be written as

L ¼ A1v1 þA2v2 þ � � � þAnvn;

where Ai ideals in O and vi vectors in E �O L.

Those coefficient ideals Ai and generators vi
are not uniquely determined, but the productQ
Ai ¼ A1A2 � � �An is an invariant of L, which is

called the Steinitz class [2]. That is, if

L ¼ A1v1 þA2v2 þ � � � þAnvn
¼ B1w1 þ B2w2 þ � � � þ Bnwn;

then
Q
Ai and

Q
Bi are equivalent in the ideal class

group ClðEÞ. Thus if we can find specific non-

principal ideals whose product is principal, we can

construct a free lattice generated by more vectors

than its rank.

Let A be an ideal in O. Choose the smallest

positive integer a in A and the smallest positive

integer c such that bþ c! belongs to A for some

integer b. Then, a and c are uniquely determined

and b is uniquely determined with 0 � b < a. Since c

is chosen to be the smallest, if r! 2 A for some

integer r 2 Z, then r should be divisible by c.

Similarly, if sþ t! is in A, both s and t are divisible

by c.

Let ða; bþ c!Þ denote the ideal generated by a

and bþ c!. Similarly, let ½a; bþ c!� denote the Z-

module generated by a and bþ c!. The above choice

of a, b and c guarantees that A ¼ ða; bþ c!Þ ¼
½a; bþ c!�. Now, we may assume c ¼ 1, since

Av ¼ ð1c AÞðcvÞ.
This situation yields the following lemma,

which was stated partially in [5, Lemma 1].

Lemma 1. Let a and b be positive integers.

Then Z-module ½a; bþ !� becomes an ideal if and

only if a divides Nðbþ !Þ, where Nð�Þ stands for the

norm map.

Proof. It is enough to prove that ½a; bþ !� �
ða; bþ !Þ if ajNðbþ !Þ.

Let x and y be arbitrary integers. Note that

ðxþ y!Þa ¼ ðx� ybÞaþ yaðbþ !Þ

and

ðxþ y!Þðbþ !Þ
¼ �yNðbþ !Þ þ ðxþ byþ ðTr!ÞyÞðbþ !Þ;

where Trð�Þ stands for the trace map.

Both are in ½a; bþ !�. We are done. �

We need a non-principal ideal of the form

ða; bþ !Þ, so that the ideal satisfies the condition

NðaÞ ¼ Nðbþ !Þ. If a positive integer m is
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squarefree and m 6� 3 (mod 4Þ, the condition

NðaÞ ¼ Nðbþ !Þ implies m ¼ a2 � b2 and thus

m � 1 (mod 4Þ.
Lemma 2. Let m be a positive squarefree

integer and m � 1 (mod 4Þ. Assume that m ¼
a2 � b2 with 0 < 2b < a. If A is an ideal generated

by a and bþ !, then Nð�Þ 	 a2 for every � 2 A and

thus A is not principal.

Proof. Thanks to Lemma 1, we can consider A
as a Z-module ½a; bþ !�. For arbitrary integers x

and y,

Nðxaþ yðbþ !ÞÞ ¼ ðxaþ yðbþ !ÞÞðxaþ yðbþ !ÞÞ
¼ a2x2 þ 2abxyþ b2y2 þ y2m

¼ aðax2 þ 2bxyþ ay2Þ
	 að2a

ffiffiffiffiffiffiffiffiffi
x2y2

p
þ 2bxyÞ

	 a2jxyj;
since a 	 2b. �

If a positive integer m is squarefree and

m � 3 (mod 4Þ, the condition NðaÞ ¼ Nðbþ !Þ im-

plies m ¼ ð2aÞ2 � ð2bþ 1Þ2.
Lemma 3. Let m be a positive squarefree

integer and m � 3 (mod 4Þ. Assume that m ¼
ð2aÞ2 � ð2bþ 1Þ2 with 0 < 2bþ 1 < a. If A is an

ideal generated by a and bþ !, then Nð�Þ 	 a2 for

every � 2 A and thus A is not principal.

Proof. Consider a Z-module ½a; bþ !�. For

arbitrary integers x and y,

Nðxaþ yðbþ !ÞÞ ¼ ðxaþ yðbþ !ÞÞðxaþ yðbþ !ÞÞ
¼ aðax2 þ ð1þ 2bÞxyþ ay2Þ
	 að2a

ffiffiffiffiffiffiffiffiffi
x2y2

p
þ ð1þ 2bÞxyÞ

	 a2jxyj;

since a 	 2bþ 1. �

We use the above non-principal ideals to

construct a free lattice. The following lemma shows

such a way, which is an algorithmic version

of [3, 81:5], [2, Theorem 2].

Lemma 4. Given a binary lattice L ¼
A1v1 þA2v2, there are vectors w1 and w2 such that

L ¼ Ow1 þOw2

if A1A2 is principal.

Proof. Assume that L ¼ A1v1 þA2v2 and

Ai ¼ ð�i; �iÞO. If A1A2 ¼ �O, then

p�1�2 þ q�1�2 þ r�1�2 þ s�1�2 ¼ �

for some p; q; r; s 2 O.

Putting

x1 ¼ �1 2 A1; x2 ¼ r�2 þ s�2 2 A2;

y1 ¼ ��1 2 A1; y2 ¼ p�2 þ q�2 2 A2

and

w1

w2

� �
¼

x1 x2

y1 y2

� �
v1

v2

� �
;

one can verify that w1;w2 2 L and

v1

v2

� �
¼

x1 x2

y1 y2

� ��1 w1

w2

� �

¼ 1

�

y2 �x2

�y1 x1

� �
w1

w2

� �
:

Then

�1v1; �1v1; �2v2; �2v2 2 Ow1 þOw2

since �1�2; �1�2; �2�1; �2�2 2 �O. Therefore

L ¼ A1v1 þA2v2 ¼ Ow1 þOw2:

�

The main idea of this article is to convert a

binary diagonal lattice with non-principal coeffi-

cient ideals into a binary free lattice. Then, four

vectors generate the lattice, but three of them

cannot generate it.

Theorem 1. Let m be a positive squarefree

integer and m ¼ a2 � b2 with a odd and b even

satisfying 0 < 2b < a. Choose two integers A and B

such that aAþ 2bB ¼ 1. Then the binary unimodu-

lar Hermitian lattice L with Gram matrix

að1þ B2Þ Bþ ð1þ B2Þð�bþ ffiffiffiffiffiffiffiffi�mp Þ
Bþ ð1þB2Þð�b� ffiffiffiffiffiffiffiffi�mp Þ að1þ B2Þ þ A

 !

over Qð ffiffiffiffiffiffiffiffi�mp Þ has minimal vectors of squared length

a, is generated by its 8 minimal vectors, but is not

generated by any 3 minimal vectors.

Proof. Let A1 ¼ ða; bþ
ffiffiffiffiffiffiffiffi�mp Þ and A2 ¼ ða; b�ffiffiffiffiffiffiffiffi�mp Þ. From Lemma 2 the ideals A1 and A2 are not

principal.

Since gcdða; 2bÞ ¼ 1, there exist integers A and

B satisfying aAþ 2bB ¼ 1 and thus A1A2 ¼ aO.

Let v1 and v2 be vectors with

v1 � v1 ¼ v2 � v2 ¼
1

a
; v1 � v2 ¼ 0:

Then L ¼ A1v1 þA2v2 by letting p ¼ A; q ¼ r ¼
B; s ¼ 0 in Lemma 4.

It is clear that L is generated by 8 minimal

vectors
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av1; 
ðbþ
ffiffiffiffiffiffiffiffi
�m
p

Þv1; 
av2; 
ðb�
ffiffiffiffiffiffiffiffi
�m
p

Þv2

of squared length a. But any 3 vectors of them

cannot generate L. �

The condition of a and b on m can be written as

m ¼ k‘ � 1 (mod 4Þ with 0 < ‘ < k < 3‘. Then a ¼
ðkþ ‘Þ=2 and b ¼ ðk� ‘Þ=2. For example, when

m ¼ 21 ¼ 7� 3, we obtain a Hermitian lattice from

a ¼ 5, b ¼ 2, A ¼ 1, B ¼ �1:

10 �5þ 2
ffiffiffiffiffiffiffiffiffi
�21
p

�5� 2
ffiffiffiffiffiffiffiffiffi
�21
p

11

 !

which has minimal vectors of squared length 5 but

is not generated by 3 of them.

Theorem 2. Let m be a positive squarefree

integer and m ¼ ð2aÞ2 � ð2bþ 1Þ2 with 0 < 2bþ
1 < a. Choose two integers A and B such that

aAþ ð2bþ 1ÞB ¼ 1. Then the binary unimodular

Hermitian lattice L with Gram matrix

að1þ B2Þ Bþ ð1þ B2Þð�b� 1þ !Þ
Bþ ð1þB2Þð�b� 1þ !Þ að1þ B2Þ þ A

 !

over Qð ffiffiffiffiffiffiffiffi�mp Þ has minimal vectors of squared length

a, is generated by its 8 minimal vectors, but is not

generated by any 3 minimal vectors.

Proof. The proof is similar to the above

theorem. Since gcdða; 2bþ 1Þ ¼ 1, there exist inte-

gers A and B satisfying aAþ ð2bþ 1ÞB ¼ 1. Then,

by letting p ¼ A; q ¼ r ¼ B; s ¼ 0 in Lemma 4,

L ¼ ða; bþ !Þv1 þ ða; bþ !Þv2

with

v1 � v1 ¼ v2 � v2 ¼
1

a
; v1 � v2 ¼ 0:

The minimal vectors are


av1; 
ðbþ !Þv1; 
av2; 
ðbþ !Þv2

of squared length a. Any 3 vectors of them cannot

generate L. �

The condition of a and b on m can be written as

m ¼ k‘ � 3 (mod 4Þ with 0 < ‘ < k < 3‘. Then a ¼
ðkþ ‘Þ=4 and b ¼ ðk� ‘� 2Þ=4.

One can describe the first type of lattices in [4]

by using the above theorem. That is, from m ¼
4a2 � 1 ¼ ð2aþ 1Þð2a� 1Þ, if we let b ¼ 0, A ¼ 0,

and B ¼ 1, then the lattice ða; !Þv1 þ ða; !Þv2 has

Gram matrix

2a �1þ 2!

�1þ 2! 2a

� �
¼

2a
ffiffiffiffiffiffiffiffi�mp

� ffiffiffiffiffiffiffiffi�mp
2a

 !
:

Remark. The above methods can be applied

to infinitely many imaginary quadratic fields, but

not all such lattices are generated by this method.

For example, the second type of lattices

2aþ 1
ffiffiffiffiffiffiffiffi
�m
p

� ffiffiffiffiffiffiffiffi�mp
2aþ 1

 !

in [4] is constructed over Qð ffiffiffiffiffiffiffiffi�mp Þ when m ¼ ð2aþ
1Þ2 � 2 for a 	 2. It is generated by its minimal

vectors of squared length 2a, but they cannot

compose a basis.
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