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Abstract: We show that the equation (1) in the text defines a multiplicative excellent

family of elliptic surfaces (or of cubic surfaces) with Galois group isomorphic to the Weyl group of

type E6. The main properties of the family are formulated as Theorems 1 and 2 in §3.
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1. Set-up. Let us consider the Weierstrass

equation

y2 þ txyð1Þ
¼ x3 þ ðp0 þ p1tþ p2t

2Þxþ q0 þ q1tþ q2t
2 þ t3

with the parameter � ¼ ðp0; p1; p2; q0; q1; q2Þ and a

variable t over k0 ¼ Qð�Þ ¼ Qðp0; p1; p2; q0; q1; q2Þ.
We denote by k an algebraic closure of k0.

The equation (1) defines the family, parame-

trized by �, of three closely related objects:

. an elliptic curve E� over k0ðtÞ

. an elliptic surface � : S� ! P1 (t-line) defined

over k0, and

. a cubic surface V� in P3 (with inhomogeneous

coordinates x; y; t) defined over k0.

In this note, we show that S� (or V�) defines

a multiplicative excellent family of elliptic surfaces

(or of cubic surfaces) with Galois group isomorphic

to the Weyl group W ðE6Þ. Roughly speaking,

the parameter � ¼ ðpi; qjÞ forms a fundamental

system of W ðE6Þ-invariants in the covering space

for the splitting field of the Mordell-Weil lattice

of S� (or the Néron-Severi lattice of V�). More

precise formulation will be given as Theorems 1

and 2 in §3. Details and applications will appear

elsewhere.

First we consider the Mordell-Weil lattice M�

of S� over k. It is the group of sections of the elliptic

surface S� over P1, which is identified with the

group E�ðkðtÞÞ of kðtÞ-rational points of E�, equip-

ped with a natural height pairing. Since S� is a

rational elliptic surface with a singular fibre of

Kodaira type I3 at t ¼ 1, M� is isomorphic to E�6 ,

the dual lattice of the root lattice E6 under the

assumption (�) that S� has no other reducible fibres

(cf. [4,7]).

There are 54 minimal sections of height 4/3 in

M� ’ E�6 , and the height formula ([7]) shows that

half of them are defined by linear equations:

P :
x ¼ a tþ b
y ¼ d tþ e

�
ða; b; d; e 2 kÞ:ð2Þ

We call such P a linear section.

Obviously the linear sections correspond to the

27 lines on the cubic surface V�, and the results

obtained below for the elliptic surface can be

directly translated to the results for the cubic

surface.

2. Algebraic equation of degree 27. By

substituting (2) into (1), we get 4 polynomial

relations among a; b; d; e over k0:

ad ¼ a3 þ ap2 þ 1;ð3Þ
ae ¼ ð3a2 � dþ p2Þb� ðap1 þ q2 � d2Þ;ð4Þ
0 ¼ 3ab2 � be� 2deþ ap0 þ bp1 þ q1;ð5Þ
0 ¼ b3 � e2 þ bp0 þ q0:ð6Þ

The first two relations imply that

a 6¼ 0; d; e 2 Q½��½a; a�1; b�ð7Þ

and then the remaining relations give two equa-

tions of b with coefficients in Q½��½a; a�1� of the

form:

b3 þ � � � ¼ 0; ða3 þ 1Þb2 þ � � � ¼ 0:ð8Þ

This implies first that, for � generic, b is a rational

function of a with coefficients in k0 ¼ Qð�Þ, and

hence we have

k0ðP Þ :¼ k0ða; b; d; eÞ ¼ k0ðaÞ:ð9Þ

On the other hand, taking the resultant of the
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equations (8) with respect to b, we obtain a monic

algebraic equation of degree 27 of a with coefficients

in Z½�� ¼ Z½pi; qj�:

�ðaÞ ¼ a27 þ ðp2
2 � q2Þa26 þ � � � þ ð6p2Þaþ 1:ð10Þ

With the help of computer, the essential coefficients

of the polynomial �ðXÞ ¼ �ðX; �Þ in Z½��½X� are

given as follows:

ð11Þ
�ðXÞ
¼ X27 þ ðp2

2 � q2ÞX26 þ ð�2p1p2 þ 6p2 þ q1ÞX25

þ ð8p2
3 þ 2p0p2 þ p1

2 � 6p1 � q0 þ 9ÞX24

þ � � �
þ ð8p2

3 þ 2p0p2 þ p1
2 � 6p1 � q0 þ 9ÞX3

þ ð13p2
2 þ p0 � q2ÞX2 þ 6p2X þ 1:

3. Main results. Now we look at the Galois

representation on the Mordell-Weil lattice:

%� : Galðk=k0Þ �! AutðM�Þ ’ AutðE�6Þ:ð12Þ

Note that AutðE�6Þ ¼ AutðE6Þ ¼W ðE6Þ � f�1g,
where W ðE6Þ is the Weyl group of type E6 ([1],

[3, Ch.8.3], [11, Th.7].)

The splitting field of M� is the extension

K�=k0 which corresponds to the kernel Kerð%�Þ
under the Galois correspondence. We have by

definition

GalðK�=k0Þ ’ Imð%�Þ:ð13Þ

The splitting field K� is equal to the minimal split-

ting field of the polynomial �ðX; �Þ over k0, since

the Mordell-Weil group M� ¼ E�ðkðtÞÞ is generated

by the 27 linear sections Pi ¼ ðaitþ bi; di þ eiÞ and

we have

K� ¼ k0ðP1; . . . ; P27Þ ¼ k0ða1; . . . ; a27Þ:ð14Þ

by (9).

Theorem 1. Assume that � is generic over

Q, i.e. pi; qj are algebraically independent over Q.

Then (i) %� induces an isomorphism:

GalðK�=k0Þ ’ W ðE6Þ:ð15Þ

Equivalently, �ðX; �Þ is an irreducible polynomial

over k0 ¼ Qð�Þ with Galois group W ðE6Þ.
(ii) The splitting field K� is a purely tran-

scendental extension of Q which is isomorphic to the

function field QðY Þ of the toric hypersurface Y �
G7
m defined by

s1 � � � s6 ¼ r3:ð16Þ

Y has a W ðE6Þ-action such that

QðY ÞW ðE6Þ ¼ KW ðE6Þ
� ¼ k0:ð17Þ

(iii) The ring of WðE6Þ-invariants in the affine

coordinate ring Q½Y � ¼ Q½si; 1=si; r; 1=r� is equal to

the polynomial ring Q½��:

Q½Y �W ðE6Þ ¼ Q½�� ¼ Q½p0; p1; p2; q0; q1; q2�:ð18Þ

To state the next result which is a refinement

of Theorem 1(iii), we fix some notation. Let

s0i :¼
si

r
ð1 � i � 6Þ; s00ij :¼

r

sisj
ði < jÞð19Þ

and

� :¼ fsi; s6þi :¼ s0i ði � 6Þ; s12þk :¼ s00ij ði < jÞgð20Þ
¼ fs1; . . . ; s27g

with suitable ordering. The Weyl group W ðE6Þ
acts on � as permutations and it is a transitive

action.

Let

�n ðor ��nÞð21Þ

denote the n-th elementary symmetric poly-

nomial of fsij1 � i � 27g (or f1=sij1 � i � 27g).
Note that ��n ¼ �27�n since

Q27
i¼1 si ¼ 1. Further

we let

�1 ¼ rþ
1

r
þ
X
i6¼j

si

sj
þ
X
i<j<k

r

sisjsk
þ
sisjsk

r

� �
ð22Þ

which corresponds to the sum of 72 roots of E6.

Thus we have defined some explicit W ðE6Þ-invar-

iants of Q½si; 1=si; r; 1=r�.
Theorem 2. For � generic over Q, we

have

Q½�1; �1; �2; �3; ��1; ��2� ¼ Q½p0; p1; p2; q0; q1; q2�:ð23Þ

More precisely, we have

�1 ¼ �2p1

�1 ¼ 6p2

��1 ¼ p2
2 � q2

�2 ¼ 13p2
2 þ p0 � q2

��2 ¼ �2p1p2 þ 6p2 þ q1

�3 ¼ 8p2
3 þ 2p0p2 þ p1

2 � 6p1 � q0 þ 9:

8>>>>>>>>><
>>>>>>>>>:

ð24Þ

This can be uniquely solved in terms of pi; qj as

follows:
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p2 ¼ 1
6 �1

p1 ¼ �1
2
�1

p0 ¼ �2 � 1
3 �

2
1 � ��1

q2 ¼ ���1 þ 1
36 �

2
1

q1 ¼ ��1 þ ��2 � 1
6
�1�1

q0 ¼ 9þ 3�1 þ 1
4
�2

1 � 1
3
��1�1 � 2

27
�3

1

þ1
3�1�2 � �3:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð25Þ

In view of the above theorems, the family of

elliptic surfaces S� defined by the equation (1) will

be called a multiplicative excellent family with

Galois group WðE6Þ. [Note that Q can be replaced

by any field of characterisitic 6¼ 2; 3 in Theorems 1

and 2.]

Remark 1. We obtained similar results in

our previous papers ([8,9]) for type Erðr ¼ 6; 7; 8Þ,
and proposed to call such a family with parameter

� an excellent family with Galois group W ðErÞ
(cf. [10,14]). Actually we mainly studied the sit-

uation where the family of elliptic surfaces has an

additive singular fibre. In that case, we have a

stronger result that the parameters pi; qj of the

family become the fundamental polynomial invar-

iants of the Weyl group.

In particular, for type E6, take the Weierstrass

equation

ð26Þ
y2 þ 2t2y

¼ x3 þ ðp0 þ p1tþ p2t
2Þxþ q0 þ q1tþ q2t

2:

It has a singular fibre of type IV at t ¼ 1, and

it defines an additive excellent family of type E6.

Namely, Theorem 1 above holds true verbatim

provided that Y in the statement (ii) is replaced by

the affine 6-space A6, and ‘‘Theorem 2’’ corresponds

to the explicit formula of pi; qj as the fundamental

polynomial invariants in the polynomial ring

Q½Y � ¼ Q½a1; . . . ; a6� (see [8, p.679, (2.15)]).

Remark 2. Theorem 2 gives an explicit

description of the fundamental invariants of the

Weyl group in the multiplicative case, i.e. in the

ring of Laurent polynomials Qhs1; . . . ; s6; ri. The

invariants f�1; �2; �3; ��1; ��2g are essentially equal to

the characters of the 5 fundamental representations

of the simple algebraic group (or the simple Lie

algebra) of type E6:

�mV ðm ¼ 1; 2; 3Þ and �mV � ðm ¼ 1; 2Þð27Þ

where V denotes a 27-dimentional irreducible

representation and V � its dual representation

(cf. [2, Ch.13]). In fact, this viewpoint inspired us

to introduce the W ðE6Þ-invariant �1 as the one

corresponding to the remaining fundamental repre-

sentation, the adjoint representation.

See the Notes (added in proof) at the end of

the paper.

4. Outline of proof. By [11, Th.7], we find

six linear sections fPi ð1 � i � 6Þg such that

hPi; Pji ¼ �ij þ
1

3
ð28Þ

and a section R0 of height 2 (a root of E6) such that

3R0 ¼ P1 þ � � � þ P6. Let

P 0i :¼ Pi � R0; P
00
ij :¼ R0 � Pi � Pjði 6¼ jÞ:ð29Þ

Then the 27 linear sections are given by

fPi; P 0i ; P 00ijði 6¼ jÞg ¼ fP1; . . . ; P27g:ð30Þ

At the singular fibre of type I3 at t ¼ 1:

��1ð1Þ ¼ �0 þ�1 þ�2;ð31Þ

we can define a specialization homomorphism:

sp1 : M� ! k	 	 Z=3Zð32Þ

such that the following lemma holds:

Lemma 3. The map sp1 is a Galois-equiv-

ariant homomorphism such that, if P is a linear

section defined by (2), then

sp1ðP Þ ¼ �
1

a
; ½�1�

� �
:ð33Þ

(The 27 linear sections in (30) intersect one and

the same component, which is named as �1 above.)

Let sp01 : M� ! k	 be the projection to the first factor.

Proof of Theorem 2. We have

si :¼ sp01ðPiÞ ¼ �
1

ai
ð1 � i � 27Þð34Þ

by Lemma 3. Therefore the polynomial �ðXÞ in (11)

is equal to

�ðXÞ ¼
Y27

i¼1

ðX � aiÞð35Þ

¼
Y27

i¼1

X þ
1

si

� �

¼ X27 þ ��1X
26 þ ��2X

25 þ . . .

þ �4X4 þ �3X
3 þ �2X2 þ �1X þ 1
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where ��n (resp. �n) denotes the n-th elementary

symmetric polynomial of f1=sig (resp. fsig) as

defined in (21).

By comparing the coefficients of the two ex-

pression of �ðXÞ, (11) and (35), we obtain equalities:

�1 ¼ 6p2

��1 ¼ p2
2 � q2

�2 ¼ 13p2
2 þ p0 � q2

��2 ¼ �2p1p2 þ 6p2 þ q1

�3 ¼ 8p2
3 þ 2p0p2 þ p1

2 � 6p1 � q0 þ 9

�4 ¼ �14p2
4 � p0p2

2 þ 16q2p2
2 þ 4p1

2p2

�26p1p2 þ 48p2 � 2q2
2 � 2p1q1

þ7q1 þ p0q2:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð36Þ

This gives the formulas in (24) except that for �1.

Note that (36) can be rationally solved in terms of

pi; qj by allowing ��2 in the denominator.

To complete the proof, it is enough to show

that �1 ¼ �2p1. By using the rational expression of

p1 in terms of f�1; �2; �3; �4; ��1; ��2g just mentioned,

this reduces to showing

�1��2 ¼ �ð7��2 � �2
�1 þ �1 � ��1�2 � �4Þ;ð37Þ

and the verification of this equality in the ring

Q½si; 1=si; r; 1=r� is straightforward. �

Proof of Theorem 1. By (14) and (34), we

have

K� ¼ k0ðs1; . . . ; s27Þ ¼ Qðs1; . . . ; s6; rÞ;ð38Þ

because pi; qj are contained in Qðs1; . . . ; s6; rÞ by

(19), (20) and (25). Note that the relation (16)

holds. Hence ðs1; . . . ; s6; rÞ is a point of the toric

hypersurface Y defined in (ii). The rest of proof will

follow from Theorem 2 by elementary arguments

using Galois theory. �

5. Examples and applications. Once a

multiplicative excellent family is given, we have

various applications of it to number theory and

algebraic geometry. In particular, we can system-

atically construct explicit examples of semi-stable

rational elliptic surfaces over Q with a property

such as

. big Galois over Q

. small Galois over Q

. degeneration via ‘‘vanishing roots’’.

The correponding results using the additive excel-

lent family (26) have been known (cf. [9]), but the

multiplicative family is necessary for treating the

semi-stable case.

5.1. Big Galois over Q. By Hilbert’s irre-

ducibility theorem (cf. [6]), Theorem 1(i) implies

that for most choice of �0 2 Q6, �ðX; �0Þ 2 Q½X�
has the same Galois group W ðE6Þ as the generic

case. Conversely, the existence of a single example

�0 2 Q6 with Galois group W ðE6Þ will prove

Theorem 1(i) for generic �, in view of Proposition

2 of [6, 9.2].

Let us exhibit such an explicit example of

�0:

Example 4. Take �0 ¼ ð1; . . . ; 1Þ, i.e. pi ¼
qi ¼ 1ði ¼ 0; 1; 2Þ. Thus the elliptic surface S�0 (and

the cubic surface V�0) is defined by the Weierstrass

equation:

y2 þ txy ¼ x3 þ ð1þ tþ t2Þxþ 1þ tþ t2 þ t3:

Then the algebraic equation of degree 27 becomes:

ð39Þ
�ðX; �0Þ ¼ X27 þ 5X25 þ 13X24 �X23 þ 76X22

þ 19X21 þ 99X20 þ 85X19 þ 122X18 þ 133X17

þ 222X16 þ 232X15 þ 450X14 þ 340X13 þ 546X12

þ 650X11 þ 369X10 þ 320X9 þ 287X8 þ 151X7

þ 103X6 þ 82X5 þ 31X4 þ 13X3 þ 13X2 þ 6X þ 1:

This integral polynomial has Galois group W ðE6Þ.
Proof. We can use the same argument as in the

additive case ([9, Ex. 7.4]). Look at the factorization

of �ðX; �0Þ mod p into irreducible factors in Fp½X�,
and check that it has cycle type ð9Þ3 for p ¼ 23,

and ð2Þð5Þ3ð10Þ for p ¼ 43. Then the claim follows

from [9, Lemma 7.5]. �

While the above proof is the same as for the

additive case, the resulting W ðE6Þ-extension K ¼
K�0 is given with a ‘‘multiplicative’’ structure that

the 27 roots faig form a set of 27 units, stable under

the Galois group W ðE6Þ. One could ask what the

structure of the unit group of K will be as WðE6Þ-
module.

5.2. Small Galois over Q. Next we consider

the specialization ‘‘upstairs’’ �! �0 where � ¼
ðs1; . . . ; s6; rÞ 2 Y (in contrast to the specialization

‘‘downstairs’’ �! �0 as in §5.1). Namely we choose

some �0 2 Y ðQÞ to obtain a Q-split example of a

semi-stable rational elliptic surface S ¼ S�0 such

that E�0ðQðtÞÞ coincides with E�0ðkðtÞÞ ’ E�6 with

explicit QðtÞ-rational generators Pi.

For example, take si ¼ iþ 1ði < 6Þ, s6 ¼
73=6!; r ¼ 7 for �0. The formula (25) gives �0 ¼
ðpi; qjÞ 2 Q6, which defines E�0 , S�0 and V�0 by (1).
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The MW group E�0ðQðtÞÞ of rank 6 is generated by

Pi ¼ ðaitþ bi; ditþ eiÞði � 27Þ, in which ai ¼ �1=si
has the prescribed values �1=2;�1=3; . . ., etc.

As mentioned in §1, the 27 lines on the cubic

surface V� are defined by: x ¼ aitþ bi; y ¼ ditþ ei.
Thus all the lines are Q-rational if � 2 Y ðQÞ.
Moreover if Li; L

0
i denote the lines corresponding

to Pi; P
0
i in (30), then the 6 lines fLig and fL0ig form

a double six of lines in Schläfli’s sense by our

construction.

5.3. Degeneration via ‘‘vanishing roots’’.

By the same method as above, we can also study

the degeneration of S�; V� under specialization of

parameters. Here we drop the assumption (�) in §1,

and consider the case where there may be some new

reducible fibres at t 6¼ 1.

Let  : Y ! A6 be the surjective morphism

defined by (25). If  ð�Þ ¼ � 2 A6, then we consider

the elliptic surface S� :¼ S� defined by (1). On the

other hand, for � ¼ ðs1; . . . ; s6; rÞ 2 Y , we let

� ¼ f1=r; si=sjði < jÞ; r=ðsisjskÞði < j < kÞgð40Þ

be the set of 36 elements corresponding to the 36

positive roots of E6 (cf. [11, Th.7 (iv)]). Further let

� ¼ �ð�Þ denote the number of times 1 occurs in �,

and call it the number of vanishing roots, as the idea

behind is very close to the vanishing cycles in the

deformation of singularities (cf. [12,13]).

Theorem 5. S� has new reducible fibres at

t 6¼ 1 iff 1 2 �, i.e. iff �ð�Þ > 0. More generally,

the number of roots in the root lattice Tnew is equal

to 2�, where Tnew :¼ 
v 6¼1Tv is the new part of the

trivial lattice.

Note that the condition � ¼ 0 is equivalent to

the smoothness of S� and of V�.

5.4. Numerical examples. As an illustra-

tion, we sketch how to prove the refined existence of

every possible type of semi-stable rational elliptic

surfaces (having I3-fibre), by writing down an

explicit Q-split example.

For the classification of rational elliptic sur-

faces with a section, see Persson [5] and Oguiso-

Shioda [4]. The list of [5] is finer than that of [4]

as far as singular fibres are concerned, but [4] gives

the structure of Mordell-Weil lattices M for each

type.

There are exactly 21 OS-types such that the

trivial lattice T contains A2, and they are listed in

the first three columns of Table I, together with the

structure of Tnew and M.

Table I should be read as follows: take the data

fs1; . . . ; s6g in the 4th column such that � ¼ ðs1; . . . ;

s6; rÞ 2 Y ðQÞ for a unique r 2 Q. The 5th column

computes the number of vanishing roots � in �.

Computing the discriminant and the j-

invariant, one checks that the elliptic surface S� ¼
S� has a required configuration of reducible fibres

and Tnew as in the 2nd column. S is semi-stable

except for the cases No. 32, 50 or 69 (where semi-

stability is impossible) and it is Q-split except for

No. 68 (which can never be Q-split; it is Qð!Þ-split

with !3 ¼ 1).

Furthermore, our method gives the 27 linear

sections (counted with multiplicity) Pi; P
0
j; P

00
ij,

which contain generators of the Mordell-Weil

lattices, and which describe the lines on cubic

surface. The multiplicities can be determined in the

same way as in [12,13].

Remark 3. The equation (1) for each of the

above give some explicit examples of affine surfaces

S0 in ðx; y; tÞ-space which has precisely the ADE-

singularities indicated by Tnew . Note that all these

singular points have coordinates with rational

numbers and their resolution can be achieved by

blowing up only Q-rational points.

Table I.

OS Tnew M fs1; . . . ; s6g �

3 0 E�6 2; 3; 4; 5; 6; 73=6! 0

6 A1 A�5 2; 4; 8; 3; 3; 1=9 1

11 A2 ðA�2Þ
2 2; 4; 8; 3; 3; 3 3

12 2A1 rk4ðn:r:lÞ 8; 8; 27; 27; 5; 25 2

19 A3 rk3ðn:r:lÞ 2; 2; 2; 2; 1=2; 8 6

20 A1 þ A2 A�2 þ h1=6i 2; 2; 2; 8; 27; 27 4

23 3A1 A�1 þ ðrk2Þ 8; 8; 27; 27; 125; 125 3

31 A4 ðrk2Þ 2; 2; 2; 2; 2; 1=4 10

32 D4 ðrk2Þ 1; 1; 2; 2; 1=2; 1=2 12

37 A1 þ A3 A�1 þ h1=12i 8; 8; 8; 8; 27; 27 7

39 2A2 A�2 þ Z=3Z 2; 2; 2; 3; 3; 3 6

40 2A1 þ A2 ðh1=6iÞ2 �1;�1;�1; 2; 2; 1=4 5

41 4A1 ðrk2Þ þ Z=2Z �1;�1; 2; 2; 1=2; 1=2 4

50 D5 h1=12i 2; 2; 2; 2; 1=4; 1=4 20

51 A5 A�1 þ Z=3Z 2; 2; 2; 2; 2; 2 15

56 A1 þ A4 h1=30i 2; 2; 2; 2; 2; 1=32 11

59 2A1 þ A3 h1=12i þ Z=2Z 2; 2; 2; 2;�1=4;�1=4 8

61 A1 þ 2A2 h1=6i þ Z=3Z 2; 2; 2; 1=2; 1=2; 1=2 7

66 A1 þ A5 Z=6Z �1;�1;�1; 1; 1; 1 16

68 3A2 ðZ=3ZÞ2 !; !; !; !0; !0; !0 9

69 E6 Z=3Z 1; 1; 1; 1; 1; 1 36
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Notes (Added in proof). Recently we came

to notice that our Theorem 2 is essentially equiv-

alent to the statement about ‘‘E6-curve’’ (a special

case of Seiberg-Witten curve) in the paper of

Eguchi and Sakai [15]. Many interesting results

in [15] are based on the mirror type arguments, and

our result can be viewed as a purely mathematical

proof for ‘‘E6-curve’’. Finally, further multiplicative

excellent families will be studied in the case of type

E7 and E8, in a joint paper with Abhinav Kumar (in

preparation).
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