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1. Introduction and the main result. Let
F be a probability measure on R, F™ be its

n-fold convolution. We assume m = / x F(dz) €

(0,00) since it is the most interesting case in the
renewal theory. We denote the Fourier transform

o0
/ ¢ F(dx) by ¢(2).
—00
If A C R is a Borel set and x is a real number,
the sets —A, xA, and x+ A are defined in the
obvious way by symmetry, expansion (or contrac-
tion), and translation. We say that F' is periodic
with the period w > 0 if w is the greatest positive
number such that F' is supported on wZ. If such w
does not exist, we set w = 0.
Let {X,},_1.. be a sequence of independent
random variables with the common distribution F
and set Sy =0, S, =3, Xp. Thus {S,},_o;

.....

forms a transient random walk on R going to +o0.
oo

=Y,

which is the O-resolvent measure for the Orandom
walk {S,}.

As the renewal theory (see [5], [1], [4], [2])
reveals, there are follovvlng cases: If w> 0, then
r}LHOlC U({nw}) = —; If w=0, then hm Ulx+1) =
1

We also set, for any interval I, U(I)

for any interval I where |I| denotes the length

of I. In any case, lim,_, o U(x + 1) =0.
For this, Feller and Orey [6] give a rather short
proof, which is based on the symmetrized measure
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We study the weak convergence of some measures related to the renewal
theorem, extending a result by Feller and Orey.
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V defined by V(I):=1(U(I) + U(-I)). Let us re-
view very briefly their method in the case w = 0.
They prove

1) | |

hm V(z+1)=
and make use of transience of {S,}. The proof
of (1) relies on the following weak convergence

(2) of a family of finite measures. Let
my(dz) = 72 R=55 e ))dz and m(dz) = I 6y(dz) +
712 R(;=;5)dz, a mixture of a point mass and an

absolutely continuous one. It is shown in [6] that
(2)

if w =0, where = indicates weak convergence.

ms(dz) = m(dz) ass—1-0

Remark 1.1. It holds R(+—21 o) >1 and
R—7 ;( >) . Indeed, w = 1= maps the unit disc

{ze C| |z| <1} conformally to {oco}U{w e C|
Rw >1}. An extreme example can be found in
Example 2.1 in Section 2, although in the case

w>0. As we make s—1-—0, the density
ﬁ%(ﬁwz)) of ms(dz) produces an acute thorn,
which will form a point mass of m(dz). Some

examples of thorns are observed in Examples 2.1
and 2.2.

Remark 1.2. At every z such that ¢(z) =1,
we can prove ¢'(z) = im, whether w =0 or w > 0.
Hence 1— v hah only isolated singularities, which
forms a neghg1ble set, so that the measure

1%(

o %M)dz is well-defined. The set of singular-

ity is %” Z if w > 0 while z = 0 is the only singularity
if w=0.
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Remark 1.3. In many cases, R(— 7 ¢(7) be-
haves rather mildly near a singularity a: If

/ 2" F(dz) < o0 for some &€ (0,1), then

5}?(%) =O(z—al ") as z—a. This is an
exercise involving the expansion ¢(z) =1+ im(z —
a) +O(|z— a'™).

In this note, we are motivated to understand
(2) deeper and aim to establish the following result
which includes also the case w > 0.

Theorem 1.1. Foranya >0and0<s <1,
let m{™ (dz) = 1+|1\<‘+1 R <o) 4%

Then the family of ﬁmte measures m&'J‘)(dz)
converges weakly, say, to m'®(dz):

(3) m®(dz) = m'*(dz) ass—1-0.

Moreover, if w=0 then m!®)(dz) = £ §y(dz) +
W?R(l_v(z))dz, if w>0 then ml¥(dz)=
2nez m(l+(27r?n\/w)"+l) Bamn/u(d2) + 1+\i\"“ %(1_;(2))512.

The proof will be given in Section 3.

Theorem 1.1 gives an explanation for the roles
played by the assumption w =0 and the factor

1/(1+2%) in (2). Moreover if we make a <0 in

the expression of m'" (dz) and m(®(dz), we easily
deduce that they are infinite measures from
Remark 1.1. In this sense, the statement of
Theorem 1.1 is exhaustive concerning the value of
a that enables weak convergence.

2. Examples. In this section, we investigate
several examples of F' and ¢. Let a > 0.

Example 2.1. If w >0, p(z) is a periodic
function with the fundamental period %” The
simplest case among them is F(dz) = 6,,(dz):
the unit mass at m =w > 0. In this case, ¢(z) =
6imz and %( 1

1¢<Z>)—§. The limit measure is
hence m(®(dz) =

=2 nez @™ 627Tn/7n(dz)

1
pTERNE dz. Next let us observe how m\" (dz)
produces a series of acute thorns at each point in
% Z. We have

() (i)

1 (1-s%)/2

2 - (1+ s2) — 2scos(mz)

Here the first term corresponds to the absolutely
continuous part of m(®(dz). In a neighborhood of
z = 27n/m, where n is an integer, it holds
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cos(mz) = cos(m(z — 2mn/m))
=1-(1+0(1)) %mZ(z — 27n/m)*

and hence

(1—-s?)/2

(1+ s?) — 2scos(mz)

= (1+0(1))

1-s
(1 —s)* +m2(z — 2mn/m)*
as s — 1 — 0. The last term is very close to a scaled/
translated version = f(*= 2m/m) of a function
flx) = approxnnatrng a point mass vy, /m
with v = f(z)dx = 7/m.

Example 2.2. If w=0and F is not singular
with respect to the Lebesgue measure, (3) follows
from (2) in a straightforward manner as follows.
To begin with, we note that sup;<‘2‘<OO lo(z)] <1
for any >0 and hence R( converges
to %(lw(
of (2),
I 8(dz) + 111 (2) R(=25 s)dz as s — 1 -0, which
convergence can be traced back to [3]. For |z > 1,
SUPy<set1 (T e )) < oo. It is then immediate to
deduce (3) since —L1—+ is an integrable function.

14
Among Example 2. 2|Z‘the exponential distribution is

_ 1
1+m2z2?
00

= w ))
Z)) uniformly on {e < |z| < oo}. In view

1[*1=1](2)%(T99())d2 converges weakly to

the most remarkable case: F(dx) e */mdz. In
this case, ¢(z) = 1—— i and (3 w( )) 1 The limit
measure is hence m/ )(dz) T 00(dz) + Wdz.

Next let us observe how my” (dz) produces an acute
thorn at z = 0. We have

(=) = ==

1-s
(1—s) +m222"
Here the first term corresponds to the absolutely
continuous part of m(®(dz) and the second term
is very close to a scaled version X f(%) of a
function f(z) = {z,

approximating vé, with v =
/ fx)dx = 7/m.

Example 2.3. The case w=0 and F is
singular is the most troublesome one. To be specific,
let a>0, b>0, and 0<c<1 be such that
b/a is an irrational number and set F = cb, +
(1 — ¢)ép. Its Fourier transform ¢(z) = cexp(iaz) +
(1 —c)exp(ibz) satisfies liminf, .+ |p(2) — 1] <

=1+s
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liminfrez j—roo |p(27k/a) — 1| = 0. Indeed, @(27k/
a)=c+ (1 —c)exp(2r2ki) and the sequence
{exp(2m L ki); k € Z} runs densely over the unit disc

in C. Hence it holds limsup, .. R(—7 S0<7))d,z
and, for any fixed s € [0,1), limsup,_, %(m) =

1/(1 —s). So one can not expect a priori bound
C(1 + |2]**Y) ™ for the density of m{™ on {|2| > 1} as
in Example 2.2. Still Theorem 1.1 implies that m,(;!)
converges weakly.

3. Proof of Theorem 1. Since the random
walk {S,},_o, _is transient, we have U((—h, h)) =
V((—=h h))<oof0ranyh>0

Define a family of measures V; for 0 < s < 1 by

1 - n Mk %
Vo) =5 D"+ FY(-D))
Each V; is a finite measure on R. As s —1—0,
Vs((=h,h)) /" V((=h,h)) < co. The following state-
ment is given in [6] but we prove it here for the sake

00 .
e g(x)dx

o0

of reader’s convenience. Let Fg(z) = /

S 1
and Fly(z) = 17T/ e "y (2)dz = 2—.7-'7(—;5) for
_ m

integrable functions g(x) and ~(z).
Lemma 3.1. For any function g(z) € L'(R)
such that Fg(z) € LY(R), we have, for any y € R,

@ [ o

1 o ) 1
—— [ e FyaR( ——— ) d=
e BRREIS) (1—8s0(2)> :

Proof. The Fourier transform of V; is given by

JRET R

(7(>)

The equation (4) follows from the Parseval identity
or the Funibi theorem. (I
In the next lemma we prove the existence of a
function with a crucial property.
Lemma 3.2. Let0<a<1andt(z)=((1-
[21) V 0)%, 6a(2) = exp(—|2|"), and ¢a(2) = T(2)84(2).
We also sett = F~ 7, dy = F 164, and po = F 4),.
Then 1), is bounded, nonnegative, supported on
a compact set; po 1S bounded, strictly positive, and
palT) < " luﬂ A1, where “<’ means that the ratio
r(x) between both sides satisfies 0 < infyer r(z) <

) Vs(d)

=V (d)
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Sup,cgr 7(x) < 00. In, particular, ¥, and p, are both
integrable and continuous.

Moreover, the functions that appear here are
even and real-valued.

Proof. It follows from the formula 1.2.4 in [7]
that ¢(z) = % (1 —522) < " ‘2 Al

It is known that d,(z) is the density of a
symmetric a-stable law. As such, d,(z) is infinitely
differentiable (see, e.g., [8,exercise 1.5 (p.49)]),
strictly positive, and satisfies d,(z) < —L5 A 1.

Let “*’ denote the convolution of two functions.
Then p,(z) = F 1 (76,)(x) = (t * d,) (), from which
follows p,(z) < ﬁ A 1. The other statements can
be deduced easily. O

Proof of Theorem 1. For h € (0,1), set

gn(2) := hapa(x/h®).
Since 1, is an even function,
.7:71_(]1,,(2) — h1+1/apa(h1/o‘z).

Supp(gh) = [_hl/aa hl/a}a ”thoc
A h1+1/a.

%}-gh(z) =
Thus it holds
=h, and Fgp(z) <

Izlu+l

Choosing g=gn and y =0 in (4), we obtain

(5) / Fan(z (1—5@( )>dz

- [ aemiian)
< h‘/;([—hl/a, hl/a])

< WV ([-1,1]) < hV([-1,1)).
On one hand, there exists a positive constant Cj
(depending on «) such that

Fan(2)|o™ > >

if |2] > h~'/*. We have from (5) that
Tn(g(y)([_h—l/oz7 h—l/a]c)

1 1
< / s} ?R( )dz
|z >h-1/ | 2] 1 —sp(2)

1
= /z>h1/a Cofgh(z)%(l - SsD(Z)) *
< 20Coh V([~1,1])

for any h € (0,1) and s € [0,1).

On the other hand, if we fix h € (0,1), then
there exists a positive constant C}(h) depending on
h (and «) such that

Fan(z) >

Ci(h)
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for any z € [~h~"/* h~'/%]. Hence

mga) ([_h—l/a7 h—l/a])

1
(e
|z|<h-Va 1-— SQO(Z)

1
< [ PR (5 )
< 2rCy (M)A V(1,1

for any s € [0,1).

These bounds imply that {m\”(dz);s € [0,1)}
is a tight family of finite measures on R and
there exists a finite measure m(®(dz) such that (3)
holds.

If w = 0, the density W %(ﬁw@)) converges

uniformly to %(lf;w(d) as s — 1 —0 in every

1
1+|Z|a+l
interval excluding the origin.

9 (dz) = véy(dz) + T |
[0,00) is the mass assigned to the origin by the
limit measure. To be consistent with (2), we must
have v = I.

Ifw>0 then cp( ) =
It follows that ‘M r R(=

compact Hence

— - R( _y(z))dz where v €

1 if and only if z € 2”Z

e Z) converges, as § —

-0, to ) uniformly on any compact

1+| ‘n+l (

set K such that Kﬁ%”Z:(D. Hence the limit
measure can have point masses only at points
belonging to %’r Z. 1t is straightforward to verify

m!® ({0})

@ (f2mn/wl) =
el = G Gl f ™

by periodicity.

To prove m®({0}) = Z, we introduce F. =
F % N(0,e), where ‘*> denotes the convolution of
two measures and N(0, €) is the normal distribution
with mean 0 and variance ¢ € (0,00). It is ab-
solutely continuous and Theorem 1.1 (the non-
periodic case) is applicable.

Since FE. is the probability distribution of the
sum of X; and an independent centered normal
random variable,

(6) / z F.(dz) =
The Fourier transform ¢.(z) of F. is given by
e"2p(z). Let
m{¥9) (dz) = )dz.
p(2)

S

1 1
R f
1+ |Z‘a+1 (1 — ge—c?*/2

A property of the Fourier transform related to the renewal theorem 155

Then this family converges weakly to, say,

m(®)(dz). In particular, m(®)({0}) = Z by (6).

We denote the Radon-Nikodym density
R(—57)d>

(Z) = %(%)d by &(e, s, 2).

—_se—¢2/

We define the error terms R(z) and I(z) in
the expansion ¢(z) = 1+ imz + R(z) + iI(z) so that
|R(2)| + |I(2)] = o(z) as z — 0 and R(z) and I(z) are
real valued.

For all € € (0,1) that is sufﬁciently small, we
can find a nelghborhood U. C (—3,3) of z=0such
that 1 — 2e < se~=/2 < 1, |I(2)| § 5|z|, and |R(z)] <
elz| for any s€[l—e,1) and z € U.. Moreover,

dm(u)

A

it follows that R(z) < —1i(m— €)’22 <0 from
lo(2)] < 1. We set
= inf
Cl (6) 56[17151,11),26115 5(67 S, Z)a
02(6) = sup 6(57 S, Z)

s€[l—e,1),2€U.
It is elementary but tedious to prove that
lim Ci(e) = lim Ch(e) =1
Jim, Gr(e) = lim, Co(e)

using the above estimates. We omit its proof. By
the definiton of m(®9) we have

C1(e)m 9 ({0}) < m™({0}) < Ca(e)m! ™ ({0}).
Since € is arbitrary and m(®9)({0}) = I, we have

@({0}) = 7. -
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