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Abstract: We study the weak convergence of some measures related to the renewal

theorem, extending a result by Feller and Orey.
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1. Introduction and the main result. Let

F be a probability measure on R, Fn� be its

n-fold convolution. We assume m ¼
Z 1
�1

xF ðdxÞ 2

ð0;1Þ since it is the most interesting case in the

renewal theory. We denote the Fourier transformZ 1
�1

eizxF ðdxÞ by ’ðzÞ.

If A � R is a Borel set and x is a real number,

the sets �A, xA, and xþ A are defined in the

obvious way by symmetry, expansion (or contrac-

tion), and translation. We say that F is periodic

with the period ! > 0 if ! is the greatest positive

number such that F is supported on !Z. If such !

does not exist, we set ! ¼ 0.

Let fXngn¼0;1;... be a sequence of independent

random variables with the common distribution F

and set S0 ¼ 0, Sn ¼
Pn

k¼1 Xk. Thus fSngn¼0;1;...

forms a transient random walk on R going to þ1.

We also set, for any interval I, UðIÞ ¼
X1
n¼0

Fn�ðIÞ,

which is the 0-resolvent measure for the random

walk fSng.
As the renewal theory (see [5], [1], [4], [2])

reveals, there are following cases: If ! > 0, then

lim
n!1

Uðfn!gÞ ¼ !

m
; If ! ¼ 0, then lim

x!1
Uðxþ IÞ ¼

jIj
m

for any interval I where jIj denotes the length

of I. In any case, limx!�1 Uðxþ IÞ ¼ 0.

For this, Feller and Orey [6] give a rather short

proof, which is based on the symmetrized measure

V defined by V ðIÞ :¼ 1
2 ðUðIÞ þ Uð�IÞÞ. Let us re-

view very briefly their method in the case ! ¼ 0.

They prove

lim
x!1

V ðxþ IÞ ¼
jIj
2m

ð1Þ

and make use of transience of fSng. The proof

of (1) relies on the following weak convergence

(2) of a family of finite measures. Let

msðdzÞ ¼ 1
1þz2 <ð 1

1�s’ðzÞÞdz and mðdzÞ ¼ �
m �0ðdzÞ þ

1
1þz2 <ð 1

1�’ðzÞÞdz, a mixture of a point mass and an

absolutely continuous one. It is shown in [6] that

msðdzÞ ¼) mðdzÞ as s! 1� 0ð2Þ

if ! ¼ 0, where ¼) indicates weak convergence.

Remark 1.1. It holds <ð 1
1�s’ðzÞÞ � 1

2 and

<ð 1
1�’ðzÞÞ � 1

2. Indeed, w ¼ 1
1�z maps the unit disc

fz 2 C j jzj � 1g conformally to f1g [ fw 2 C j
<w � 1

2g. An extreme example can be found in

Example 2.1 in Section 2, although in the case

! > 0. As we make s! 1� 0, the density
1

1þz2 <ð 1
1�s’ðzÞÞ of msðdzÞ produces an acute thorn,

which will form a point mass of mðdzÞ. Some

examples of thorns are observed in Examples 2.1

and 2.2.

Remark 1.2. At every z such that ’ðzÞ ¼ 1,

we can prove ’0ðzÞ ¼ im, whether ! ¼ 0 or ! > 0.

Hence 1
1�’ðzÞ has only isolated singularities, which

forms a negligible set, so that the measure

1
1þz2 <ð 1

1�’ðzÞÞdz is well-defined. The set of singular-

ity is 2�
! Z if ! > 0 while z ¼ 0 is the only singularity

if ! ¼ 0.
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Remark 1.3. In many cases, <ð 1
1�’ðzÞÞ be-

haves rather mildly near a singularity a: IfZ 1
�1
jxj1þ�F ðdxÞ <1 for some � 2 ð0; 1Þ, then

<ð 1
1�’ðzÞÞ ¼ Oðjz� aj

�1þ�Þ as z! a. This is an

exercise involving the expansion ’ðzÞ ¼ 1þ imðz�
aÞ þOðjz� aj1þ�Þ.

In this note, we are motivated to understand

(2) deeper and aim to establish the following result

which includes also the case ! > 0.

Theorem 1.1. For any � > 0 and 0 � s < 1,

let m
ð�Þ
s ðdzÞ ¼ 1

1þjzj�þ1 <ð 1
1�s’ðzÞÞdz.

Then the family of finite measures m
ð�Þ
s ðdzÞ

converges weakly, say, to mð�ÞðdzÞ:

mð�Þs ðdzÞ ¼) mð�ÞðdzÞ as s! 1� 0:ð3Þ

Moreover, if ! ¼ 0 then mð�ÞðdzÞ ¼ �
m �0ðdzÞ þ

1
1þjzj�þ1 <ð 1

1�’ðzÞÞdz; if ! > 0 then mð�ÞðdzÞ ¼P
n2Z

�
mð1þð2�jnj=!Þ�þ1Þ �2�n=!ðdzÞ þ 1

1þjzj�þ1 <ð 1
1�’ðzÞÞdz.

The proof will be given in Section 3.

Theorem 1.1 gives an explanation for the roles

played by the assumption ! ¼ 0 and the factor

1=ð1þ z2Þ in (2). Moreover, if we make � � 0 in

the expression of m
ð�Þ
s ðdzÞ and mð�ÞðdzÞ, we easily

deduce that they are infinite measures from

Remark 1.1. In this sense, the statement of

Theorem 1.1 is exhaustive concerning the value of

� that enables weak convergence.

2. Examples. In this section, we investigate

several examples of F and ’. Let � > 0.

Example 2.1. If ! > 0, ’ðzÞ is a periodic

function with the fundamental period 2�
! . The

simplest case among them is F ðdzÞ ¼ �mðdzÞ:
the unit mass at m ¼ ! > 0. In this case, ’ðzÞ ¼
eimz and <ð 1

1�’ðzÞÞ ¼ 1
2. The limit measure is

hence mð�ÞðdzÞ ¼
P

n2Z
�

mð1þð2�jnj=mÞ�þ1Þ �2�n=mðdzÞ þ
1

2ð1þjzj�þ1Þ dz. Next let us observe how m
ð�Þ
s ðdzÞ

produces a series of acute thorns at each point in
2�
m Z. We have

<
1

1� s’ðzÞ

� �
¼ < 1

1� seimz

� �

¼ 1

2
þ ð1� s2Þ=2

ð1þ s2Þ � 2s cosðmzÞ
:

Here the first term corresponds to the absolutely

continuous part of mð�ÞðdzÞ. In a neighborhood of

z ¼ 2�n=m, where n is an integer, it holds

cosðmzÞ ¼ cosðmðz� 2�n=mÞÞ

¼ 1� ð1þ oð1ÞÞ
1

2
m2ðz� 2�n=mÞ2

and hence

ð1� s2Þ=2

ð1þ s2Þ � 2s cosðmzÞ

¼ ð1þ oð1ÞÞ
1� s

ð1� sÞ2 þm2ðz� 2�n=mÞ2

as s! 1� 0. The last term is very close to a scaled/

translated version 1
1�s fð

z�2�n=m
1�s Þ of a function

fðxÞ ¼ 1
1þm2x2 , approximating a point mass ��2�n=m

with � ¼
Z 1
�1

fðxÞdx ¼ �=m.

Example 2.2. If ! ¼ 0 and F is not singular

with respect to the Lebesgue measure, (3) follows

from (2) in a straightforward manner as follows.

To begin with, we note that sup"<jzj<1 j’ðzÞj < 1

for any " > 0 and hence <ð 1
1�s’ðzÞÞ converges

to <ð 1
1�’ðzÞÞ uniformly on f" < jzj <1g. In view

of (2), 1½�1;1�ðzÞ<ð 1
1�s’ðzÞÞdz converges weakly to

�
m �0ðdzÞ þ 1½�1;1�ðzÞ<ð 1

1�’ðzÞÞdz as s! 1� 0, which

convergence can be traced back to [3]. For jzj > 1,

sup0<s<1ð 1
1�s’ðzÞÞ <1. It is then immediate to

deduce (3) since 1
1þjzj�þ1 is an integrable function.

Among Example 2.2, the exponential distribution is

the most remarkable case: F ðdxÞ ¼ 1
m e
�x=mdx. In

this case, ’ðzÞ ¼ 1
1�imz and <ð 1

1�’ðzÞÞ ¼ 1. The limit

measure is hence mð�ÞðdzÞ ¼ �
m �0ðdzÞ þ 1

1þjzj�þ1 dz.

Next let us observe how m
ð�Þ
s ðdzÞ produces an acute

thorn at z ¼ 0. We have

< 1

1� s’ðzÞ

� �
¼ < 1

1� s=ð1� imzÞ

� �

¼ 1þ s
1� s

ð1� sÞ2 þm2z2
:

Here the first term corresponds to the absolutely

continuous part of mð�ÞðdzÞ and the second term

is very close to a scaled version 1
1�s fð z

1�sÞ of a

function fðxÞ ¼ 1
1þm2x2 , approximating ��0 with � ¼Z 1

�1
fðxÞdx ¼ �=m.

Example 2.3. The case ! ¼ 0 and F is

singular is the most troublesome one. To be specific,

let a > 0, b > 0, and 0 < c < 1 be such that

b=a is an irrational number and set F ¼ c�a þ
ð1� cÞ�b. Its Fourier transform ’ðzÞ ¼ c expðiazÞ þ
ð1� cÞ expðibzÞ satisfies lim infz!�1 j’ðzÞ � 1j �
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lim infk2Z;k!�1 j’ð2�k=aÞ � 1j ¼ 0. Indeed, ’ð2�k=
aÞ ¼ cþ ð1� cÞ expð2� b

a kiÞ and the sequence

fexpð2� b
a kiÞ; k 2 Zg runs densely over the unit disc

in C. Hence it holds lim supz!�1 <ð 1
1�’ðzÞÞdz ¼ 1

and, for any fixed s 2 ½0; 1Þ, lim supz!�1 <ð 1
1�s’ðzÞÞ ¼

1=ð1� sÞ. So one can not expect a priori bound

Cð1þ jzj�þ1Þ�1 for the density of m
ð�Þ
s on fjzj > 1g as

in Example 2.2. Still Theorem 1.1 implies that m
ð�Þ
s

converges weakly.

3. Proof of Theorem 1. Since the random

walk fSngn¼0;1;... is transient, we have Uðð�h; hÞÞ ¼
V ðð�h; hÞÞ <1 for any h > 0.

Define a family of measures Vs for 0 � s < 1 by

VsðIÞ ¼
1

2

X1
n¼0

snðFn�ðIÞ þ Fn�ð�IÞÞ:

Each Vs is a finite measure on R. As s! 1� 0,

Vsðð�h; hÞÞ % V ðð�h; hÞÞ <1. The following state-

ment is given in [6] but we prove it here for the sake

of reader’s convenience. Let FgðzÞ ¼
Z 1
�1

eizxgðxÞdx

and F�1�ðxÞ ¼ 1
2�

Z 1
�1

e�ixz�ðzÞdz 	 1

2�
F�ð�xÞ for

integrable functions gðxÞ and �ðzÞ.
Lemma 3.1. For any function gðxÞ 2 L1ðRÞ

such that FgðzÞ 2 L1ðRÞ, we have, for any y 2 R,Z 1
�1

gðy� xÞVsðdxÞð4Þ

¼ 1

2�

Z 1
�1

e�iyzFgðzÞ<
1

1� s’ðzÞ

� �
dz:

Proof. The Fourier transform of Vs is given byZ 1
�1

eizxVsðdxÞ ¼
1

2

X1
n¼0

snð’ðzÞn þ ’ð�zÞnÞ

¼ <
1

1� s’ðzÞ

� �
:

The equation (4) follows from the Parseval identity

or the Funibi theorem. �

In the next lemma we prove the existence of a

function with a crucial property.

Lemma 3.2. Let 0 < � < 1 and �ðzÞ ¼ ðð1�
jzjÞ _ 0Þ2, ��ðzÞ ¼ expð�jzj�Þ, and  �ðzÞ ¼ �ðzÞ��ðzÞ.
We also set t ¼ F�1� , d� ¼ F�1��, and p� ¼ F�1 �.

Then  � is bounded, nonnegative, supported on

a compact set; p� is bounded, strictly positive, and

p�ðxÞ 
 1
jxj�þ1 ^ 1, where ‘
’ means that the ratio

rðxÞ between both sides satisfies 0 < infx2R rðxÞ �

supx2R rðxÞ <1. In, particular,  � and p� are both

integrable and continuous.

Moreover, the functions that appear here are

even and real-valued.

Proof. It follows from the formula I.2.4 in [7]
that tðxÞ ¼ 4

x2 ð1� sin x
x Þ 
 1

jxj2 ^ 1.

It is known that d�ðxÞ is the density of a

symmetric �-stable law. As such, d�ðxÞ is infinitely

differentiable (see, e.g., [8, exercise 1.5 (p.49)]),

strictly positive, and satisfies d�ðxÞ 
 1
jxj�þ1 ^ 1.

Let ‘*’ denote the convolution of two functions.

Then p�ðxÞ ¼ F�1ð���ÞðxÞ ¼ ðt � d�ÞðxÞ, from which

follows p�ðxÞ 
 1
jxj�þ1 ^ 1. The other statements can

be deduced easily. �

Proof of Theorem 1. For h 2 ð0; 1Þ, set

ghðxÞ :¼ h �ðx=h1=�Þ:

Since  � is an even function, 1
2� FghðzÞ ¼

F�1ghðzÞ ¼ h1þ1=�p�ðh1=�zÞ. Thus it holds

suppðghÞ ¼ ½�h1=�; h1=��, kghk1 ¼ h, and FghðzÞ 

1
jzj�þ1 ^ h1þ1=�.

Choosing g ¼ gh and y ¼ 0 in (4), we obtain

1

2�

Z 1
�1
FghðzÞ<

1

1� s’ðzÞ

� �
dzð5Þ

¼
Z 1
�1

ghðxÞVsðdxÞ

� hVsð½�h1=�; h1=��Þ
� hVsð½�1; 1�Þ � h V ð½�1; 1�Þ:

On one hand, there exists a positive constant C0

(depending on �) such that

FghðzÞjzj�þ1 >
1

C0

if jzj > h�1=�. We have from (5) that

mð�Þs ð½�h�1=�; h�1=��cÞ

�
Z
jzj>h�1=�

1

jzj�þ1
<

1

1� s’ðzÞ

� �
dz

�
Z
jzj>h�1=�

C0FghðzÞ<
1

1� s’ðzÞ

� �
dz

� 2�C0hV ð½�1; 1�Þ

for any h 2 ð0; 1Þ and s 2 ½0; 1Þ.
On the other hand, if we fix h 2 ð0; 1Þ, then

there exists a positive constant C1ðhÞ depending on

h (and �) such that

FghðzÞ >
1

C1ðhÞ
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for any z 2 ½�h�1=�; h�1=��. Hence

mð�Þs ð½�h�1=�; h�1=��Þ

�
Z
jzj�h�1=�

<
1

1� s’ðzÞ

� �
dz

�
Z
jzj�h�1=�

C1ðhÞFghðzÞ<
1

1� s’ðzÞ

� �
dz

� 2�C1ðhÞh V ð½�1; 1�Þ

for any s 2 ½0; 1Þ.
These bounds imply that fmð�Þs ðdzÞ; s 2 ½0; 1Þg

is a tight family of finite measures on R and

there exists a finite measure mð�ÞðdzÞ such that (3)

holds.

If ! ¼ 0, the density 1
1þjzj�þ1 <ð 1

1�s’ðzÞÞ converges

uniformly to 1
1þjzj�þ1 <ð 1

1�’ðzÞÞ as s! 1� 0 in every

compact interval excluding the origin. Hence

mð�ÞðdzÞ ¼ ��0ðdzÞ þ 1
1þjzj�þ1 <ð 1

1�’ðzÞÞdz where � 2
½0;1Þ is the mass assigned to the origin by the

limit measure. To be consistent with (2), we must

have � ¼ �
m.

If ! > 0, then ’ðzÞ ¼ 1 if and only if z 2 2�
! Z.

It follows that 1
1þjzj�þ1 <ð 1

1�s’ðzÞÞ converges, as s!

1� 0, to 1
1þjzj�þ1 <ð 1

1�’ðzÞÞ uniformly on any compact

set K such that K \ 2�
! Z ¼ ;. Hence the limit

measure can have point masses only at points

belonging to 2�
! Z. It is straightforward to verify

mð�Þðf2�n=!gÞ ¼
mð�Þðf0gÞ

ð1þ ð2�jnj=!Þ�þ1Þ
by periodicity.

To prove mð�Þðf0gÞ ¼ �
m, we introduce ~FF" ¼

F �Nð0; "Þ, where ‘*’ denotes the convolution of

two measures and Nð0; "Þ is the normal distribution

with mean 0 and variance " 2 ð0;1Þ. It is ab-

solutely continuous and Theorem 1.1 (the non-

periodic case) is applicable.

Since ~FF" is the probability distribution of the

sum of X1 and an independent centered normal

random variable,Z 1
�1

x ~FF"ðdxÞ ¼ m:ð6Þ

The Fourier transform ~’’"ðzÞ of ~FF" is given by

e�"z
2=2’ðzÞ. Let

mð�;"Þ
s ðdzÞ ¼

1

1þ jzj�þ1
<

1

1� se�"z2=2’ðzÞ

� �
dz:

Then this family converges weakly to, say,

mð�;"ÞðdzÞ. In particular, mð�;"Þðf0gÞ ¼ �
m by (6).

We denote the Radon-Nikodym density

dm
ð�Þ
s

dm
ð�;"Þ
s

ðzÞ ¼ <ð 1
1�s’ðzÞÞdz

<ð 1
1�se�"z2=2’ðzÞ

Þdz by �ð"; s; zÞ.

We define the error terms RðzÞ and IðzÞ in

the expansion ’ðzÞ ¼ 1þ imzþ RðzÞ þ iIðzÞ so that

jRðzÞj þ jIðzÞj ¼ oðzÞ as z! 0 and RðzÞ and IðzÞ are

real valued.

For all " 2 ð0; 1
3Þ that is sufficiently small, we

can find a neighborhood U" � ð� 1
2 ;

1
2Þ of z ¼ 0 such

that 1� 2" � se�"z2=2 � 1, jIðzÞj � "jzj, and jRðzÞj �
"jzj for any s 2 ½1� "; 1Þ and z 2 U". Moreover,

it follows that RðzÞ � � 1
2 ðm� "Þ

2z2 < 0 from

j’ðzÞj � 1. We set

C1ð"Þ :¼ inf
s2½1�";1Þ;z2U"

�ð"; s; zÞ;

C2ð"Þ :¼ sup
s2½1�";1Þ;z2U"

�ð"; s; zÞ:

It is elementary but tedious to prove that

lim
"!þ0

C1ð"Þ ¼ lim
"!þ0

C2ð"Þ ¼ 1

using the above estimates. We omit its proof. By

the definiton of mð�;"Þ, we have

C1ð"Þmð�;"Þðf0gÞ � mð�Þðf0gÞ � C2ð"Þmð�;"Þðf0gÞ:

Since " is arbitrary and mð�;"Þðf0gÞ ¼ �
m, we have

mð�Þðf0gÞ ¼ �
m. �
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