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Abstract: We obtain a determinant expression of the zeta function of a generalized

permutation over a finite set. As a corollary we prove the functional equation for the zeta

function. In view of absolute mathematics, this is an extension from GLðn;F1Þ to GLðn;F1mÞ,
where F1 and F1m denote the imaginary objects ‘‘the field of one element’’ and ‘‘its extension of

degree m’’, respectively. As application we obtain a certain product formula for the zeta function,

which is analogous to the factorization of the Dedekind zeta function into a product of Dirichlet

L-functions for an abelian extention.

Key words: Zeta functions; the field with one element; absolute mathematics; generalized
permutation groups.

1. Introduction. Let

��ðsÞ ¼ exp
X1
m¼1

jFixð�mÞj
m

e�ms

 !
ð1Þ

be the zeta function of the Z-dynamical system

generated by a permutation � 2 Sn, where Sn
denotes the symmetric group over Xn ¼
f1; . . . ; ng. We see that ��ðsÞ is determined by the

conjugacy class of � in Sn. By Proposition 1 below,

it is also expressed by the Euler product over the

set Cycð�Þ of primitive cycles of �:

��ðsÞ ¼
Y

p2Cycð�Þ
ð1�NðpÞ�sÞ�1;

where NðpÞ ¼ elðpÞ with l ¼ lðpÞ being the length of

a primitive cycle

p : i 7! �ðiÞ 7! �2ðiÞ 7! � � � 7! �lðiÞ ¼ ið2Þ

for some i 2 f1; . . . ; ng.
In our previous paper [3], we gave a proof of the

determinant expression

��ðsÞ ¼ detðI �Mð�Þe�sÞ�1;ð3Þ

which enables us to obtain the functional equation

of ��ðsÞ.

Our first goal is to generalize such properties to

the case of generalized permutations. Consequently

we generalize ��ðsÞ to L�ðs; �Þ with � a function

over the set of cycles. As application we obtain a

certain product formula for the zeta function, which

is analogous to the factorization of the Dedekind

zeta function into a product of Dirichlet L-functions

in the case of an abelian extention.

We first briefly recall the definitions and

settings on the generalized symmetric groups fol-

lowing the notation in [1].

Let � be a primitive m-th root of unity, and �m
be the multiplicative group of m-th roots of unity.

The generalized permutation group Wm
n is the

Wreath product of �m by Sn:

1! ð�mÞ
n !Wm

n ! Sn ! 1:

It is also expressed as the group of permutations � of

the set

Xn;m :¼ f�ki j i ¼ 1; . . . ; n; k ¼ 0; 1; . . . ;m� 1gð4Þ

such that �ð�kiÞ ¼ �k�ðiÞ for i ¼ 1; . . . ; n and k ¼
0; 1; . . . ;m� 1. The order of Wm

n is mnn!. The group

Wm
n has the following presentation ([2]):

Wm
n ¼ hr1; . . . ; rn�1; w1; . . . ; wn :

r2
i ¼ ðririþ1Þ3 ¼ ðrirjÞ2 ¼ e; if ji� jj � 2;

wmi ¼ e; wiwj ¼ wjwi; riwi ¼ wiþ1ri;

riwj ¼ wjri; if j 6¼ i; iþ 1i:
We may identify ri ði ¼ 1; . . . ; n� 1Þ with the

transposition ði; iþ 1Þ and therefore the symmetric

group is

doi: 10.3792/pjaa.88.115
#2012 The Japan Academy

2000 Mathematics Subject Classification. Primary 11M41.
�Þ

Department of Biomedical Engineering, Toyo Univer-
sity, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan.
��Þ

K-kai, Kawaijuku, 2-6-1 Koishikawa, Bunkyo-ku, Tokyo
112-0002, Japan.
yÞ

Current Address: Research Institute of Industrial Tech-
nology, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-
8585, Japan

No. 8] Proc. Japan Acad., 88, Ser. A (2012) 115

http://dx.doi.org/10.3792/pjaa.88.115


Sn ¼ hr1; . . . ; rn�1i:

The elements wi may be identified with the map-

ping Xn;m �! Xn;m defined by

wið�kjÞ ¼
�kþ1j ðj ¼ iÞ
�kj ðj 6¼ iÞ

(
:

An element � 2 Wm
n is determined by the

images from the base space Xn, which is embedded

in Xnm with k ¼ 0 in (4). Namely, it can be written

as

� ¼
1 2 � � � n

�s1�ð1Þ �s2�ð2Þ � � � �sn�ðnÞ

� �
ð5Þ

¼ �
Yn
i¼1

wsii 2Wm
n

with � 2 Sn and sj 2 f0; 1; 2; . . . ;m� 1g. Denote by

M the canonical representation M : Wm
n ! GLnðCÞ

of Wm
n defined by Mð�Þ ¼ ð�si��ðiÞ;jÞi;j¼1;...;n.

We define a function � ¼ �� on the set of

primitive cycles p of � given by (2) as

� : Cycð�Þ ! C�

p 7! �

R
p
�

ð6Þ

with
R
p � ¼

P
i2p si. We also define the attached L-

function as

L�ðs; �Þ ¼
Y

p2Cycð�Þ
ð1� �ðpÞNðpÞ�sÞ�1:ð7Þ

Our first main result is the determinant expres-

sion of L�ðs; �Þ described in Theorem 1 below. It is

a natural extension of (3) from the viewpoint

of absolute mathematics, because the symmetric

group is interpreted as Sn ¼ GLðn;F1Þ, and the

generalized permutation group is Wm
n ¼GLðn;F1mÞ.

As corollaries of Theorem 1, we obtain the func-

tional equation and the tensor structure of L�ðs; �Þ.
Finally in the last section we reach a factoriza-

tion formula which is an analog of the decomposi-

tion of the Dedekind zeta function of an abelian

extension into Hecke L-functions.

2. Determinant expression. In our previ-

ous paper [3] we proved the following proposition.

Proposition 1. Let X and Y be finite sets.

Put jXj ¼ n. For � 2 Sn, the following properties hold.

(i) ��ðsÞ has a determinant expression

��ðsÞ ¼ detð1�M0ð�Þe�sÞ�1;

where M0ð�Þ ¼ ð��ðiÞ;jÞi;j¼1;...;n is the matrix

representation M0 : Sn ! GLnðCÞ.

(ii) ��ðsÞ satisfies an analog of the Riemann

hypothesis: ��ðsÞ ¼ 1 implies ReðsÞ ¼ 0.

(iii) ��ðsÞ satisfies the functional equation

��ð�sÞ ¼ ��ðsÞð�1Þn sgnð�Þe�ns:

(iv) ��ðsÞ has the Euler product

��ðsÞ ¼
Y

p2Cycð�Þ
ð1�NðpÞ�sÞ�1:

(v) The singularities of ��ðsÞ satisfy an additive

structure under the tensor product. Namely,

the sum of a pole of ��ðsÞ for � 2 AutðXÞ and a

pole of �� ðsÞ for � 2 AutðY Þ is a pole of ���� ðsÞ,
and all poles of ���� ðsÞ are given by this way.

Here for � 2 AutðXÞ and � 2 AutðY Þ, we

denote their tensor product by �� � 2
AutðX � Y Þ.

(vi) The Laurent expansion of ��ðsÞ around s ¼ 0 is

given as follows:

��ðsÞ ¼ s�mcð�Þ�1 þOðs�mþ1Þ;

where m is the multiplicity of the eigenvalue 1

of M0ð�Þ and cð�Þ ¼
Q

p2Cycð�Þ lðpÞ.
In this section we prove a generalization of this

proposition to L�ðs; �Þ.
Theorem 1. Let X be a finite set with

jXj ¼ n, and � 2 C be a primitive m-th root of

unity. For a generalized permutation � 2Wm
n with a

decomposition given by (5), the L-function L�ðs; �Þ
satisfies the determinant expression

L�ðs; �Þ ¼ detð1�Mð�Þe�sÞ�1:ð8Þ

Note that the matrix Mð�Þ is not uniquely deter-

mined for each given �. In other words, more than

one � ’s (or si’s) may possibly correspond to the

same �. The determinant in (8), however, is well-

defined for each � not depending on the choice of �

or si’s.

Proof of Theorem 1. We put the decompo-

sition of a permutation � into cyclic permutations

as

� ¼ �1 � � ��r
¼ ði1; . . . ; ilð1ÞÞðilð1Þþ1; . . . ; ilð1Þþlð2ÞÞ
� � � ðilð1Þþ���þlðr�1Þþ1; . . . ; inÞ:

Let � 2 Sn be the permutation such that �ðkÞ ¼ ik
for k ¼ 1; 2; 3; . . .n. Then

��1�� ¼ ð1 � � � lð1ÞÞðlð1Þ þ 1 � � � lð1Þ þ lð2ÞÞ
� � � ðlð1Þ þ � � � þ lðr� 1Þ þ 1 � � �nÞ:
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Hence

Mð�Þ�1Mð�ÞMð�Þ ¼ diagðClð1Þ; Clð2Þ; � � � ; ClðrÞÞ

with

ClðkÞ 2

0 �m

. .
. . .

.

. .
.

�m

�m 0

0BBBBBB@

1CCCCCCA
being a generalized cyclic permutation matrix

of size lðkÞ. We define integers t1; . . . ; tn 2
f0; 1; 2; . . . ;m� 1g by

ClðkÞ ¼

0 �tlðk�1Þþ1

. .
. . .

.

. .
.

�tlðk�1ÞþlðkÞ�1

�tlðk�1ÞþlðkÞ 0

0BBBBBB@

1CCCCCCA
with lð0Þ ¼ 0 by convention. Note that ftjg is a

reordered sequence of fsjg. Since a cyclic permuta-

tion is corresponding to a cycle, we may write

�ðClðkÞÞ ¼
YlðkÞ
j¼1

�tlðk�1Þþj

by taking the definition (6) into consideration. Then

detð1�Mð�Þe�sÞ
¼ detð1�Mð�Þ�1Mð�ÞMð�Þe�sÞ

¼
Yr
j¼1

detðIlðjÞ � ClðjÞe�sÞ

¼
Yr
j¼1

ð1� �ðClðjÞÞe�lðjÞsÞ;

where the last identity is deduced by the following

lemma. It holds that

detð1�Mð�Þe�sÞ ¼
Y

p2Cycð�Þ
ð1� �ðpÞNðpÞ�sÞ:

Theorem follows from the definiton (7). �

Lemma 1. Let

Cl ¼

0 �t1

. .
. . .

.

. .
.

�tl�1

�tl 0

0BBBBBB@

1CCCCCCA
be a generalized permutation matrix. Put

�ðClÞ ¼
Yl
j¼1

�tj :

The following identity hold:

detðIl � CluÞ ¼ 1� �ðClÞul:

Proof.

detðIl � CluÞ

¼ det

1 ��t1u

. .
. . .

.

. .
.

��tl�1u

��tlu 1

0BBBBBB@

1CCCCCCA

¼ 1 �

1 ��t1u

1 . .
.

. .
.

��tl�2u

1

������������

������������

þ ð�1Þlþ1ð��tluÞ

��t1u

1 . .
.

. .
. . .

.

1 ��tl�1u

������������

������������
¼ 1þ ð�1Þlþ1ð�uÞð�uÞl�1�ðClÞ
¼ 1� �ðClÞul:

�

Corollary 1 (Functional equation). For a

generalized permutation � 2Wm
n with a decomposi-

tion given by (5), the L-function L�ðs; �Þ satisfies

the functional equation

L�ð�s; �Þ ¼ ð�1Þn detMð�Þ�1e�nsL�ðs; ���Þ

where � is the complex conjugation of � which is

given by replacing � with �.

Proof. By Theorem 1, it follows that

L�ð�s; �Þ
¼ detð1�Mð�ÞesÞ�1

¼ detðð�Mð�ÞesÞð1�Mð�Þ�1e�sÞÞ�1

¼ ð�1ÞnðdetMð�ÞÞ�1e�ns detð1�Mð�Þ�1e�sÞ�1:

�

The determinant expression in Theorem 1 also gives

the tensor structure of L-functions in the following

sense.
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Let �k be a primitive mk-th root of unity for

k ¼ 1; 2. For generalized permutations �1 2Wm1
n1

over Xn1
¼ f1; . . . ; n1g and �2 2Wm2

n2
over Xn2

¼
f1; . . . ; n2g with their decomposition given by

�k ¼
1 2 � � � nk

�
sk;1
k �kð1Þ �

sk;2
k �kð2Þ � � � �

sk;n
k �kðnÞ

 !
ð9Þ

¼ �k
Ynk
i¼1

w
sk;i
k;i 2Wmk

nk
;

we define their tensor product �1 � �2 2 Wm1m2
n1n2

as

follows. As we saw in the notation (5), any element

in Wm1m2
n1n2

is determined if we give the image of every

element in the base space Xn1n2 ¼� Xn1
�Xn2

, which

is given by

�1 � �2 : Xn1
�Xn2

! Xn1;m1
�Xn2;m2

ði; jÞ 7! ð�s1;i

1 �1ðiÞ; �s2;j

2 �2ðjÞÞ
,! Xn1n2;m1m2

7! �m2s1;jþm1s2;jð�1ðiÞ; �2ðjÞÞ
with � a primitive m1m2-th root of unity. In other

words, if we identify �k 2Wmk
nk

as the linear map

�k : Cnk ! Cnk introduced by the representation M,

the tensor product

�1 � �2 : Cn1 �Cn2 ! Cn1 �Cn2

is defined by the usual tensor product of linear

maps with the representation matrix given by

the Kronecker tensor product Mð�1Þ �Mð�2Þ of

matrices.

In the following corollary, we define �1 ¼ ��1
,

�2 ¼ ��2
, and �1 � �2 :¼ ��1��2

.

Corollary 2 (Tensor structure). The singu-

larities of L�ðs; �Þ satisfy an additive structure

under the tensor product. Namely, the sum of

a pole of L1ðsÞ :¼ L�1
ðs; �1Þ and a pole of

L2ðsÞ :¼ L�2
ðs; �2Þ is a pole of L�1��2

ðs; �1 � �2Þ,
and all poles of L�1��2

ðs; �1 � �2Þ are given in this

way.

Proof. By Theorem 1,

L�1��2
ðs; �1 � �2Þ

¼ detð1�Mð�1 � �2Þe�sÞ�1

¼ detð1�Mð�1Þ �Mð�2Þe�sÞ�1:

We put the eigenvalues of Mð�1Þ and Mð�2Þ as 	j
ðj ¼ 1; . . . ; n1Þ and 
k ðk ¼ 1; 2; . . . ; n2Þ, respec-

tively. We see from Theorem 1 that the poles of

L�1
ðs; �1Þ and L�2

ðs; �2Þ are given by s 	 log	j and

s 	 log
k (mod 2�iZÞ. Thus the set of poles of

L�1��2
ðs; �1 � �2Þ is given by

flog	j
k mod 2�iZ j 1 
 j 
 n1; 1 
 k 
 n2g:

The result follows from

log	j
k 	 log	j þ log
k (mod 2�iZÞ:

�

Theorem 1 also describes the order of the L-

function at s ¼ 0 as follows.

Corollary 3. The Laurent expansion of

L�ðs; �Þ around s ¼ 0 is given as follows:

L�ðs; �Þ ¼ s�Kcð�Þ þOðs�Kþ1Þ;

where K is the multiplicity of the eigenvalue 1 of

Mð�Þ and

cð�Þ ¼
Y

p2Cycð�Þ
�ðpÞ¼1

ðlðpÞÞ�1 �
Y

p2Cycð�Þ
�ðpÞ6¼1

ð1� �ðpÞÞ�1:

Moreover, K is equal to the number of primitive

cycles p of � such that �ðpÞ ¼ 1.

Proof. By Theorem 1, we have

L�ðs; �Þ ¼ detð1�Mð�Þe�sÞ�1

¼ ð1� e�sÞK
Y
	6¼1

ð1� 	e�sÞ
 !�1

;

where in the last product 	 runs through the

eigenvalues of Mð�Þ such that 	 6¼ 1. Hence L�ðs; �Þ
has a pole of order K at s ¼ 0. The leading

coefficient is calculated from (iv):Y
p2Cycð�Þ

ð1� �ðpÞNðpÞ�sÞ�1

¼
Y

p2Cycð�Þ
ð1� �ðpÞ þ �ðpÞlðpÞsþOðs2ÞÞ�1

¼ s�K
Y

p2Cycð�Þ
�ðpÞ¼1

ðlðpÞÞ�1

�
Y

p2Cycð�Þ
�ðpÞ6¼1

ð1� �ðpÞ þ �ðpÞlðpÞsÞ�1 þOðs�Kþ1Þ:

�

3. Factorization formulas. It is classical

that for any finite abelian extention K=k of

algebraic number fields of finite degree, the

Dedekind zeta function �KðsÞ is decomposed into

the product of Dirichlet L-functions over Dirichlet

characters:

�KðsÞ ¼
Y
�

Lkðs; �Þ:ð10Þ
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In this section we obtain an analog of this phenom-

enon by restricting ourselves to the case when the

function � has the form

�ðpÞ ¼ �lðpÞ ð8p 2 Cycð�ÞÞ

for some fixed � 2 �m. Namely,

L�ðs; �Þ ¼
Y

p2Cycð�Þ
ð1� �lðpÞe�lðpÞsÞ�1

¼ ��ðs� log �Þ:

For � ¼ expð2�im Þ ðm 2 NÞ, we denote � ¼ �m.

The following factorization formula is analogous

to (10).

Theorem 2. Let � 2 Sn, and � ¼ �
Qn

i¼1 wi 2
Wm

n .

Put ~�� to be the permutation � regarded as

an element in Snm. Then it holds for any m 2 N

that

�~��ðsÞ ¼
Ym�1

b¼0

L�ðs; �bmÞ:

Before proving this theorem, we set up

some analogous notions on lifting and splitting

by following the theory of extensions of num-

ber fields. Consider the following commutative

diagram

eXX �!e�� eXX
f# #f

X �!� X;

where f : eXX ! X is a surjective map of finite sets

with � 2 AutðXÞ and e�� 2 Autð eXXÞ. Then a primitive

cycle p 2 Cycðe��Þ is called a lift of p 2 Cycð�Þ if and

only if fðpÞ ¼ p. The inverse image f�1ðpÞ of p 2
Cycð�Þ is a (not necessarily primitive) cycle of e��,

and it can be decomposed into the form f�1ðpÞ ¼Pg
i¼1 pi with each pi a lift of p. In this setting we say

that p remains primitive if g ¼ 1, and that p splits

if g � 2. Moreover, when jf�1ðxÞj ¼ m for all x 2 X,

it holds that g 
 m, and we say that p splits

completely if g ¼ m.

Proof of Theorem 2. We appeal to the

cyclotomic equationYk�1

b¼0

ð1� �bkXÞ ¼ 1�Xk

with �k a primitive k-th root of unity. By putting

X ¼ e�lðpÞs and k ¼ m
ðm;lðpÞÞ, we have

Ym�1

b¼0

L�ðs; �bmÞ

¼
Ym�1

b¼0

Y
p2Cycð�Þ

ð1� �blðpÞm e�lðpÞsÞ�1

¼
Y

p2Cycð�Þ

Ym�1

b¼0

ð1� �blðpÞm e�lðpÞsÞ�1

¼
Y

p2Cycð�Þ

Ymðm;lðpÞÞ�1

b¼0

1� ð�lðpÞm Þ
be�lðpÞs

� ��ðm;lðpÞÞ
¼

Y
p2Cycð�Þ

1� e�
mlðpÞ
ðm;lðpÞÞs

� ��ðm;lðpÞÞ
:

It remains to prove that the lifts of p 2 Cycð�Þ are

ðm; lðpÞÞ primitive cycles of ~�� which are of length
mlðpÞ
ðm;lðpÞÞ.

To see this, we use the expression (4). Let �ki 2
Xn;m be a fixed point of ~��j. Then,

~��jð�kiÞ ¼ �ki() �jðiÞ ¼ i and �j�k ¼ �k

() lðpÞjj and mjj;

where p is the primitive cycle to which i 2 Xn

belongs. Thus the length of the orbit of �ki is

equal to the least common multiple of lðpÞ and m,

which is mlðpÞ
ðm;lðpÞÞ.

The number of elements belonging to f�1ðpÞ in
~XX is mlðpÞ. Thus the number of lifts of p is ðm; lðpÞÞ

with their length mlðpÞ
ðm;lðpÞÞ.

�

From the proof of Theorem 2, we have the following

facts immediately.

Corollary 4. Let � be a permutation of Xn,

and p be a primitive cycle which belongs to Cycð�Þ
with l ¼ lðpÞ defined as in (2).

In the lifted permutation

~�� : Xn;m ! Xn;m

of � : Xn ! Xn, it holds that

p remains primitive if ðl;mÞ ¼ 1,

p splits if ðl;mÞ > 1.

�
In the extreme case, p splits completely, if and only

if mjl.
This is analogous to the decomposition law of

prime ideals for finite extensions of number fields.
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Example 1. n ¼ 5, � ¼ ð1 2Þð3 4 5Þ.
Cycð�Þ consists of two primitive cycles p1 and p2,

where lðp1Þ ¼ 2 and lðp2Þ ¼ 3. Consider the covering

with m ¼ 2, that is, � ¼ �1. The cycle p1 splits

completely, since there exist two cycles above p1,

which are ð1 7! �2 7! 1Þ and ð2 7! �1 7! 2Þ. Thus

we find that p1 splits completely in the extension

X5;2 of X5. This is the case with ðm; lÞ ¼ ð2; 2Þ ¼ 2,

which satisfies mjl.
On the other hand, the cycle p2 remains

primitive, because p2 ¼ ð3 7! 4 7! 5 7! 3Þ is lifted

to only one cycle ð3 7! �4 7! 5 7! �3 7! 4 7! �5 7!
3Þ of length 6. This is the case with ðl;mÞ ¼
ð3; 2Þ ¼ 1.

Example 2. n ¼ 8, � ¼ ð1 2Þð3 4 5 6 7 8Þ.
Cycð�Þ consists of two primitive cycles p1 and p2,

where lðp1Þ ¼ 2 and lðp2Þ ¼ 6. Consider the covering

with m ¼ 4, that is, � ¼
ffiffiffiffiffiffiffi
�1
p

¼ i. Above the cycle

p1 there exist two cycles of length 4, which are ð1 7!

2i 7! �1 7! �2i 7! 1Þ and ð2 7! i 7! �2 7! �i 7! 2Þ.
We find that p1 splits in the extension X8;4 of X8.

This is the case with ðl;mÞ ¼ ð2; 4Þ ¼ 2 > 1. The

other cycle p2 also splits, because there exists two

cycles of length 12 above p2. This is the case with

ðl;mÞ ¼ ð6; 4Þ ¼ 2 > 1.
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