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Zeta functions of generalized permutations with application

to their factorization formulas

By Shin-ya KOYAMA® and Sachiko NAKAJIMA*9:D

(Communicated by Shigefumi MORI, M.J.A., Sept. 12, 2012)

Abstract:

We obtain a determinant expression of the zeta function of a generalized

permutation over a finite set. As a corollary we prove the functional equation for the zeta
function. In view of absolute mathematics, this is an extension from GL(n,F;) to GL(n,Fin),
where F; and Fi» denote the imaginary objects “the field of one element” and “its extension of
degree m”, respectively. As application we obtain a certain product formula for the zeta function,
which is analogous to the factorization of the Dedekind zeta function into a product of Dirichlet

L-functions for an abelian extention.

Key words:
permutation groups.

1. Introduction.

o0 3 m
M Gl = exp<z [Eixto] )

m=1 m
be the zeta function of the Z-dynamical system
generated by a permutation o € .S5,, where S,
denotes the symmetric group over X, =
{1,...,n}. We see that (,(s) is determined by the
conjugacy class of ¢ in S,,. By Proposition 1 below,
it is also expressed by the Euler product over the
set Cyc(o) of primitive cycles of o:

o= T 0=~

peCyc(o)

where N(p) = €P) with [ = I(p) being the length of
a primitive cycle

(2) »p:

for some i € {1,...,n}.
In our previous paper [3], we gave a proof of the
determinant expression

(3) Co(s) = det(I — M(a)e‘s)_l,

ir—>0(i)b—>02(i)'—>~-i—>al(i):i

which enables us to obtain the functional equation

of G+(s).
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Our first goal is to generalize such properties to
the case of generalized permutations. Consequently
we generalize (,(s) to Ly(s,x) with x a function
over the set of cycles. As application we obtain a
certain product formula for the zeta function, which
is analogous to the factorization of the Dedekind
zeta function into a product of Dirichlet L-functions
in the case of an abelian extention.

We first briefly recall the definitions and
settings on the generalized symmetric groups fol-
lowing the notation in [1].

Let & be a primitive m-th root of unity, and p,,
be the multiplicative group of m-th roots of unity.
The generalized permutation group W] is the
Wreath product of p,, by Sp:

1—- (/*l'm)n - Wran - S" — 1
It is also expressed as the group of permutations 7 of
the set
(4) Xpm={ili=1,...,n, k=0,1,...,m —1}
such that 7(&%) = &Fr(i) for i=1,...,n and k=
0,1,...,m — 1. The order of W™ is m"n!. The group
W™ has the following presentation ([2]):

W = (ry,..

r? = (rir7;+1)3 = (rirj)Q =e, if i —j| > 2,

<5 Tn—1, W15 ..., Wy

w' = e, wiw; = Wjw;, TiWw; = Wi17;,

TiW; = W;Ts, if _] 7& i,’i + 1>
We may identify r; (i=1,...,n—1) with the
transposition (é,7 + 1) and therefore the symmetric
group is
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Sn = <’1"17.. .,Tn,1>.

The elements w; may be identified with the map-
plng Xn,m — Xn,m defined by

> ¢y (=1
wt(fk.]) = k- LNt
&3 (G#14)

An element 7€ W' is determined by the
images from the base space X,,, which is embedded
in X,,;;, with k=0 in (4). Namely, it can be written
as

(5) o ( 1 “ 2 e n )
gro(l) €0(2) - groln)
o ewr
i=1

with 0 € S, and s; € {0,1,2,...,m — 1}. Denote by
M the canonical representation M : W* — GL,(C)
of Wi defined by M(7) = (§"00(i) 1)i j=1...n-

We define a function x = x, on the set of
primitive cycles p of o given by (2) as

x: Cyc(o) — C*
(6) [
p S

with fp T = Ziep si. We also define the attached L-
function as

(1) Lessx)= J[ =x(Np@)™)~"

peCyc(o)

Our first main result is the determinant expres-
sion of L,(s, x) described in Theorem 1 below. It is
a natural extension of (3) from the viewpoint
of absolute mathematics, because the symmetric
group is interpreted as S, = GL(n,F;), and the
generalized permutation group is W = GL(n, Fim).
As corollaries of Theorem 1, we obtain the func-
tional equation and the tensor structure of L,(s, x).

Finally in the last section we reach a factoriza-
tion formula which is an analog of the decomposi-
tion of the Dedekind zeta function of an abelian
extension into Hecke L-functions.

2. Determinant expression.
ous paper [3] we proved the following proposition.

Proposition 1. Let X and Y be finite sets.
Put|X|=n. Foro € S, the following properties hold.

(i) ¢s(s) has a determinant expression

(s (s) = det(1 — Mo(a)efs)_l,

where Moy(o) = (‘50(’i)-j)i.j:1 ..... n
representation M : S, — GL,(C).

In our previ-

is the matriz
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(ii) Cy(s) satisfies an analog of the Riemann
hypothesis: (,(s) = oo implies Re(s) = 0.
(s (s) satisfies the functional equation

Co(=8) = C(s)(—1)" sgn(o)e .
¢,(8) has the Euler product

G = I a-Nw™™

p€Cyc(0)

(iii)

(v) The singularities of (,(s) satlisfy an additive
structure under the tensor product. Namely,
the sum of a pole of (,(s) for o € Aut(X) and a
pole of (;(s) for T € Aut(Y) is a pole of (pe-(5),
and all poles of (ye-(8) are given by this way.
Here for o€ Aut(X) and 7€ Aut(Y), we
denote their tensor product by oc®TE
Aut(X xY).

The Laurent expansion of (,(s) around s = 0 is
given as follows:

Co(s) = sfmc(a)f1 +O(s™™,

where m is the multiplicity of the eigenvalue 1

of MO(G) and C(G) = HpGCyC(O‘) l(p)

In this section we prove a generalization of this
proposition to L, (s, x).

Theorem 1. Let X be a finite set with
|X|=n, and £ € C be a primitive m-th root of
unity. For a generalized permutation 7 € W) with a
decomposition given by (5), the L-function L,(s,x)
satisfies the determinant expression

(8) Lo(s,x) = det(1 — M()e™*) ™"

Note that the matrix M(7) is not uniquely deter-
mined for each given x. In other words, more than
one 7's (or s;’s) may possibly correspond to the
same x. The determinant in (8), however, is well-
defined for each x not depending on the choice of 7
or s;’s.

Proof of Theorem 1. We put the decompo-
sition of a permutation o into cyclic permutations
as

oc=01 -0y
= (i1, 40)) (G) 415 - - - G(1)+2))
e (il(1)+-~+l(r71)+17 s azn)
Let w € S,, be the permutation such that 7(k) = i
for k=1,2,3,...n. Then
N +1---1(1) +1(2))
S0+ -+ lr=1)+1---n).

ator=(1---
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Hence

M(m)"'M(r)M(r) = diag(Cyy, Cia), -+, Ciry)

with
0w,
Cl(k) S
Ko
l”""l 0
being a generalized cyclic permutation matrix
of size Il(k). We define integers ti,...,t, €
{0,1,2,...,m — 1} by
0 é’tl(l\—l)Jrl
Ciry) =
gtl(k—l)ﬂ(k)—l
é'tl(k-—l)ﬂ(k) 0

with [(0) =0 by convention. Note that {¢;} is a
reordered sequence of {s;}. Since a cyclic permuta-
tion is corresponding to a cycle, we may write

I(k)

X(Ciwy) = [ ] v

j=1
by taking the definition (6) into consideration. Then
det(1 — M(7)e™*)

= det(1 — M(x) "M (1) M(r)e™)

= H det(Il@ - Cl(j)e_s)
=1

= [ = x(Cig)e ),
=1

where the last identity is deduced by the following
lemma. It holds that

det(1—M(m)e*) = J[ @-x@Np) ™).

peCyc(o)
Theorem follows from the definiton (7). O
Lemma 1. Let
0 ¢
C) =
ftl—l
3 0

be a generalized permutation matriz. Put
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l

x(@) =[]¢"

j=1
The following identity hold:

det(I; — Ciu) = 1 — x(C)u'.

Proof.
det(Il - C’lu)
1 —&hy
= det
—§tl’1u
—¢hy, 1
1 &
1
_gtzfzu
1
_gtlu
+ (1) (=€)
1 gy
=1+ (=1 (~u) (~u) "X ()
=1—x(C)u.
O
Corollary 1 (Functional equation). For a

generalized permutation T € W with a decomposi-
tion given by (5), the L-function L,(s,x) satisfies
the functional equation

Ly(=s,x) = (=1)" det M(r) "¢ " Ly(5,%)

where X is the complex conjugation of x which is
given by replacing & with Z
Proof. By Theorem 1, it follows that

LU(_Sa X)

= det(1 — M(7)e*) ™

— det((—M(r)e") (1 — M(r) )™

= (—1)"(det M (7)) te ™ det(1 — M(r) ‘e )"

O

The determinant expression in Theorem 1 also gives

the tensor structure of L-functions in the following
sense.
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Let & be a primitive my-th root of unity for
k=1,2. For generalized permutations 7 € W
over X, ={1,...,n1} and n» € Wi over X,, =

{1,...,ny} with their decomposition given by

9) = < ! 2 T N )
Tk = z;m O'k(].) gzk.z Uk(Q) L. 521«,71 O'k(n)

N

_ Sk My,
= okme S Wnk ,
i=1

we define their tensor product 7 ® 7 € I/ng,}g” as

follows. As we saw in the notation (5), any element
in W™ is determined if we give the image of every
element in the base space X,,,, = X,, X X,,, which

is given by

T1 & T2 @ an X XTLQ - Xnmm X X’ﬂg,?nz
@5) = (&), &Yoa(h))
— X7L17L2,'NL1'NLQ

— é-'rnzsl,j-&-’rnlszj (01 (Z), 09 (]))
with £ a primitive m;ms-th root of unity. In other
words, if we identify 7, € W] as the linear map
7 : C™ — C™ introduced by the representation M,
the tensor product

7_1 ® 7_2 . C7L1 ® CTLQ N C’!Ll ® CTL2

is defined by the usual tensor product of linear
maps with the representation matrix given by
the Kronecker tensor product M(m)® M(7) of
matrices.

In the following corollary, we define x1 = xn,
X2 = Xn» and x1 @ X2 := Xnen-

Corollary 2 (Tensor structure). The singu-
larities of L,(s,x) satisfy an additive structure
under the tensor product. Namely, the sum of
a pole of Li(s):=L,(s,x1) and a pole of
Lsy(s) :== Ly, (8,x2) s a pole of Lygo, (S, X1 ® X2),
and all poles of Ly oo, (8, X1 ® X2) are given in this
way.

Proof. By Theorem 1,

Lo100, (5, X1 @ X2)

=det(1 — M(r, @ 7)e*) "

= det(1 — M(m) ® M(m)e*)".
We put the eigenvalues of M(m) and M(7) as o
(j=1,...,n) and By (k=1,2,...,n2), respec-
tively. We see from Theorem 1 that the poles of
L, (s,x1) and L, (s, x2) are given by s = loga; and
s=logfr (mod 2miZ). Thus the set of poles of
L01®0’2 (S>X1 ® XQ) is given by
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{log ;B mod 2miZ |1 < j<mny, 1 <k<no}.
The result follows from
log a0, = log a; + log Bi, (mod 2miZ).

O
Theorem 1 also describes the order of the L-
function at s = 0 as follows.
Corollary 3. The Laurent ezpansion of
Ly(s,x) around s = 0 is given as follows:

Lo(s,x) = s %e(r) + O(s™ 5",
where K is the multiplicity of the eigenvalue 1 of
M(7) and
e(r)= [T ey J[ a-xme)

p€eCyc(o) peCyc(o)
x(p)=1 x(p)#1

Moreover, K is equal to the number of primitive
cycles p of o such that x(p) = 1.
Proof. By Theorem 1, we have

Ly(s,x) = det(1 — M(r)e™*)""

- ((1 —e ) I —aes>) ,

a#l

where in the last product a runs through the
eigenvalues of M(7) such that a # 1. Hence L, (s, x)
has a pole of order K at s=0. The leading
coefficient is calculated from (iv):

IT a-x@nNE ™™

peCyc(o)
= I a=xm)+x®ip)s+0s*)™
pECyc(o)
=5 % T )™
peCyc(o)
x(p)=1
< ] (=xm) +x@ip)s) " +0(s ).
p€Cyc(o)
x(p)#1

O

3. Factorization formulas. It is classical

that for any finite abelian extention K/k of

algebraic number fields of finite degree, the

Dedekind zeta function (x(s) is decomposed into

the product of Dirichlet L-functions over Dirichlet
characters:

(10) Cr(s) = HLk(S»X)~
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In this section we obtain an analog of this phenom-
enon by restricting ourselves to the case when the
function y has the form

x(p) = 6" (vp € Cyc(0))
for some fixed 6 € p,,. Namely,

L0(57X) = H (1 — Ql(P)efl(p)S)fl
pECyC(U)
= (o(s —log#).

For 6=exp(Z) (meN), we denote x = xn.
The following factorization formula is analogous
o (10).

Theorem 2.
wre.

Put ¢ to be the permutation T regarded as
an element in Syy,. Then it holds for any m € N
that

Letoe Sy, andt =o ][ w; €

m—1
Ly(s Xm
b=0
Before proving this theorem, we set up
some analogous notions on lifting and splitting
by following the theory of extensions of num-

ber fields. Consider the following commutative
diagram

X - X

fl Lf

x 5 X,

where f: X—>Xisa surjective map of finite sets
with o € Aut(X) and & € Aut(X). Then a primitive
cycle p € Cyc(0) is called a lift of p € Cyc(o) if and
only if f(p) = p. The inverse image f~'(p) of p €
Cyc(o) is a (not necessarily primitive) cycle of o,
and it can be decomposed into the form f~(p) =
¢ . p; with each p; a lift of p. In this setting we say
that p remains primitive if g =1, and that p splits
if g > 2. Moreover, when |f~(z)| = m for all x € X,
it holds that g <m, and we say that p splits
completely if g =m.
Proof of Theorem 2. We appeal to the
cyclotomic equation
k=1
[[a-¢x)=1-x*
b=0
with (; a primitive k-th root of unity. By putting

X =e'®s and k= —2~ we have
(m.l(p))
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b=0 peCyc(o)

m—

= II JJa-d¢we

peCyc(a) b=0

U(p)s )*1

iyt

=11 11 C

peCyclo)  b=0

ml(p) —(m,l(p))
= H (1 — e(mJ(p)"”) )
(0)

peCyc(o

_ (Cl(p) )be_[(p)s) =(m,l(p))

It remains to prove that the lifts of p € Cyc(o) are

(m,l(p)) primitive cycles of & which are of length
mi(p)
(m.l(p))’

To see this, we use the expression (4). Let &¥i €
Xy.m be a fixed point of &'. Then,

G(Eh) = ¢Fi = oI(i) =i and O¢" = ¢k
< l(p)lj and mlj,

where p is the primitive cycle to which ¢ € X,
belongs. Thus the length of the orbit of & is
equal to the least common multiple of I(p) and m,

mi(p)

which is (m,l(p))"

_ The number of elements belonging to fX(p) in
X is ml(p). Thus the number of lifts of p is (m, l(p))

with their length (ZL,Zl((I;)é)'

(Il
From the proof of Theorem 2, we have the following
facts immediately.

Corollary 4. Let o be a permutation of X,
and p be a primitive cycle which belongs to Cyc(o)
with | = I(p) defined as in (2).

In the lifted permutation

0: Xoym — Xom
of 0: X;, — X,,, it holds that
if (lm) = 1,
if (I,m) > 1.

In the extreme case, p splits completely, if and only
if m|l.

This is analogous to the decomposition law of
prime ideals for finite extensions of number fields.

{p remains primitive

p splits
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Example 1. n=5,0=(12)(345).

Cyc(o) consists of two primitive cycles p; and po,
where [(p;) = 2 and [(p2) = 3. Consider the covering
with m = 2, that is, £ = —1. The cycle p; splits
completely, since there exist two cycles above py,
which are (1 +— -2+ 1) and (2+— —1+~ 2). Thus
we find that p; splits completely in the extension
X529 of X5. This is the case with (m,l) = (2,2) = 2,
which satisfies mll.

On the other hand, the cycle ps remains
primitive, because py = (3+— 4+ 5+ 3) is lifted
to only one cycle (3 — —4—5— -3+ 4+ —5+—
3) of length 6. This is the case with (I,m) =
(3,2) = 1.

Example 2. n=8,0=(12)(345678).
Cyc(o) consists of two primitive cycles p; and po,
where I(p;) = 2 and I(p2) = 6. Consider the covering
with m = 4, that is, £ = vV—1 = i. Above the cycle
p1 there exist two cycles of length 4, which are (1 —
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2i— —1— —2i—1)and (2— i+ —2+— —i+— 2).
We find that p; splits in the extension Xg4 of Xg.
This is the case with (I,m)=(2,4) =2 >1. The
other cycle po also splits, because there exists two
cycles of length 12 above ps. This is the case with
(I,m) =(6,4) =2> 1.
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