Zeta functions of generalized permutations with application to their factorization formulas

By Shin-ya KOYAMA*) and Sachiko NAKAJIMA**),†)

(Communicated by Shigefumi MORI, M.J.A., Sept. 12, 2012)

Abstract: We obtain a determinant expression of the zeta function of a generalized permutation over a finite set. As a corollary we prove the functional equation for the zeta function. In view of absolute mathematics, this is an extension from $GL(n, \mathbf{F}_1)$ to $GL(n, \mathbf{F}_{1^m})$, where \mathbf{F}_1 and \mathbf{F}_{1^m} denote the imaginary objects "the field of one element" and "its extension of degree m", respectively. As application we obtain a certain product formula for the zeta function, which is analogous to the factorization of the Dedekind zeta function into a product of Dirichlet L-functions for an abelian extention.

Key words: Zeta functions; the field with one element; absolute mathematics; generalized permutation groups.

1. Introduction. Let

(1)
$$\zeta_{\sigma}(s) = \exp\left(\sum_{m=1}^{\infty} \frac{|\operatorname{Fix}(\sigma^{m})|}{m} e^{-ms}\right)$$

be the zeta function of the **Z**-dynamical system generated by a permutation $\sigma \in S_n$, where S_n denotes the symmetric group over $X_n = \{1, \ldots, n\}$. We see that $\zeta_{\sigma}(s)$ is determined by the conjugacy class of σ in S_n . By Proposition 1 below, it is also expressed by the Euler product over the set $\text{Cyc}(\sigma)$ of primitive cycles of σ :

$$\zeta_{\sigma}(s) = \prod_{p \in \text{Cyc}(\sigma)} (1 - N(p)^{-s})^{-1},$$

where $N(p) = e^{l(p)}$ with l = l(p) being the length of a primitive cycle

(2)
$$p: i \mapsto \sigma(i) \mapsto \sigma^2(i) \mapsto \cdots \mapsto \sigma^l(i) = i$$

for some $i \in \{1, \ldots, n\}$.

In our previous paper [3], we gave a proof of the determinant expression

(3)
$$\zeta_{\sigma}(s) = \det(I - M(\sigma)e^{-s})^{-1},$$

which enables us to obtain the functional equation of $\zeta_{\sigma}(s)$.

Our first goal is to generalize such properties to the case of generalized permutations. Consequently we generalize $\zeta_{\sigma}(s)$ to $L_{\sigma}(s,\chi)$ with χ a function over the set of cycles. As application we obtain a certain product formula for the zeta function, which is analogous to the factorization of the Dedekind zeta function into a product of Dirichlet L-functions in the case of an abelian extention.

We first briefly recall the definitions and settings on the generalized symmetric groups following the notation in [1].

Let ξ be a primitive m-th root of unity, and μ_m be the multiplicative group of m-th roots of unity. The generalized permutation group W_n^m is the Wreath product of μ_m by S_n :

$$1 \to (\boldsymbol{\mu}_m)^n \to W_n^m \to S_n \to 1.$$

It is also expressed as the group of permutations τ of the set

(4)
$$X_{n,m} := \{ \xi^k i \mid i = 1, \dots, n, \ k = 0, 1, \dots, m - 1 \}$$

such that $\tau(\xi^k i) = \xi^k \tau(i)$ for i = 1, ..., n and k = 0, 1, ..., m - 1. The order of W_n^m is $m^n n!$. The group W_n^m has the following presentation ([2]):

$$W_n^m = \langle r_1, \dots, r_{n-1}, w_1, \dots, w_n :$$

$$r_i^2 = (r_i r_{i+1})^3 = (r_i r_j)^2 = e, \text{ if } |i - j| \ge 2,$$

$$w_i^m = e, \ w_i w_j = w_j w_i, \ r_i w_i = w_{i+1} r_i,$$

$$r_i w_j = w_j r_i, \text{ if } j \ne i, i+1 \rangle.$$

We may identify r_i (i = 1, ..., n - 1) with the transposition (i, i + 1) and therefore the symmetric group is

²⁰⁰⁰ Mathematics Subject Classification. Primary 11M41.

*) Department of Biomedical Engineering, Toyo Univer-

sity, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan.

**) K-kai, Kawaijuku, 2-6-1 Koishikawa, Bunkyo-ku, Tokyo

^{†)} Current Address: Research Institute of Industrial Technology, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan

$$S_n = \langle r_1, \dots, r_{n-1} \rangle.$$

The elements w_i may be identified with the mapping $X_{n,m} \longrightarrow X_{n,m}$ defined by

$$w_i(\xi^k j) = \begin{cases} \xi^{k+1} j & (j=i) \\ \xi^k j & (j \neq i) \end{cases}.$$

An element $\tau \in W_n^m$ is determined by the images from the base space X_n , which is embedded in X_{nm} with k=0 in (4). Namely, it can be written as

(5)
$$\tau = \begin{pmatrix} 1 & 2 & \cdots & n \\ \xi^{s_1} \sigma(1) & \xi^{s_2} \sigma(2) & \cdots & \xi^{s_n} \sigma(n) \end{pmatrix}$$
$$= \sigma \prod_{i=1}^n w_i^{s_i} \in W_n^m$$

with $\sigma \in S_n$ and $s_j \in \{0, 1, 2, \dots, m-1\}$. Denote by M the canonical representation $M: W_n^m \to GL_n(\mathbf{C})$ of W_n^m defined by $M(\tau) = (\xi^{s_i} \delta_{\sigma(i),j})_{i,j=1,\dots,n}$.

We define a function $\chi = \chi_{\tau}$ on the set of primitive cycles p of σ given by (2) as

(6)
$$\chi: \operatorname{Cyc}(\sigma) \to \mathbf{C}^{\times}$$
$$p \mapsto \xi^{\int_{p} \tau}$$

with $\int_p \tau = \sum_{i \in p} s_i$. We also define the attached *L*-function as

(7)
$$L_{\sigma}(s,\chi) = \prod_{p \in \text{Cyc}(\sigma)} (1 - \chi(p)N(p)^{-s})^{-1}.$$

Our first main result is the determinant expression of $L_{\sigma}(s,\chi)$ described in Theorem 1 below. It is a natural extension of (3) from the viewpoint of absolute mathematics, because the symmetric group is interpreted as $S_n = GL(n, \mathbf{F}_1)$, and the generalized permutation group is $W_n^m = GL(n, \mathbf{F}_{1^m})$. As corollaries of Theorem 1, we obtain the functional equation and the tensor structure of $L_{\sigma}(s,\chi)$.

Finally in the last section we reach a factorization formula which is an analog of the decomposition of the Dedekind zeta function of an abelian extension into Hecke L-functions.

2. Determinant expression. In our previous paper [3] we proved the following proposition.

Proposition 1. Let X and Y be finite sets. Put |X| = n. For $\sigma \in S_n$, the following properties hold. (i) $\zeta_{\sigma}(s)$ has a determinant expression

$$\zeta_{\sigma}(s) = \det(1 - M_0(\sigma)e^{-s})^{-1},$$

where $M_0(\sigma) = (\delta_{\sigma(i),j})_{i,j=1,\dots,n}$ is the matrix representation $M_0: S_n \to GL_n(\mathbf{C})$.

- (ii) $\zeta_{\sigma}(s)$ satisfies an analog of the Riemann hypothesis: $\zeta_{\sigma}(s) = \infty$ implies Re(s) = 0.
- (iii) $\zeta_{\sigma}(s)$ satisfies the functional equation

$$\zeta_{\sigma}(-s) = \zeta_{\sigma}(s)(-1)^n \operatorname{sgn}(\sigma)e^{-ns}.$$

(iv) $\zeta_{\sigma}(s)$ has the Euler product

$$\zeta_{\sigma}(s) = \prod_{p \in \text{Cyc}(\sigma)} (1 - N(p)^{-s})^{-1}.$$

- (v) The singularities of $\zeta_{\sigma}(s)$ satisfy an additive structure under the tensor product. Namely, the sum of a pole of $\zeta_{\sigma}(s)$ for $\sigma \in \operatorname{Aut}(X)$ and a pole of $\zeta_{\tau}(s)$ for $\tau \in \operatorname{Aut}(Y)$ is a pole of $\zeta_{\sigma \otimes \tau}(s)$, and all poles of $\zeta_{\sigma \otimes \tau}(s)$ are given by this way. Here for $\sigma \in \operatorname{Aut}(X)$ and $\tau \in \operatorname{Aut}(Y)$, we denote their tensor product by $\sigma \otimes \tau \in \operatorname{Aut}(X \times Y)$.
- (vi) The Laurent expansion of $\zeta_{\sigma}(s)$ around s = 0 is given as follows:

$$\zeta_{\sigma}(s) = s^{-m}c(\sigma)^{-1} + O(s^{-m+1}),$$

where m is the multiplicity of the eigenvalue 1 of $M_0(\sigma)$ and $c(\sigma) = \prod_{p \in Cyc(\sigma)} l(p)$.

In this section we prove a generalization of this proposition to $L_{\sigma}(s,\chi)$.

Theorem 1. Let X be a finite set with |X| = n, and $\xi \in \mathbf{C}$ be a primitive m-th root of unity. For a generalized permutation $\tau \in W_n^m$ with a decomposition given by (5), the L-function $L_{\sigma}(s,\chi)$ satisfies the determinant expression

(8)
$$L_{\sigma}(s,\chi) = \det(1 - M(\tau)e^{-s})^{-1}.$$

Note that the matrix $M(\tau)$ is not uniquely determined for each given χ . In other words, more than one τ 's (or s_i 's) may possibly correspond to the same χ . The determinant in (8), however, is well-defined for each χ not depending on the choice of τ or s_i 's.

Proof of Theorem 1. We put the decomposition of a permutation σ into cyclic permutations as

$$\sigma = \sigma_1 \cdots \sigma_r$$
= $(i_1, \dots, i_{l(1)})(i_{l(1)+1}, \dots, i_{l(1)+l(2)})$
 $\cdots (i_{l(1)+\dots+l(r-1)+1}, \dots, i_n).$

Let $\pi \in S_n$ be the permutation such that $\pi(k) = i_k$ for $k = 1, 2, 3, \dots n$. Then

$$\pi^{-1}\sigma\pi = (1 \cdots l(1))(l(1) + 1 \cdots l(1) + l(2))$$
$$\cdots (l(1) + \cdots + l(r-1) + 1 \cdots n).$$

Hence

$$M(\pi)^{-1}M(\tau)M(\pi) = \text{diag}(C_{l(1)}, C_{l(2)}, \dots, C_{l(r)})$$

being a generalized cyclic permutation matrix of size l(k). We define integers $t_1, \ldots, t_n \in$ $\{0,1,2,\ldots,m-1\}$ by

with l(0) = 0 by convention. Note that $\{t_i\}$ is a reordered sequence of $\{s_i\}$. Since a cyclic permutation is corresponding to a cycle, we may write

$$\chi(C_{l(k)}) = \prod_{j=1}^{l(k)} \xi^{t_{l(k-1)+j}}$$

by taking the definition (6) into consideration. Then $\det(1 - M(\tau)e^{-s})$

$$= \det(1 - M(\pi)^{-1} M(\tau) M(\pi) e^{-s}$$

$$= \prod_{j=1}^{r} \det(I_{l(j)} - C_{l(j)} e^{-s})$$

$$= \prod_{j=1}^{r} (1 - \chi(C_{l(j)}) e^{-l(j)s}),$$

where the last identity is deduced by the following lemma. It holds that

$$\det(1 - M(\tau)e^{-s}) = \prod_{p \in Cyc(\sigma)} (1 - \chi(p)N(p)^{-s}).$$

Theorem follows from the definition (7).

Lemma 1. Let

be a generalized permutation matrix. Put

$$\chi(C_l) = \prod_{j=1}^l \xi^{t_j}.$$

The following identity hold:

$$\det(I_l - C_l u) = 1 - \chi(C_l) u^l.$$

Corollary 1 (Functional equation). For a generalized permutation $\tau \in W_n^m$ with a decomposition given by (5), the L-function $L_{\sigma}(s,\chi)$ satisfies the functional equation

$$L_{\sigma}(-s,\chi) = (-1)^n \det M(\tau)^{-1} e^{-ns} L_{\sigma}(s,\bar{\chi})$$

where $\overline{\chi}$ is the complex conjugation of χ which is given by replacing ξ with $\overline{\xi}$.

Proof. By Theorem 1, it follows that

$$L_{\sigma}(-s,\chi)$$

$$= \det(1 - M(\tau)e^{s})^{-1}$$

$$= \det((-M(\tau)e^{s})(1 - M(\tau)^{-1}e^{-s}))^{-1}$$

$$= (-1)^{n}(\det M(\tau))^{-1}e^{-ns}\det(1 - M(\tau)^{-1}e^{-s})^{-1}.$$

The determinant expression in Theorem 1 also gives the tensor structure of L-functions in the following sense.

Let ξ_k be a primitive m_k -th root of unity for k = 1, 2. For generalized permutations $\tau_1 \in W_{n_1}^{m_1}$ over $X_{n_1} = \{1, \ldots, n_1\}$ and $\tau_2 \in W_{n_2}^{m_2}$ over $X_{n_2} = \{1, \ldots, n_2\}$ with their decomposition given by

(9)
$$\tau_{k} = \begin{pmatrix} 1 & 2 & \cdots & n_{k} \\ \xi_{k}^{s_{k,1}} \sigma_{k}(1) & \xi_{k}^{s_{k,2}} \sigma_{k}(2) & \cdots & \xi_{k}^{s_{k,n}} \sigma_{k}(n) \end{pmatrix}$$
$$= \sigma_{k} \prod_{i=1}^{n_{k}} w_{k,i}^{s_{k,i}} \in W_{n_{k}}^{m_{k}},$$

we define their tensor product $\tau_1 \otimes \tau_2 \in W_{n_1 n_2}^{m_1 m_2}$ as follows. As we saw in the notation (5), any element in $W_{n_1 n_2}^{m_1 m_2}$ is determined if we give the image of every element in the base space $X_{n_1 n_2} \cong X_{n_1} \times X_{n_2}$, which is given by

$$\tau_{1} \otimes \tau_{2} : X_{n_{1}} \times X_{n_{2}} \to X_{n_{1},m_{1}} \times X_{n_{2},m_{2}}
(i,j) \mapsto (\xi_{1}^{s_{1,i}} \sigma_{1}(i), \xi_{2}^{s_{2,j}} \sigma_{2}(j))
\hookrightarrow X_{n_{1}n_{2},m_{1}m_{2}}
\mapsto \xi^{m_{2}s_{1,j}+m_{1}s_{2,j}}(\sigma_{1}(i), \sigma_{2}(j))$$

with ξ a primitive m_1m_2 -th root of unity. In other words, if we identify $\tau_k \in W_{n_k}^{m_k}$ as the linear map $\tau_k : \mathbf{C}^{n_k} \to \mathbf{C}^{n_k}$ introduced by the representation M, the tensor product

$$\tau_1 \otimes \tau_2: \mathbf{C}^{n_1} \otimes \mathbf{C}^{n_2} \to \mathbf{C}^{n_1} \otimes \mathbf{C}^{n_2}$$

is defined by the usual tensor product of linear maps with the representation matrix given by the Kronecker tensor product $M(\tau_1) \otimes M(\tau_2)$ of matrices.

In the following corollary, we define $\chi_1 = \chi_{\tau_1}$, $\chi_2 = \chi_{\tau_2}$, and $\chi_1 \otimes \chi_2 := \chi_{\tau_1 \otimes \tau_2}$.

Corollary 2 (Tensor structure). The singularities of $L_{\sigma}(s,\chi)$ satisfy an additive structure under the tensor product. Namely, the sum of a pole of $L_1(s) := L_{\sigma_1}(s,\chi_1)$ and a pole of $L_2(s) := L_{\sigma_2}(s,\chi_2)$ is a pole of $L_{\sigma_1 \otimes \sigma_2}(s,\chi_1 \otimes \chi_2)$, and all poles of $L_{\sigma_1 \otimes \sigma_2}(s,\chi_1 \otimes \chi_2)$ are given in this way.

Proof. By Theorem 1,

$$L_{\sigma_1 \otimes \sigma_2}(s, \chi_1 \otimes \chi_2)$$

$$= \det(1 - M(\tau_1 \otimes \tau_2)e^{-s})^{-1}$$

$$= \det(1 - M(\tau_1) \otimes M(\tau_2)e^{-s})^{-1}.$$

We put the eigenvalues of $M(\tau_1)$ and $M(\tau_2)$ as α_j $(j=1,\ldots,n_1)$ and β_k $(k=1,2,\ldots,n_2)$, respectively. We see from Theorem 1 that the poles of $L_{\sigma_1}(s,\chi_1)$ and $L_{\sigma_2}(s,\chi_2)$ are given by $s\equiv \log \alpha_j$ and $s\equiv \log \beta_k \pmod{2\pi i \mathbf{Z}}$. Thus the set of poles of $L_{\sigma_1\otimes\sigma_2}(s,\chi_1\otimes\chi_2)$ is given by

$$\{\log \alpha_j \beta_k \mod 2\pi i \mathbf{Z} \mid 1 \le j \le n_1, \ 1 \le k \le n_2\}.$$

The result follows from

$$\log \alpha_j \beta_k \equiv \log \alpha_j + \log \beta_k \pmod{2\pi i \mathbf{Z}}.$$

Theorem 1 also describes the order of the L-function at s=0 as follows.

Corollary 3. The Laurent expansion of $L_{\sigma}(s,\chi)$ around s=0 is given as follows:

$$L_{\sigma}(s,\chi) = s^{-K}c(\tau) + O(s^{-K+1}),$$

where K is the multiplicity of the eigenvalue 1 of $M(\tau)$ and

$$c(\tau) = \prod_{\substack{p \in \text{Cyc}(\sigma) \\ \chi(p) = 1}} (l(p))^{-1} \times \prod_{\substack{p \in \text{Cyc}(\sigma) \\ \chi(p) \neq 1}} (1 - \chi(p))^{-1}.$$

Moreover, K is equal to the number of primitive cycles p of σ such that $\chi(p) = 1$.

Proof. By Theorem 1, we have

$$L_{\sigma}(s,\chi) = \det(1 - M(\tau)e^{-s})^{-1}$$
$$= \left((1 - e^{-s})^K \prod_{\alpha \neq 1} (1 - \alpha e^{-s}) \right)^{-1},$$

where in the last product α runs through the eigenvalues of $M(\tau)$ such that $\alpha \neq 1$. Hence $L_{\sigma}(s,\chi)$ has a pole of order K at s=0. The leading coefficient is calculated from (iv):

$$\begin{split} & \prod_{p \in \text{Cyc}(\sigma)} (1 - \chi(p) N(p)^{-s})^{-1} \\ &= \prod_{p \in \text{Cyc}(\sigma)} (1 - \chi(p) + \chi(p) l(p) s + O(s^2))^{-1} \\ &= s^{-K} \prod_{\substack{p \in \text{Cyc}(\sigma) \\ \chi(p) = 1}} (l(p))^{-1} \\ &\times \prod_{\substack{p \in \text{Cyc}(\sigma) \\ \chi(p) \neq 1}} (1 - \chi(p) + \chi(p) l(p) s)^{-1} + O(s^{-K+1}). \end{split}$$

3. Factorization formulas. It is classical that for any finite abelian extention K/k of algebraic number fields of finite degree, the Dedekind zeta function $\zeta_K(s)$ is decomposed into the product of Dirichlet L-functions over Dirichlet characters:

(10)
$$\zeta_K(s) = \prod_{\chi} L_k(s, \chi).$$

In this section we obtain an analog of this phenomenon by restricting ourselves to the case when the function χ has the form

$$\chi(p) = \theta^{l(p)} \qquad (\forall p \in \operatorname{Cyc}(\sigma))$$

for some fixed $\theta \in \boldsymbol{\mu}_m$. Namely,

$$L_{\sigma}(s,\chi) = \prod_{p \in Cyc(\sigma)} (1 - \theta^{l(p)} e^{-l(p)s})^{-1}$$
$$= \zeta_{\sigma}(s - \log \theta).$$

For $\theta = \exp(\frac{2\pi i}{m})$ $(m \in \mathbf{N})$, we denote $\chi = \chi_m$. The following factorization formula is analogous to (10).

Theorem 2. Let $\sigma \in S_n$, and $\tau = \sigma \prod_{i=1}^n w_i \in W_n^m$.

Put $\tilde{\sigma}$ to be the permutation τ regarded as an element in S_{nm} . Then it holds for any $m \in \mathbf{N}$ that

$$\zeta_{\tilde{\sigma}}(s) = \prod_{b=0}^{m-1} L_{\sigma}(s, \chi_m^b).$$

Before proving this theorem, we set up some analogous notions on lifting and splitting by following the theory of extensions of number fields. Consider the following commutative diagram

$$\widetilde{X} \xrightarrow{\widetilde{\sigma}} \widetilde{X}$$

$$f \downarrow \qquad \qquad \downarrow f$$

$$X \xrightarrow{\sigma} X,$$

where $f: \widetilde{X} \to X$ is a surjective map of finite sets with $\sigma \in \operatorname{Aut}(X)$ and $\widetilde{\sigma} \in \operatorname{Aut}(\widetilde{X})$. Then a primitive cycle $\mathfrak{p} \in \operatorname{Cyc}(\widetilde{\sigma})$ is called a lift of $p \in \operatorname{Cyc}(\sigma)$ if and only if $f(\mathfrak{p}) = p$. The inverse image $f^{-1}(p)$ of $p \in \operatorname{Cyc}(\sigma)$ is a (not necessarily primitive) cycle of $\widetilde{\sigma}$, and it can be decomposed into the form $f^{-1}(p) = \sum_{i=1}^g \mathfrak{p}_i$ with each \mathfrak{p}_i a lift of p. In this setting we say that p remains primitive if g = 1, and that p splits if $g \geq 2$. Moreover, when $|f^{-1}(x)| = m$ for all $x \in X$, it holds that $g \leq m$, and we say that p splits completely if g = m.

Proof of Theorem 2. We appeal to the cyclotomic equation

$$\prod_{k=0}^{k-1} (1 - \zeta_k^b X) = 1 - X^k$$

with ζ_k a primitive k-th root of unity. By putting $X = e^{-l(p)s}$ and $k = \frac{m}{(m.l(p))}$, we have

$$\begin{split} & \prod_{b=0}^{m-1} L_{\sigma}(s,\chi_{m}^{b}) \\ & = \prod_{b=0}^{m-1} \prod_{p \in \operatorname{Cyc}(\sigma)} (1 - \zeta_{m}^{bl(p)} e^{-l(p)s})^{-1} \\ & = \prod_{p \in \operatorname{Cyc}(\sigma)} \prod_{b=0}^{m-1} (1 - \zeta_{m}^{bl(p)} e^{-l(p)s})^{-1} \\ & = \prod_{p \in \operatorname{Cyc}(\sigma)} \prod_{b=0}^{\frac{m}{(m,l(p))}-1} \left(1 - (\zeta_{m}^{l(p)})^{b} e^{-l(p)s}\right)^{-(m,l(p))} \\ & = \prod_{p \in \operatorname{Cyc}(\sigma)} \left(1 - e^{-\frac{ml(p)}{(m,l(p))}s}\right)^{-(m,l(p))}. \end{split}$$

It remains to prove that the lifts of $p \in \text{Cyc}(\sigma)$ are (m, l(p)) primitive cycles of $\tilde{\sigma}$ which are of length $\frac{ml(p)}{(m, l(p))}$.

To see this, we use the expression (4). Let $\xi^k i \in X_{n,m}$ be a fixed point of $\tilde{\sigma}^j$. Then,

$$\tilde{\sigma}^{j}(\xi^{k}i) = \xi^{k}i \iff \sigma^{j}(i) = i \text{ and } \theta^{j}\xi^{k} = \xi^{k}$$

 $\iff l(p)|j \text{ and } m|j,$

where p is the primitive cycle to which $i \in X_n$ belongs. Thus the length of the orbit of $\xi^k i$ is equal to the least common multiple of l(p) and m, which is $\frac{ml(p)}{(m.l(p))}$.

The number of elements belonging to $f^{-1}(p)$ in \tilde{X} is ml(p). Thus the number of lifts of p is (m, l(p)) with their length $\frac{ml(p)}{(m,l(p))}$.

From the proof of Theorem 2, we have the following facts immediately.

Corollary 4. Let σ be a permutation of X_n , and p be a primitive cycle which belongs to $Cyc(\sigma)$ with l = l(p) defined as in (2).

In the lifted permutation

$$\tilde{\sigma}: X_{n,m} \to X_{n,m}$$

of $\sigma: X_n \to X_n$, it holds that

$$\begin{cases} p \ remains \ primitive & if \ (l,m)=1, \\ p \ splits & if \ (l,m)>1. \end{cases}$$

In the extreme case, p splits completely, if and only if m|l.

This is analogous to the decomposition law of prime ideals for finite extensions of number fields.

Example 1. $n = 5, \sigma = (1\ 2)(3\ 4\ 5).$

 $\operatorname{Cyc}(\sigma)$ consists of two primitive cycles p_1 and p_2 , where $l(p_1)=2$ and $l(p_2)=3$. Consider the covering with m=2, that is, $\xi=-1$. The cycle p_1 splits completely, since there exist two cycles above p_1 , which are $(1\mapsto -2\mapsto 1)$ and $(2\mapsto -1\mapsto 2)$. Thus we find that p_1 splits completely in the extension $X_{5,2}$ of X_5 . This is the case with (m,l)=(2,2)=2, which satisfies m|l.

On the other hand, the cycle p_2 remains primitive, because $p_2 = (3 \mapsto 4 \mapsto 5 \mapsto 3)$ is lifted to only one cycle $(3 \mapsto -4 \mapsto 5 \mapsto -3 \mapsto 4 \mapsto -5 \mapsto 3)$ of length 6. This is the case with (l,m) = (3,2) = 1.

Example 2. n=8, $\sigma=(1\ 2)(3\ 4\ 5\ 6\ 7\ 8)$. Cyc(σ) consists of two primitive cycles p_1 and p_2 , where $l(p_1)=2$ and $l(p_2)=6$. Consider the covering with m=4, that is, $\xi=\sqrt{-1}=i$. Above the cycle p_1 there exist two cycles of length 4, which are $(1\mapsto$

 $2i \mapsto -1 \mapsto -2i \mapsto 1$) and $(2 \mapsto i \mapsto -2 \mapsto -i \mapsto 2)$. We find that p_1 splits in the extension $X_{8,4}$ of X_8 . This is the case with (l,m)=(2,4)=2>1. The other cycle p_2 also splits, because there exists two cycles of length 12 above p_2 . This is the case with (l,m)=(6,4)=2>1.

Acknowledgement. The authors would like to express their gratitude to the referee for many valuable comments.

References

- [1] H. Can, Representations of the generalized symmetric groups, Beiträge Algebra Geom. **37** (1996), no. 2, 289–307.
- J. W. Davies and A. O. Morris, The Schur multiplier of the generalized symmetric group, J. London Math. Soc. (2) 8 (1974), 615–620.
- [3] S. Kim, S. Koyama and N. Kurokawa, The Riemann hypothesis and functional equations for zeta functions over F₁, Proc. Japan Acad. Ser. A Math. Sci. 85 (2009), no. 6, 75–80.