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Abstract: Let P denote the set of all prime numbers, and let pk denothe the kth prime. In

1873 Mertens presented a quantitative proof of the divergence of the series
P

p2P
1
p by showing the

limit B :¼ limx!1ð
P

p�x
1
p � log logxÞ exists with B ¼ 0:26149 . . .. In this paper we give another

proof on the divergence of the above series. We prove the following

Theorem. The sequence fðnÞ :¼
Pn

k¼1
1
pk
� log logn, n ¼ 2; 3; . . ., is decreasing and

bounded from below, and its limit equals the Mertens’s constant B.

In proofs of the first two conditions we use only classical estimations for pk, obtained in 1939 and

1962 by Rosser and Schoenfeld.
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1. Introduction. In what follows, we use

the notation from the Abstract. Moreover, �ðxÞ
denotes the error term j

P
p�x

1
p � log logx�Bj, and

� denotes the Euler constant.

We shall prove below the Theorem stated in

the Abstract. But before that, a few words are in

order about former proofs.

In 1997 Lindqvist and Peetre [4, Remarks 2 and

4 in Section 1] listed known proofs of Mertens’s

theorem [5] and noticed that all of them depended

on the asymptotic result [3, Theorem 425]:X
p�x

log p

p
¼ logxþOð1Þ as x! 1ð1Þ

(see, e.g., the proof of Theorem 427 in [3]). In

[4, Sections 3 and 4] they estimated the error term

of the expansion H :¼
P

p2P
�
log
�
1� 1

p

�
þ 1

p

�
; this,

by the equality B ¼ � þH, allowed them to com-

pute B with 200 decimals.

A deeper analysis of Mertens’s result and

its proofs is presented in the paper of 2005 by

Villarino [9]. Additionally, he recalls the estima-

tions of �ðxÞ obtained earlier:

(a) �ðxÞ < 1
10 log2 x

þ 4
15 log3 x

, for x � 10372 (1998,

Dusart [1, Theorem 11]),

what improved the result of 1962 by Rosser

and Schoenfeld [7, Theorem 5 and its Corol-

lary] that �ðxÞ < 1
log2 x

, for x > 1;

(b) �ðxÞ< 3 logxþ4
8�
ffiffi
x

p , for x � 13:5 (1976, Schoenfeld

[8]; under the Riemann Hypothesis).

From the form of �ðxÞ it immediately follows

that this function behaves somewhat chaotically:

there are very long intervals ½a; b� on which the sum

sðxÞ :¼
P

p�x
1
p is constant; and s increases ‘‘more

rapidly’’ on ½pm; pmþ1� than log logx if pm; pmþ1 are

twin primes. Probably for this reason the use of the

estimate (1) in classical proofs is indispensable.

2. Proof of the Theorem. In the proof

we shall apply the following estimations of pk
obtained by Rosser [6], and Rosser and Schoenfeld

[7, Corollary to Theorem 3], respectively:

pk > k log k; for k � 1;ðRÞ
pk < k log kþ log log kð Þ; for k � 6:ðRSÞ

(Sharper bounds for pk were obtained by Rosser and

Schoenfeld [7], and Dusart [1,2], but we do not use

them here.)

We shall prove now the sequence ðfðnÞÞ1n¼2 is

decreasing. Indeed, by inequality ðRÞ, the form of f

and the inequality logð1þ 1
tÞ > 1

tþ1 for t > 0, we obtain

fðnþ 1Þ � fðnÞ ¼
1

pnþ1
� log 1þ

logð1þ 1
n
Þ

logn

 !
<

1

pnþ1
� log 1þ

1

ðnþ 1Þ logn

� �
<

1

pnþ1
�

1

ðnþ 1Þ lognþ 1
<
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ðnþ 1Þ lognþ 1� ðnþ 1Þ logðnþ 1Þ
Mn

¼

1� ðnþ 1Þ logð1þ 1
n
Þ

Mn

<
1� ðnþ 1Þ � 1

nþ1

Mn

¼ 0;

where Mn ¼ pnþ1 � ððnþ 1Þ lognþ 1Þ.
For the proof that the sequence ðfðnÞÞ1n¼2 is

bounded from below we shall need the auxiliary

inequality

fðkþ 1Þ � fðkÞ >
1

pkþ1
�

1

pk
�

log log k

k log2 k
;ð2Þ

for k � 6. Its proof is based on inequalies

logð1þ tÞ < t, for t > 0, and ðRSÞ: for k � 6 we have

fðkþ 1Þ � fðkÞ ¼
1

pkþ1
� log logðkþ 1Þ � log log kð Þ ¼

1

pkþ1
� log

logð1þ 1
k
Þ

log k
þ 1

 !
>

1

pkþ1
� log

1

k log k
þ 1

� �
>

1

pkþ1
�

1

pk
þ

1

pk
�

1

k log k
>

ðRSÞ

1

pkþ1
�

1

pk
þ

1

kðlog kþ log log kÞ
�

1

k log k
¼

1

pkþ1
�

1

pk
�

1

k
�

log log k

ðlog kþ log log kÞ log k
>

1

pkþ1
�

1

pk
�

log log k

k log2 k
:

Now, by (2), for n � 6 we obtain

fðnþ 1Þ � fð6Þ ¼
Xn
k¼6

fðkþ 1Þ � fðkÞð Þ >

� 1

p6
þ

1

pnþ1
�
Xn
k¼6

log log k

k log2 k
>

�
1

p6
�
Z n

5

log logx

x log2 x
dx ¼

�
1

p6
�

log log x

logx
þ

1

log x

� �����
n

5

& � 0:9939 . . .

as n! 1. Hence, since fð6Þ ¼ 0:76082 . . ., for n � 7

we obtain fðnÞ > �1þ 0:76 ¼ �0:24.

To prove that limn!1 fðnÞ ¼ B, assume first

that n � 3 (this is necessary in the integral below),

set

BðxÞ ¼
X
p�x

1

p
� log log x;

and notice that the summation is over primes pk
with k � �ðxÞ, the number of primes � x. Hence, by

ðRÞ, we obtain

0 < fðnÞ �BðnÞ ¼
Xn

k¼�ðnÞþ1

1

pk
<ð3Þ

Z n

�ðnÞ

dx

x log x
¼ log

logn

log �ðnÞ
¼

log 1þ
log n

�ðnÞ

log�ðnÞ

 !
<

log n
�ðnÞ

log�ðnÞ
:

Since �ðnÞ > n
logn for n � 17 (see [7, Corollary 1 to

Theorem 2]), the latter fraction in (3) is less

than log logn
logn�log logn (for such n’s) and tends to 0 as

n! 1. By the Mertens result, limn!1 fðnÞ ¼ B

ð¼ limn!1BðnÞÞ.
The proof of the Theorem is complete. �

From the above proof we also obtain the

following estimation (because fðnÞ decreases to B):

0 < fðnÞ � B < �ðnÞ þ log logn

logn� log logn
for n � 17:
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