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On the Hasegawa—Wakatani equations with vanishing resistivity
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Abstract:

In this paper, we are concerned with the drift wave turbulence in a strong

magnetic field. We prove the existence and uniqueness of a strong global in time solution to the
initial boundary value problem for the model equations of drift wave turbulence similar to
Hasegawa—Mima equation. Then we prove that the solution of Hasegawa—Wakatani equations
established in [5] converges to that of Hasegawa—Mima like equation established at the first stage
as the resistivity tends to zero on some time interval.
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Tokamak is the most ad-
vanced magnetic confinement device, in which an
axisymmetric plasma is confined by a strong
magnetic field. It has been well known that the
spatial gradients in plasma lead to the drift waves
and the drift wave turbulence is a natural cause
of anomalous transport from which the dramatic
reduction in confinement results. Thereby the
analysis of such drift wave turbulences is important
from various point of view.

In order to describe the resistive drift wave
turbulence in Tokamak, Hasegawa and Wakatani
[3,4] proposed in 1983 the following equations
for the perturbations of plasma density n and the
electrostatic potential ¢:

1. Introduction.

0
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2
=90 (o m) + et
(1.1) 5 3
(é)t — (Vo xe)- V) (n+logmn)
B C1 82
= _%87@3,(@# —n)

(Hasegawa—Wakatani equations) from the two
fluids model in a homogeneous strong magnetic
field B = Bye and an inhomogeneous plasma
equilibrium density 7 = a(|2/|) (v = (z1,29,23) =
(', x3)). Here By is the strength of a magnetic field
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assumed to be a constant, e =(0,0,1), ¢; =T,/
(€*nwei), 2 = p/(p?wei), Te is the electron temper-
ature, e is the elementary charge, u is the kinematic
ion-viscosity coefficient, n is the resistivity, m; is
the ion mass, w. = eBy/m; is the cyclotoron fre-
quency and p; = v/T./(weir/m;) is the ion Larmor
radius. For simplicity we assume that c; and ¢y are
positive constants.

In advance of Hasegawa—Wakatani equations
Hasegawa and Mima [1, 2] in 1977 proposed the
equation

(1.2) (% — (Vo xe)- V) (Agp— ¢ —logn) =0
(Hasegawa—Mima equation) from the one fluid
model under the same magnetic field and plasma
equilibrium state.

Concerning the mathematical results for (1.1)
and (1.2) we refer to [5] and references therein.

By differencing the first and the second equa-
tions of (1.1) and by denoting ¢ =1/¢y, (1.1) is
equivalent to

(% — (Vo xe)- V)(A(b —n —logn)
:CQA2¢7
(13) 5(% — (Vo xe)- V) (n +logn)
1o
= —Ea—x%@) —n).

For given an initial electrostatic potential ¢,
an initial plasma density n; and the background
density @ = a(|2]), let (¢°,n°) = (¢°,n°)(z,t) be a
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solution of the initial boundary value problem (1.3)
with ¢ > 0 for z € £, ¢ > 0 and the initial-boundary
conditions

¢*(x,0) = ¢5(x), n°(x,0) = ng(x)
(z € Q),

¢ (z,t) = A (z,t) =n(z,t) =0
(xel, t>0),

periodic in the z3-direction.

(1.4)

¢, n,
Here Q=wx (—=L,L) is a 3-dimensional torus,
w={2' = (z1,29) € R?||2/| < R}, ow = {2’ =
(z1,29) € R* | |2'| = R}, T'= 0w x [-L,L], R and
L are positive numbers.

It is more convenient to change n®(z,t) and
ng(x) by n®(x,t) +logn(|z’|) — logn(R) and nj(x) +
log7(|2'|) — logi(R), respectively, which are denot-
ed again by the same letters n°(x,t) and n§(x). Then
(1.3) becomes

0
(5~ (V¢ x ) V) a0 - m)
= 02A2¢57
(15) 5(% _ (v¢5 % e) . v)nE
1 &
=———(¢"—n°) (zeQ, t>0),
1 O3
while (1.4) remains unchanged.
Putting € = 0 in (1.5) implies
0
(5~ (7" x ) ¥ )8 =)
(1.6) = A%¢’,
L&, 5
7 03

We seek a solution of (1.6) satisfying an additional
condition

L
(1.7) nO(«',t) = i/ n®(2', z3,t) das = 0.
2L J_p,

The aim of this paper is to establish the unique
existence of a strong global in time solution to the
initial boundary value problem for (1.6), (1.7) and
the convergence of (¢°,n°) to (¢°,n") as e tends to
zero on some time interval, which corresponds to
the vanishing resistivity of Hasegawa—Wakatani
equations.

We consider these problems in Sobolev spaces
WLQ) (1=0,1,2,...) defined as follows. Let 2 be a
domain in R™ (m € N). By W(Q) we denote the
space of functions u(z), = € 2, equipped with the
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finite norm

2 k12
||UHW;(Q) = Z ”Dxu”L?(Q)'
[k[<l

Here DFu = oWu/dzh ... dxkr is the generalized
derivative of order |k|=Fk +ko+...+k, for a
multi-index k = (ky1, ko, ..., kp). For 1 < p < oo, we
denote by || - ||, the norm of the Lebesgue space
LP(Q2). For simplicity, let us denote || - || ;) by [ - ||

Let T'> 0 and the anisotropic Sobolev space
W3 Qr) (Qr = Q x (0,T),1=0,1,2,...) is defined

as  LP(0,T; W3 () N L*(Q; W5(0,T)),  equipped
with the finite norm
”u”?ﬂ’fl‘l(QT) = ||U||$,V§I,U(QT) + Hu %VZO.Z(QT)

T
_ 2 2
= [ iz -+ [ ol an

Our first result for problem (1.5), (1.4) is as
follows:

Theorem 1.1. Lete >0 andn(|2']) € W3(w)
satisfy n(|2'|) > n. with a positive constant n..
Assume that (¢5,n5) € WH(Q) x W2(Q) satisfies
the compatibility conditions

(1.8) {¢%wA%w>7mmO (zeT),

@5, ng, periodic in the x3-direction.

Then there exists a unique solution (¢°,n°) to
problem (1.5), (1.4) on some time interval [0,T]
such  that (¢,n°) € L*(0,T; Wi () x Wi (Qr),
¢ /ot € L*(0,T;W3(2)). Here T is a constant
independent of .

Next, it is clear that the second equation of
(1.6) and the periodicity condition in z3 imply (¢" —
n)(z',x3,t) = —f(a/,t) for any smooth function
f(«',t), and hence (¢0 —nO)(«/,t) = —f(2/,t). This
together with (1.7) yields n°(z,t) = ¢"(z,t) —
@O(2',t). Therefore it is obvious that the problem
(1.6), (1.7), (1.4) with =0 is equivalent to
problem

i
=A%’ (zeQ, t>0),

¢'(2,0) = ¢p(z) (z€Q),

¢(z,t) = AP’ (z,t) =0 (z €T, t > 0),

#°, periodic in the z3-direction.

(a (vwxe»vyAw—ww@@

It is to be noted that the equation in (1.9) is similar
to the Hasegawa—Mima equation (1.2) with an
higher order correction term.
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Our second result is the following.

Theorem 1.2. LetT be any positive number.
Assume that ¢) € W3(Q) satisfies the compati-
bility conditions (1.8) with € = 0. Then there exists
a unique solution ¢° to the problem (1.9) on
[0,T] such that ¢ € L*(0,T;WH(Q)), 0¢°/ot €
120, T, W3(9)).

For this solution ¢° let n'(z,t) = ¢°(z,t) —
@(«',t) and nd(z) = #)(x) — ¢9(2',0). Then it is
easily seen that (¢°,n") satisfies (1.6), (1.7) and
(1.4) with ¢ = 0.

Finally the following is our main result.

Theorem 1.3. Let (¢°,n°) and (¢°,n°) be the
solutions established in Theorems 1.1 and 1.2,
respectively. If the initial data (¢§,n5) — (¢5,ny)
ase — 0in W3(Q) x W(Q), then (¢°,n°) — (¢°,n°)
as € — 0 in L2(0,T; WH(Q)) x W' (Qr) and A¢® —
nt — A’ —n® as e — 0 in W' (Qr) on the same
time interval [0,T] as in Theorem 1.1.

Here we give only brief proofs, whose details
will be published elsewhere [6].

This paper is organized as follows. In §2 we
prove Theorem 1.1 from our result in [5] and the
a priori estimates for problem (1.5), (1.4). In §3
Theorem 1.2 is proved through the local in time
existence and a priori estimates. In §4 we give a
proof of Theorem 1.3 by virtue of a priori estimates,
Theorems 1.1 and 1.2.

2. Proof of Theorem 1.1. For the initial
boundary value problem (1.1) for z € Q, ¢t > 0 and
(1.4), we have the following existence theorem in [5]:

Theorem 2.1. Let 7(|2|) € Wa(w) satisfy
7i(|2']) > n. with a positive constant n,.. Assume
that (¢o,no) € WH(Q) x W3(Q) satisfies the com-
patibility conditions (1.8). Then there exists a
unique solution (¢,n) to problem (1.1) for x € Q,
t>0 and (1.4) on some interval [0,T*] such
that (¢,n) € L*(0,T*; W) x W' (Qr-), d¢p/0t €
12(0, T WA(9).

We denote the solution (¢,n) established in
Theorem 2.1 in the case of ¢; =1/e by (¢°,n°).
Then it is easy to see that (¢°,n°) is also the
solution of the problem (1.5), (1.4). Since T* in
Theorem 2.1 may depend on &, to complete the
proof of Theorem 1.1, it is sufficient to show that T*
can be taken independently of €.

We proceed to get a prior: estimates of the
solution (¢, n¢). Let it belong to (L2(0, T; W3 (£2)) N
W0, T; W2(2))) x W' (Qr) for T > 0.

First we prove
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Lemma 2.1. Foranyt € [0,T)

(2.1) Ve O + I ()1° + 02/0 1A (7)|* dr

< IVoRI1> + lIm5lI%,
t a E _ o€

— (7
oo (7)
Here ¢ is a constant independent of €.
Proof. Multiplying the first equation of (1.5)
by ¢° and integrating over €2, we have, by virtue of
integration by parts,

(2.3)

2
dr < ee(|V51* + lInl*).

1d
2% IV (D) + cal| A" (1)
ont

-  d.
Lo o

Multiplying the second equation of (1.5) by
¢° —n® and integrating over €2, we have

| 2
d, ., 9 1\ 20(¢° — nf)
O e [ T(”H
on’ cq
=c L ot ¢° dux.

Adding (2.4) and (2.3) multiplied by e and
integrating it over [0, 7], we have (2.1) and (2.2). O

Next we prove

Lemma 2.2. There exists a positive constant
T independent of € such that the estimate

(2.5) (VR @)” + [Ag ()] + | Aans (1)
+ [IVAG (@)l )+/0 (C2€(IIVA¢E(T)II

2

OV (¢* — nf)
8$3

2
>d7
~1
1
( . o2 o2 _Ct>
S+ IVesll™ + lIngll
—(IVesl® + IINSIIQ)]

AR + | )

IA(¢ — 1)
* H oz3

(7)

holds for any t€[0,T). Here ¢ is a constant
independent of ¢ and S5 =|Vng|*+||AdG|* +
1AmGI2 + IV A7 + eIV G517 + 1> + 1).

Proof. In the similar way to Lemma 2.1, multi-
plying the first and the second equations of (1.5) by
Ag¢® and A(¢° — nf), respectively, and integrating
over ), we have
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(2.6) (1—(||Vn O + 186 (#)]1%)

2dt
419)
<e(Z1aF O + c(law @l + v o))

o(¢= —n7)
81’3

30V(¢° — nf)
81‘3

362

+ 22 vas) ) (0

+c

(t)

Next multiply the first equation of (1.5) by
A%¢° and integrate it over €, apply Laplacian A to
the second equation of (1.5), multiply it by A(¢® —
n?) and integrate it over ). From these we have

(2.7) 6(1 (lan (@) + IV A¢* (1))

2dt
2
()25

< (z IVAF @I + I VAG O] + [ Ant (1))

)

2
c12 £112\2
+c(IVasll™ + llngl™)"

+ 218 O) +5

30V(¢° — nf)

2
o (t)

n ||W<t>||‘*>) o

9(¢" —n)
(%cg

+c

(t)

Adding (2.7) and (2.6) multiplied by c¢ yields

@28) =L (Ve + clag o)

2 dt
+[[An (@)1 + VA (©)I)

ECy

+ = (IVAG @B + A% B)I)

e (%)i@V((g;B— ne) " 2

< 9B O + 1Ol
TR + (V17 + 1))
A — neE 2
XD )|+ estagr oy
3

Putting S(t) = Vo (6)|* + | A¢*(0)|I° + || An° (1) +
[VA¢*(t)* and integrating (2.8) over [0,t], we have
with the help of (2.1), (2.2)

+c
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S(t) < C/Ot S2(r) A7+ c(IV g I1* + IImp* + 1)
+ (V5 I* + lIngl*)*t + 5(0)
_ c/t S2(r)dr + C(t) = S°(¢).
Then S*(¢) sz:tisﬁes the differential inequality

ds* ()
at

2
< (SO + IV + 1)

-1
1
S*(t)<<* — ﬁ2—ct>
Si + V&5l + Ins1
= (9651 + In§I1*), s = C(0).

Now we take T in such a way that T = [¢(S] +
IV@s||® + lngl*)] " Then we conclude (2.5) on
[0,T) from this inequality and (2.8). O

By the standard arguments based upon the
a priori estimates in Lemmas 2.1 and 2.2 the
solution can be extended up to T indicated in the
proof of Lemma 2.2. Thus the proof of Theorem 1.1

from which it follows

is complete.

3. Proof of Theorem 1.2. The proof of
Theorem 1.2 is divided into two parts. First we
prove the following theorem on the local in time
existence by the method of successive approxima-
tions in §3.1.

Theorem 3.1. Assume that ¢) € W3(Q) sat-
isfies the compatibility conditions

qbg = A¢8 =0onT, qﬁg, periodic in the xs-direction.

Then there exists a unique solution ¢° to the problem
(1.9) on some interval [0,T"] such that ¢° €
L350, T";W(Q)), 0¢°/0t € L*(0,T"; W3(Q)).

Second we prove the following theorem on the
global in time existence with the help of a priori
estimates in §3.2.

Theorem 3.2. Assume that ¢) € W3(Q) sat-
isfies the compatibility conditions

¢8 = A¢8 =0onT, <b8, periodic in the xz-direction.

Then for any positive number T there exists a unique
solution ¢° to the problem (1.9) on [0,T] such that
@ € L*(0,T; W(RQ)), 0¢° /0t € L*(0,T; W2(£2)).
3.1. Proof of Theorem 3.1. The following
lemmas are well-known (see, for example, [7,8]).
Lemma 3.1. Let 0 <T < 0. Assume that
o € W5 (Q) satisfies the compatibility conditions
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Po=0onT, 1y, periodic in the x3-direction.

Then for any g € L*(Qr) there exists a unique
solution ¢ € WQQ’I(QT) to problem

aa—f—cQszg (e, 0<t<T),
1/)(%,0) = ¢0(x) (SU € Q)a
Y(x,t) =0 (xel, 0<t<T),

¥, periodic in the x3-direction.
Moreover, this solution satisfies the inequality
”wHWf’l(QT) < C(”%HWQ(Q) + HQHLZ(QT))~
Lemma 3.2. Assume that e Wi'(Qr).

Then problem

Ap—d=v (xe€Q, 0<t<T),

d(z,t)=0 (zel, 0<t<T),

¢, periodic in the xz-direction

has a unique solution ¢ € L*(0,T;W3(2)) N
W3(0,T; W2(K)), which satisfies the inequality

191l 20, w0y + I0llwr 0wz i) < elldllyz g,y

Let us reduce problem (1.9) to the problem
with zero initial data. According to Lemmas 3.1
and 3.2, there exists ¢ e L*0,T;W)(Q))N
W, (0, T; W2(£2)) satisfying the equations

(;CzA)(AQs*Qs*)O (IEQa O<t<T)7

¢*(x,0) = ¢y(z) (2 €Q),
¢ (z,t) = Ag"(x,t) =0 (z €T, 0<t<T),
o, periodic in the x3-direction
and the inequalities
(3.1) 16" N 20wy + 19" lw 0 mmz )
< C||¢8HW§(Q)-
By putting ® = ¢ — ¢*, the problem (1.9) is
equivalent to the problem
(% - CQA) (AD — D)
= (V(®+9¢%) xe)- V(AP +¢7)

—(®+ ")+ (D +¢)) + AP+ ¢")

- %(5+E) (reQ, 0<t<T),
O(2,0)=0 (ze€),
O(z,t) = AD(z,t) =0
)

(zel, 0<t<T),

periodic in the z3-direction.

)
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This problem is easily solved by the method of
successive approximations with the help of
Lemmas 3.1, 3.2 and (3.1).

Thus the proof of Theorem 3.1 is complete.

3.2. Proof of Theorem 3.2. In the similar
way as in Lemma 2.2 we can show the following
a priori estimates of the solution ¢° established in
63.1. Let T be an arbitrary positive number and ¢°
be a solution of problem (1.9) belonging to
L2(0, T3 WA(S) N WA (0, T WE ().

Lemma 3.3. Let ¢0 = ¢ — 0. For any t €
0,7]

IV ()12 + 16°()[12 + 2¢ / A () P dr
= IVEI* + 18317 = ¢,
1A + [VE)* + ez / VAP dr
< A + IV + 74 = ¢ + e/,
IVAG @) + AL D2 + e / 1A% () P dr

< [IVAGHIZ + 1A + 5™ + ¢,

where ¢ is a constant depending on ¢*, and g™
™ are constants depending on c*,cy* and c*,c*,
respectively.

By the standard arguments with the help of the
a priori estimates in Lemma 3.3 the solution ¢°
established in Theorem 3.1 can be extended to any
time interval [0, 7. Thus the proof of Theorem 3.2
is complete.

4. Proof of Theorem 1.3. Subtracting
(1.6) from (1.5) and denoting by ¢ = ¢ — ¢, n =
n® —n?, we have

(% — (V¢ x e)- v) (Ag —n)

— (Vo xe)-V(Ap" —n") = A%,
5<8 — (V¢© x e) ~V>n

and

ot
= —¢ 2—(V(ﬁsxe) Vv |n®
1) N ot "
. 1 2 _
3
o(z,0) = ¢ — 8, n(z,0) = ng —n8

(z € Q),
o(z,t) = Ad(z,t) = n(z,t) =0
(xel, 0<t<T),
periodic in the z3-direction.

¢a n,
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By virtue of Lemmas 2.1, 2.2 and 3.3, the
following lemma is derived from (4.1). Here
we denote by ¢ a constant independent of ¢ and
by C(t) a constant dependent on both ¢ and the
bounds of ¢°, n°, ¢°, n®, which may differ at each
occurrence.

Lemma 4.1. Foranyt € (0,7

2 2 t 2
e—:(nvw)n + @1+ [ 1200 dT)

0@ —n) |
+/0 Or3 (T)

<Ct)(IVoOI + IO ) +C(),

dr

2 2 ¢ 2
a(||A<z><t>|| +IVa)+ [ [9a0(0)] dT)
HNovie—n) |
—l—/o 7(%3 (7)|| dr
< EC(t)(HV¢(0)||%/V;(Q) + ||n(0)”%v21(sz)) +e20(1),
a(||m¢<t>||2 +an()l? + [ ||A2¢<r>||2df)
HOA(¢ —n) 2
+/0 —8353 (7)|| dr

< eCOIVEO) iz (0) + In(0)[[F2(y) +£°C(8),
2

/t LAQS —n) (7)|| dr
0 87’
< C)([Ve(0)] %V;(Q) + ||”(0)||$/V.§(sz)) +eC(t),
on 2

ar < eC()(IVHO)]* + In(0)]1*)

2[5

+ 20 VSO sy + [1(0) s + & + 1),
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From Lemma 4.1, it is easy to see that if
the initial data (¢§,n5) — (¢J,n)) as e —0 in
W(Q) x W2(Q), then (¢°,n%) — (6%,n%) as e — 0
in L2(0,T; WA(Q) x Wo'(Qr) and A¢f —nf —
A@’ —n’ as e — 0 in W;l(QT) Finally we remark
that Lemma 4.1 holds so far as (¢°,n®) exists, that
means the time interval [0,7] is the same as in
Theorem 1.1. Thus the proof of Theorem 1.3 is
complete.
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