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Abstract: The Cauchy problem for a wave equation with a time periodic coefficient is

considered. We prove that if one of the initial data is a compactly supported smooth function and

the other initial data is zero, then the energy of the solution of the Cauchy problem grows

exponentially. This result is proved by applying the unstable properties of Hill’s equation.

Key words: Energy; Hill’s equation; initial value problems; resonances; wave equations.

An instability phenomenon which arises in a

system when some parameter of the system varies

in time is called parametric resonance. An example

of parametric resonance is known as the existence

of unbounded solutions of Hill’s equation, see

Lemma 1. We consider parametric resonance for

the wave equation

@2
t u� aðtÞ�u ¼ 0 in R1þnð1Þ

where aðtÞ 2 C1ðRÞ is 1-periodic, not a constant,

positive on R. The next is our main result.

Theorem 1. Let uðt; xÞ be the solution of (1)

such that one of the initial values of u is a compactly

supported smooth function, is not identically zero

and the other initial value of u is identically zero and

let 2 � q � 1. Then we have with positive constants

� and C

min kuðm; �ÞkLq ; k@xiuðm; �ÞkLq ; k@tuðm; �ÞkLq
� �
� C expð�mÞ

for sufficiently large m 2 N, where i ¼ 1; . . . ; n.

In this note we shall show that Theorem 1

follows from unstable properties of Hill’s equation

immediately. Colombini and Spagnolo [2] gave

simple proof of the existence of an instability

interval for Hill’s equation with a coefficient in

L1
loc and studied homogenization for weakly hyper-

bolic equations with rapidly oscillating coefficients

using unstable properties of Hill’s equation. We

refer [1] as a related result. Subsequently, Reissig

and Yagdjian [6] showed that some Lp–Lq estimate

for (1) is not fulfilled employing the same properties

of Hill’s equation, a representation formula for

solutions of Hill’s equation and finite propagation

speed for (1), see Theorem 1 in [6]. We note that

in the proof of Theorem 1 in [6] a sequence of

solutions fumg of (1) with smooth and compactly

supported initial values is constructed such that

jumðm; �Þj, j@xiumðm; �Þj are uniformly greater than

C1 expðC2mÞ in bounded domains, but the support

of initial values of um spread out as m tends to

infinity. Based on a similar idea to [6] Yagdjian [7]

studied nonexistence of solutions for Cauchy prob-

lems of some nonlinear wave equations with time-

dependent and oscillating coefficients. Following

Colombini and Rauch [4], Doi, Nishitani and

Ueda [5] constructed examples of wave equations

such that the coefficients are constant outside some

compact spatial domain and their solution oper-

ators grow exponentially when the space dimension

is greater than or equal to two. In addition, when

the space dimension is equal to one, there is a study

by Colombini and Rauch [3] related to [5].

Proof of Theorem 1. We shall only prove

Theorem 1 in the case where uð0; �Þ is identically

zero, because the other case can be shown similarly.

Let uðt; xÞ be the solution of (1) such that uð0; �Þ is

identically zero and @tuð0; �Þ 2 C10 ðRnÞ is not iden-

tically zero. Then buuðt; �Þ is the solution of initial

value problems for the following Hill’s equation

with a parameter � 2 Rn

@2
t buuðt; �Þ þ j�j2aðtÞbuuðt; �Þ ¼ 0

with the initial values @tbuuð0; �Þ, buuð0; �Þ ¼ 0 wherebvvðt; �Þ denotes the Fourier transform of vðt; xÞ with
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respect to x. Hence we consider Hill’s equation with

a parameter � 2 R

v00ðtÞ þ �aðtÞvðtÞ ¼ 0:ð2Þ

Let us denote by X�ðt; 0Þ the fundamental matrix

for the solution operator of (2) taking
tðv0ð0; �Þ vð0; �ÞÞ to tðv0ðt; �Þ vðt; �ÞÞ and denote

ði; jÞ-element of X�ð1; 0Þ by bijð�Þ, 1 � i; j � 2. The

following is well known, for example see Theorem 2

in [2].

Lemma 1. There exists an open interval � �
ð0;1Þ such that ðTrX�ð1; 0ÞÞ2 > 4 for all � 2 �.

Moreover, for every parameter � 2 � one can find

smooth functions pðt; �Þ; qðt; �Þ and a positive num-

ber �ð�Þ so that p and q are 1-periodic or 1-

semiperiodic and every solution vðt; �Þ of (2) can be

written in the form

vðt; �Þ ¼ c1p1ðt; �Þe�ð�Þt þ c2p2ðt; �Þe��ð�Þt

where c1; c2 are some complex numbers.

Owing to Lemma 1, for � 2 � we can denote

by �ð�Þ; �ð�Þ�1 the eigenvalues of X�ð1; 0Þ with

j�ð�Þj > 1. For simplicity we shall often omit to

write a variable �. By an argument similar to the

proof of Lemma 2.1 in [7] it follows that there exists

a closed interval �0 � � such that the interior of �0

is not empty, b12ð�Þ 6¼ 0 and b21ð�Þ 6¼ 0 on �0. Hence

we see that � 6¼ b11 and � 6¼ b22 on �0. Indeed, we

have

�� b11ð Þ �� b22ð Þ
¼ �2 � b11 þ b22ð Þ�þ b11b22 ¼ b12b21 6¼ 0

on �0. Let � 2 �0 and Uðt; �Þ be the solution of (2)

with the initial values U 0ð0; �Þ ¼ 1, Uð0; �Þ ¼ 0. The

following formulas are deduced from the proof of

Lemma 2.2 in [7]: For every m 2 N we have

UðmÞ ¼
b21

�� ��1
�m � ��mð Þ;ð3Þ

U 0ðmÞ ¼
�� b22

�� ��1
�m þ

�� b11

�� ��1
��m:

We shall prove the inequality in Theorem 1 only for

the Lq-norm of u, because the other inequalities in

Theorem 1 can be shown in the same way. Lemma 1

and the definition of � provide that min�0 jb21=ð��
��1Þj and � are positive where � ¼ lnðmin�0 j�jÞ. One

can find a closed domain I in Rn so that the set

fj�j2; � 2 Ig is contained in �0 and @tbuuð0; �Þ 6¼ 0 in I,

because @tbuuð0; �Þ is real analytic in Rn and not

identically zero. Hence it follows from (3) that with

a constant C1 > 0

inf
�2I
buuðm; �Þj j ¼ inf

�2I
Uðm; j�j2Þ@tbuuð0; �Þ�� ��

� C1 exp �mð Þ
for sufficiently large m 2 N. Thus we obtain the

inequality for the L2-norm of u in Theorem 1,

because Parseval’s equality givesZ
juðm;xÞj2 dx � ð2�Þ�n

Z
I

buuðm; �Þj j2 d�:

The finite propagation speed for (1) implies that for

some constant C2 the support of uðt; �Þ is contained

in fx 2 Rn; jxj � C2ðtþ 1Þg for all t � 0. Hence

Hölder’s inequality shows that for some constant

C3

kuðm; �ÞkL2 � C3ðmþ 1Þn=ð2pÞkuðm; �ÞkL2r ;

where 1 � r � 1 and 1=pþ 1=r ¼ 1, which yields

the inequality for the Lq-norm of u in Theorem 1.
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