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Multiple zeta values and zeta-functions of root systems

By Yasushi KOMORI,” Kohji MATSUMOTO*" and Hirofumi TSUMURA*")

(Communicated by Masaki KASHIWARA, M.J.A., May 12, 2011)

Abstract:

We propose the viewpoint that the r-ple zeta-function of Euler-Zagier type can

be regarded as a specialization of the zeta-function associated with the root system of C, type.
From this viewpoint, we can see that Zagier’s well-known formula for multiple zeta values
(MZVs) coincides with Witten’s volume formula associated with a sub-root system of C, type.
Based on this observation, we generalize Zagier’s formula and also give analogous results which
correspond to a sub-root system of B, type. We announce those results as well as some relevant

results for partial multiple zeta values.

Key words:

1. Zeta-functions of root systems. The
aim of this article is to announce our theory based
on the observation that the Euler-Zagier r-ple sum

1
Q-(Sl, IR 57‘) = E 51,59 5
0<my <--<m, my My my
(where s1,...,s, are complex variables; see

Hoffman [3], Zagier [20]) can be regarded as a
specialization of the zeta-function of the root
system of C,. type. The details will appear else-
where.

First we prepare notations. For the details of
basic facts about root systems and Weyl groups,
see [2,4,5].

Let V be an r-dimensional real vector space
equipped with an inner product (-,-). The dual
space V* is identified with V via the inner product
of V. Let A be a finite irreducible reduced root
system, and ¥ = {«y,...,q,} its fundamental sys-
tem. We fix A, and A_ as the set of all positive
roots and negative roots respectively. Then we have
a decomposition of the root system A=A [J]JA_.
Let Q = Q(A) be the root lattice, Q" the coroot
lattice, P = P(A) the weight lattice, PV the cow-
eight lattice, and P, the set of integral strongly
dominant weights respectively defined by
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Q:ézaia QV:ézaya
i=1 =1
P:@ZAZ-, PV:®Z>\Z.V,
i=1 i=1

Py = é;N)\i,
i=1

where the fundamental weights {)\;}’_; and the
fundamental coweights {A/}’_; are the dual bases
of UV and ¥ satisfying (o), \;) = é;; (Kronecker’s
delta) and (X, ;) = §;; respectively.

Let 0, : V — V be the reflection with respect to
a root o € A defined by

oo v v— (o’ v)a.

For a subset ACA, let W(A) be the group
generated by reflections o, for all a€ A. In
particular, W =W(A) is the Weyl group, and
{oj:=04, |1 <j<r} generates W. For we W,
denote A, = Ay Nw 'A_. The zeta-function asso-
ciated with A is defined by

Gleyia)= ) eV ]

NEP, aEAL

1
(@v, )™

where s =(84)4en, € C®! and yeV (for the
details, see [7-15]). This can be regarded as a
multi-variable version of Witten zeta-functions
formulated by Zagier [20] based on the work of
Witten [18].

2. Fundamental formulas. In this section,
we state several fundamental formulas which are
certain extensions of our previous results given
in [9,10,15].
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Let 7 be the set of all bases V. C A,. Let V* =
{1y} sev be the dual basis of VY = {3}, y. Let
L(VY) = @4y ZBY. Then we have |QV/L(VY)| <
oo. Fix ¢ € V such that (gf),ug} #0 forall Ve
and g € V. If the root system A is of A; type, then
we choose ¢ = af. We define a multiple general-
ization of the fractional part as

. {(y.u})} (¢, 1Y) > 0),

VI LAy} (61Y) <0).
Let T = {t € C| |t| < 2x}/*.

Definition 2.1. For t=(t4),cs, €T and
y € V, we define

ty
F(t,y;A) = :
D | SR
1
X 7\/ Vi
|QV/L(V")]
tgexp(ts{y + datv )
C oy (mieee),
q€QV/L(VY) \BeV

which is independent of choice of ¢.
Remark 2.2. 1In [10], F(t,y;A) is defined in
a different way. The above is [10, Theorem 4.1].
For v € V, and a differentiable function f on V,
let

() = lim fly + h;) ~ f(y)

and for a € Ay,

D, = 0 O -
Oty to=0
Let A= {v,...,un} C AL, and define
D=9y, Dy
Further, let A;j={w,...,v;} (1<j<N-1),

Ay =10, and
Va={VeV|vin¢(VNA)[(0<j<N-1)}

where ( ) denotes the linear span.
Theorem 2.3. For A={v,..

and ta 4 = {ta},en,\a, we have

@aF)(ta a0 y: ) = > (=Y
very

11 )

X
<~/€A+\(VUA) ty — ZﬁeV\A ta(Y, N}Q

.,VN} CA+
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1
X e —
|QV/L(VY)]
taexp(ts{y + atv )
X H et@ -1 ’
q€QV/L(VY) \ BeEV\A

which is independent of choice of the order of A.
This function is holomorphic with respect to ta \a
around the origin.

Definition 2.4. For A={v,..

A+ and tA+\A = {ta}(YEA+\A7 we
Paalka,\a,y;A) by

(DaF)(taa,y; D)
tho
= Y Pauaksayid) [T 5
Ky a€Zip M a€AN\A T

Theorem 2.5. For s=k= (ku),ca, with
ko €Zs (a € AL\ A), ko =0 (o € A), we have

(2.1) Z( II

weW \a€eA NwA_

.y I/N} C
define

(—1)""*> G(w 'k, wly; A)

= (_1)|A+I’PA+\A(kA+\A; V:A)

(27i)"
ko!

acAL\A

provided all the series on the left-hand side abso-
lutely converge.

Assume that A is not simply-laced. Then we
have the disjoint union A = A; U Ag, where 4 is
the set of all long roots and A, is the set of all short
roots. By applying Theorem 2.5 to A = A; or A;, we
obtain the following theorem immediately, which
is a generalization of the explicit volume formula
proved in [15, Theorem 4.6].

Theorem 2.6. Let Ay = A (resp. Ay), Ay =
Ay (resp. Ap), and Ajp =A;NAL (j=1,2). For
s=k = (ka)oen, with ko =k€2Z> (€ Ayy),
ko =0 (o € Agy), and v € PY/Q", we have

G(k,v; A)

(—1)a (2mi)"
:WPAI+(1{A1+7V; A)< H k| '

€A ar

3. Multiple zeta values. Special values
of Euler-Zagier sums when si,...,s, are positive
integers are usually called multiple zeta values
(MZVs), and have been studied extensively. In the
study of MZVs, the main target is to give non-
trivial relations among them, in order to investigate
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the structure of the algebra generated by them (for
the details, see Kaneko [6]). Here, we study MZVs
from the viewpoint of zeta-functions of root sys-
tems. In our previous paper [14], we regarded MZVs
as special values of zeta-functions of A, type, and
clarified the structure of the shuffle product proce-
dure for MZVs. In this article, we regard MZVs as
special values of zeta-functions of C, type.

In the root system of C, type, for A = A(C,),
we have the disjoint union AY = (A;)" U (Agy)Y,
where Ay = ANAL, Ay = ANAL, and

(A ={a), o)y +a,.

Therefore by setting s, = 0 for a € A, we have

00 r
1
CT(S70; A) = § | I —1 5
my,...,my=11=1 (Z;':rfzﬂrl m; + mr) [

which is exactly the Euler-Zagier sum (.(s1, ..., ;).
It is to be noted that some authors use the
opposite order of summation in the definition of
Cr(slv ceey Sr)'

Corollary 3.1. Let A =A(C,) and 2ka,, =
(2k,...,2k) € N" for any k € N,

G (2K, 2k, . .., 2k)

(_1)7‘ (27T2)2k7‘ o
- Pa,. (2Ka, ,0;A) —t— € Q- 72"
gt P (2K, 058) vy € Q-
Remark 3.2. The fact that (.(2k,...,2k) €

Q - 7" was first proved by Zagier [20]. We empha-
size that the above formula can be regarded as a
kind of Witten’s volume formula.

Let A = A(C3) be the root system of Cy type.
By Theorem 2.3, we have

(DA, F)(t1,t2, 51,92, A)
tthQ{yz}tl
(etl — 1)(t1 — tg)
+ tltge{m}tz
@ =) (h 1)
t1t26(1*{2y1*y2})t1

(el = 1)(t1 +t2)

tytgel— =t H{n}t
(e —1)(e — 1)
t1t26{2yryz}tz
(e —1)(t; + ta)

o0 tkltéfz
= Z Pa,. (ki ko, y1, y2; A) kl'k E
Ky k=1 Lah2:

Hence, by Corollary 3.1, we can compute ((2k, 2k)
for k € N, though in this case we can also compute
(2(2k,2k) by using the harmonic product formula
for double zeta values
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C()C(t) = Ga(s,t) + Gty 5) + C(s + 1)

In the general C, case, considering the expansion
of (D, F)(ta,,0;A(C,)) similarly, we can sys-
tematically compute (.(2k,...,2k). Moreover,
considering the case v # 0 for (. (s,v; A(C,)), we
can give character analogues of Corollary 3.1 for
multiple L-values, which were first proved by
Yamasaki [19].

Next, we consider more general situation.
In Theorem 2.5, we considered the sum over W
on the left-hand side of (2.1). Here we consider
the sum over a certain set of minimal coset
representatives on the left-hand side of (2.1).
Then we obtain the following result in the case
of CQ.

Proposition 3.3.

1+ (=1)")¢(p.q) + (L + (=1)")¢(a, p)

Forp,qe N, p,q>2,

B 1)<(2j)<<p+ ¢—2j)

- 1><<2j><(p +q—2j)

Actually this is a special case of the previous
result for zeta-functions of A type given by the
third-named author [17, Theorem 4.5] (see also
[12, Theorem 3.1]). In particular when p and ¢
are of different parity, we see that ((p,q) €
Q[{¢(j+1)|je N} which was first proved by
Euler. For example, we have

G(2.3) = 3(2)((3) 5 <(5).

On the other hand, considering the case of
Cs5 type, we have the following result which is not
included in our previous result for zeta-functions of
As type (see [12, Theorem 7.1]).
Theorem 3.4. Forp,q,u € Nx>o,
1+ (=D")A+(-1)%)
X {Ciﬂ(pa q, U) + <3(pa u, Q) + Cﬁﬁ(uvpv q)}
+ 1+ (=)D +(=1)9)
X {C3(u7 Q7p) + 43(Q7 U,p) + C3(Q7pa U’)}
€Q{c(i+1)|je N}

In particular when p is odd and both q and u are
even, then
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(31)  Glu,q,p) + (g, u, p) + (g, p,u)

€ Qi +1) [je N}

Remark 3.5. Combining (3.1) and the har-
monic product formula for triple zeta values, we have

G(p,q,u) — G3(u, g, p)
€ QHC(]"" 1)’ C?(k7l+ 1) | j7 kvl € N}]a

when p is odd and both ¢ and u are even. This is a
known fact given by Borwein et al. in the triple case
(see [1, Theorem 3.1]).

4. The case of B, type. As for the root
system of B, type, namely for A = A(B
that

), we see

(As+)v = {Oé;(, 20&:_1 + Oz,v., RN
20 4+ + 20, + oy}
By setting s, = 0 for all a € Ay, we have
> Mg
mi,...,my=1i= 1 Z] r— L+1m]+mr)

which is a partlal sum of ¢.(s). From the viewpoint
of zeta-functions of root systems, values of this
function at positive integers can be regarded as the
objects dual to MZVs, in the sense that B, and C,
are dual. For example,

CT‘(S7 Oa BT)

> 1

0,s1,0 0;By) = —
CQ(( » Sl 752)7 2) mg;l nsl(2m+n)sz
C?)((Oa Oa 51, 07 07 52, 07 07 83)7 01 BS)

> 1
B Z o (2m +n)™ (21 + 2m +n)*

l,m,n=1

For simplicity, we denote (2((0,s1,0, s2),0; Bs) by

Cg(sl, $9). Then, similarly to Proposition 3.3, we can

prove the following
Proposition 4.1.

1+ (=1")¢ (0, q) + (1 + (=1)")C (a0, p)

2[p/2] 1 p+q—1—
- ZQ;H—q 27 -1

FOTp,q € NZ?;

2 ) ¢+ g 2))
q

Wy

+2 2(; 9p+q—2j
J=

—¢p+9)-

Example 4.2. In Proposition 4.1, if p and ¢
are of different parity, then

G(p,q) € QU{C(i+1) | j € N}

(T et a2
p
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For example, setting (p,q) = (3,2), we have
> 1

G23) =Y

m,n=1 ?12 (2m + n)3

= 2 C6) + 2 CI).

Furthermore, similarly to Corollary 3.1, we
obtain the following
Proposition 4.3.

> ggr mrmpe®™

my,..,m,=1i= 1 ] =r—i+1 m;j +my

ForkeN,

5. Partial zeta values. In [16], we studied
zeta-functions of weight lattices of compact con-
nected semisimple Lie groups. We can prove
analogues of Theorem 2.5 for those zeta-functions
by a method similar to the above. For example,
considering the cases of By, C5, B3 and Cj types,
we obtain the following results on partial double
and triple zeta values.

Theorem 5.1. Forp e N,
> oo gea
P
m,n=1 n2p(2m + n)
n=1 (mod2)
e 1
> Q.

n?(m + n)*
m=1 (mod?2)
1

o0
. 6p
Z 2p 2p €Q-77,

n?(2m +n)? (2l + 2m + n)

e 1
z,mz,n::l n?(m + n)zP(l +m+n)
I=n (mod2)

. 0
2pEQ P,

Example 5.2.
for example,

We can explicitly compute,

Y 1 1 12
Z = T,
m,n=1 nS (m + n)ﬁ 58060800
m=1 7(mod 2)

e 1 17 "
> - s
nd(m+n)® 390168576000

m,n=1
m=1 (mod 2)
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