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Abstract:
|G| > 4k + 1 —4Vk — 1 and bind(G) >

2)

Let k be an integer with k> 2. We show that if G be a graph such that
2k—1)(n-1)
k(n —

, then G is a fractional k-deleted graph.

We also show that in the case where k is even, if G' be a graph such that |G| > 4k + 1 — 4v/k and

_ (2k—1)(n—1)

Key words:

In this paper, we consider
only finite, simple, undirected graphs with no loops
and no multiple edges.

Let G = (V(G),E(G)) be a graph. For z €
V(G), Ng(x) denotes the set of vertices adjacent to
z in G, and degg(x) denotes the degree of z in G.
We let 6(G) denote the minimum of degg(x) as z
ranges over V(G).

For X C V(G), we let Ng(X) denote the union
of Ng(x) as x ranges over X. The binding number
bind(G) of G is defined as

1. Introduction.

bind(G) =

ain{ W)

IT‘ 0+ X CV(G), Na(X) # V(G)}~

For an integer k£ > 1, a subgraph F of G such that
V(F) =V(G) and degp(x) =k for all z € V(F) is
called a k-factor of G. We can find theorems concern-
ing the relation between the binding number and the
existence of k-factors in [1].

For z € V(G), E(x) denotes the set of edges
incident with z. For an integer k > 1, a fractional
k-factor is a function h that assigns a real number
in [0,1] to each edge of a graph G so that for each
vertex x we have degli(z) = k, where degl(r) =
> cer(r) h(€) is the fractional degree of z in G. A
graph G is a fractional k-deleted graph if there exists
a fractional k-factor for the subgraph obtained by
deleting an arbitrary edge of G.
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, then G is a fractional k-deleted graph.

Binding number; fractional factor.

The following theorem was proved by Zhou
in [4].

Theorem A. Let k be an integer with k > 2.
Let G be a graph of order n with n > 4k — 5, and sup-
pose that

. (2k—1)(n—1)
bznd(G) > W

Then G is a fractional k-deleted graph.

The purpose of this paper is to weaken the con-
dition on the order of G in Theorem A.

Theorem 1. Let k be an integer with k> 2.
Let G be a graph of order n with n > 4k +

1 —4vk—1, and suppose that

(2k — 1)(n — 1)

bind(G) > Kn —2)

Then G is a fractional k-deleted graph.
Moreover, in the case where k is even, we can
relax the binding number condition as follows:
Theorem 2. Let k be an even integer with k >
2. Let G be a graph of order n with n > 4k +

1 — 4Vk, and suppose that

2k —1)(n —1)

bind(G) > K —2)+1

Then G is a fractional k-deleted graph.
The following example shows that the bound on
the order of G in Theorem 1 is best possible.
Example 3. Let h be an even non-negative in-
teger, and set k=h>+1, n=4h> —4h+5 and a =
2h* — 3h + 3. Let H be a complete graph of order a,
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and let I be a cycle of order n— a to the power of
h/2. Let G be the graph obtained from H U I by add-
ing an edge joining vertices x and y for arbitrary
z€ V(H) and y€ V(I). Then |G| = n = 4k +
1 —4Vk—1, and, by n > 2k + 1, we see

n—1

(2k—1)(n—1)
k(n —2)

On the other hand, G is not a fractional k-deleted
graph (if we apply Theorem B in Section 2 with
S=V(H) and T = V(I), then we get 0(S,T) =
1<2).

The bound on the order of G in Theorem 2 is
also best possible.

Example 4. Let h be an even non-negative
integer, and set k= h>, n=4h* —4h+1 and a =
2h%* — 3h + 1. Let H be a complete graph of order a,
and let I be a cycle of order n— a to the power of
h/2. Let G be the graph obtained from H U I by add-
ing an edge joining vertices x and y for arbitrary
ze V(H) and ye V(I). Then |G| =n =4k + 1 —
4k, and, by n > 2k — 1, we see

2k —1)(n—1)
k(n—2)+1 "~

) n—1

bind(G) = = 2>
On the other hand, as in the prceeding paragraph, we
see G is not a fractional k-deleted graph.

The following example shows that the bounding
number condition in Theorem 2 is best possible.

Example 5. Let k be an even non-negative
integer, and let r be an integer with r >

4k 41— 4Vk kr
{T—‘ Set Z—E, m=kr—r and n =

m+ 21. Let H be a complete graph of order m, and I
be the union of | complete graphs of order 2. Let G be
the graph obtained from HUI by adding an edge
joining vertices x and y for arbitrary x € V(H) and
y€ V(I). Then |G| = n =2kr —r, and

n—1 _ (2k—1)(n—1)
S kr—1 k(n—-2)+1

bind(Q)

On the other hand, G is not a fractional k-deleted
graph (if we apply Theorem B in Section 2 with S =
V(H) and T = V(I), then we get (S, T) =1 < 2).
Our notation is standard possibly except the
following
Let G be a graph. For A, BC V(G) with
ANB=10, E(A, B) denotes the set of those edges of
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G which join a vertex in A and a vertex in B. For
A CV(@G), the graph obtained from G by deleting
all vertices in A together with the edges incident
with them is denoted by G — A. For a subset T of
V(G), we often identify a induced subgraph on T of
G with its vertex set T

2. Preliminary results. In this section, we
state preliminary results, which we use in the proof
of the theorems.

First we give the following numerical result
which is applied in the proof of theorems.

Lemma 2.1. Let a, b and ¢ be integers such
thata>2,2<b<a—1,c=00r1, andlet z and y
be nonnegative integers. Suppose that

(a—by+c
2.1 <~ 7 -
(2.1) r= 2a —b
and

-1

Theny <4a+1—4y/a—c.
Proof. By (2.1) and (2.2),

(a—Dy+c
20 —1

(a=by+e

b
< 2a —b

+1-

and hence

b
y<da—20—2+°"Ccig_op—1<da—2
a

Thus Y < 2, and this implies
20 —1
y—2c
2.3 < 2.
(23) 20 -1
y—2c

By (2.2), 22 >y — 50— 1 + 2 — 2b, and this together
a—
with (2.3) implies 2z > y — 2b, thus

(2.4) ngy—%—&-l.
2
By (2.1) and (2.4),

(2.5)
a—cC
y§4a—|—1—2(b—|—T) <4da+1-4va—c,
as desired. O

The following lemma concerning the binding
number and the minimum degree is well known.
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Lemma 2.2 [3].
with bind(G) > c. Then §(G) > n —

Let k be an integer, and let G be a graph. For
S, T CV(G) with SNT = 0, we define 6(S,T) by

0(5,T) = k|S| + Xyer(dege_s(y) — k),
and we define (S, T) by

Let G be a graph of order n
n—1

2 (T is not independent),
1 (T is independent,
and |[E(T,V(G) —S—-T)| > 1),

0 (otherwise).

e(8,T) =

The following theorem is essential for our proof.

Theorem B [2]. Let G be a graph. G is a
fractional k-deleted graph if and only if (S, T) >
e(S, T) for arbitrary S, T C V(G) with SN T = 0.

By the definition of £(S,T), we obtain the fol-
lowing lemma easily.

Lemma 2.3. ¢(5,T) < min{2, |T|}.

Throughout the rest of this section, let k£ be an
integer with k > 2, and let G be a graph such that
|G| > 4k + 1 — 4V/k, and bind(G) > Gk=Dn 1)

’ k(n—2)+1"

and G is not a fractional k-deleted graph. Then, by
Theorem B, there exist S, T C V(G) with SNT =0
such that 0(S,T) < &(S,T).

By Lemma 2.3,

(2.6) 0(5,T) < 1,

(2.7) and 0(S,T) < |T| — 1.

We set n=|G| and h=min{deg;_4(y)|y € T}.
Note that we have

(2.8) IT| <n—|S|

Under these assumptions, we prove the following
three claims.

Claim 2.4. h<k-1.

Proof. By Lemma 2.2,

(k=1)n

1.
2k—1 +

6(G) >
Since4k5+1—4\/%22k—1,n>2k’—1.Hence
6(GQ) > k, thus
(2.9) 6(G) > k+1.

To prove this claim, we assume that h > k. Then
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> yer(dega_g(y) — k) > 0, this together with (2.6)
implies k|S| <1, thus S=10. Hence, we have
0(S,T) = > er(dega(y) — k) > |T| by (2.9), which

contradicts (2.7). O
. (k—h)n+1 .
5. <—
Claim 2.5. || < 5k If k is even,
(k—h)n
< —
then | S| < 5 h

Proof. By (2.6),

(2.10) KIS+ ) (degeos(y) = k) <1,
yeT
and hence
(2.11) E|S|+ (h—k)|T| < 1.
By (2.8), (2.11), and Claim 24, we obtain
k—hmn+1

Now we suppose that k is even. Assume for the
moment that h is even. Then the left-hand side of

(2.11) is even, thus
(2.12) kS| + (h—k)|T| <0.

By (2.8), (2.12), and Claim 2.4, we obtain |S|] <

%. Assume now that h is odd. In the case
where V(G) — S — T # 0, we have
(2.13) IT) <n-—|S|-1.
By (2.11), (2.13), and Claim 2.4, we obtain |S| <
%. In the case where there exists y € T' such

that degq_g(y) > h + 1, we have

Z degq_g(y) > h|T| + 1.

yeT

(2.14)

By (2.10) and (2.14), we have k|S| + (h — k)|T| < 0.
By arguing as in the case where h is even, we obtain
k—h
|S| < % Now we may assume that V(G) —
S — T = and deg_g(y) = h for any vertex y € T.
Thus, for any vertex y € T, degy(y) = h. Since h is
odd, |T| is even. Thus the left-hand side of (2.11) is
even. By arguing as in the case where h is even, we

. (k—h)n
obtain |S| S m D
Claim 2.6. h > 1.

Proof. Recall that k>2. To prove this
claim we assume that h=0. We set Z = {y €
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T |degs_g(y) =0}, then Z#0 and Ng(V(G) —
S)N Z = . Hence

: |Ne(V(G) —S)| _n—1Z]
(2.15) bind(G) < VG -8 o8
G ZE= D=1 _ @k—1)(n—-1) 2k—1
M m—2)+1 k(-1 —k+1_ &
(2.16) bind(G) > %T*I
By (2.15) and (2.16),
(k- 1)n + k|Z|
(2.17) 81> S

On the other hand, 6(S,T) > k|S| + (1 — k)|T| — |Z],
and hence

(k—Dn+ 2| +1
2k —1

by (2.6) and (2.8), which contradicts (2.17). O

3. Proof of Theorems.

3.1. Proof of Theorem 1. Let k, G, n be
as in Theorem 1. To give a proof by reduction to
absurdity, we assume that G is not a fractional k-
deleted graph, and let S, T', h be as in the paragraph
preceding the statement of Claim 2.4. Since n > 4k +
(2k—=1)(n—1)

15| <

1-14 ; laims 2.4
Vk and bind(G) > M= 11 Claims 2.4,
2.5 and 2.6 hold. By Claim 2.5,
(k—hn+1
1 <7 -
(3.1) 51 < B2
-1 1
By Lemma 2.2, §(G) > % + 1. Since
6(G) < |S|+ h,
(k—1n+1
2 ——+1—h.
(3.2) [S| > 51 T h

By Claims 2.4 and 2.6, 1 <h < k—1. We assume
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% by (3.2), which
contradicts (3.1). Thus we may assume that 2 <
h < k — 1. Applying Lemma 2.1 with a =k, b = h,
c=1,2=|5| and y =n, we obtain n < 4k + 1 —
4k —1, which contradicts the assumption that
n>4k+1—-4vk— 1. O

3.2. Proof of Theorem 2. Let k, G, n be as
in Theorem 2. To give a proof by reduction to absur-
dity, we assume that G is not a fractional k-deleted
graph, and let S, T', h be as in the paragraph preced-
ing the statement of Claim 2.4. By Lemma 2.5,

that h = 1. Then |S| >

(k—h)n
. < — .
(33) s1< S
By Lemma 2.2, 6(G) > (/;];71)1n+ 1. Since 6(G) <
S| + h,
(k=1)n
(3.4) S| > ok — 1 +1—h.
By Claims 2.4 and 2.6, 1 <h < k—1. We assume
(k—1)n

that h = 1. Then |S| > m by (34), which con-

tradicts (3.3). Thus we may assume that 2 < h <k —
1. Applying Lemma 2.1 with a=k, b=h, ¢=0,
x=|S| and y=mn, we obtain n <4k+1 — 4k,
which contradicts the assumption that n > 4k +
1 — 4Vk. O
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