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Abstract: Let k be an integer with k � 2. We show that if G be a graph such that

jGj > 4kþ 1� 4
ffiffiffiffiffiffiffiffiffiffiffi

k� 1
p

and bindðGÞ > ð2k� 1Þðn� 1Þ
kðn� 2Þ ; then G is a fractional k-deleted graph.

We also show that in the case where k is even, if G be a graph such that jGj > 4kþ 1� 4
ffiffiffi

k
p

and

bindðGÞ > ð2k� 1Þðn� 1Þ
kðn� 2Þ þ 1

; then G is a fractional k-deleted graph.

Key words: Binding number; fractional factor.

1. Introduction. In this paper, we consider

only �nite, simple, undirected graphs with no loops

and no multiple edges.
Let G ¼ ðV ðGÞ; EðGÞÞ be a graph. For x 2

V ðGÞ, NGðxÞ denotes the set of vertices adjacent to

x in G, and degGðxÞ denotes the degree of x in G.
We let �ðGÞ denote the minimum of degGðxÞ as x

ranges over V ðGÞ.
For X � V ðGÞ, we let NGðXÞ denote the union

of NGðxÞ as x ranges over X. The binding number

bindðGÞ of G is de�ned as

bindðGÞ ¼

min
jNGðXÞj
jXj

�

�

�

�

; 6¼ X � V ðGÞ; NGðXÞ 6¼ V ðGÞ
� �

:

For an integer k � 1, a subgraph F of G such that
V ðF Þ ¼ V ðGÞ and degF ðxÞ ¼ k for all x 2 V ðF Þ is

called a k-factor of G. We can �nd theorems concern-

ing the relation between the binding number and the
existence of k-factors in [1].

For x 2 V ðGÞ, EðxÞ denotes the set of edges

incident with x. For an integer k � 1, a fractional
k-factor is a function h that assigns a real number

in ½0; 1� to each edge of a graph G so that for each

vertex x we have deghGðxÞ ¼ k, where deghGðxÞ ¼
P

e2EðxÞ hðeÞ is the fractional degree of x in G. A

graph G is a fractional k-deleted graph if there exists

a fractional k-factor for the subgraph obtained by

deleting an arbitrary edge of G.

The following theorem was proved by Zhou

in [4].

Theorem A. Let k be an integer with k � 2.

Let G be a graph of order n with n � 4k � 5, and sup-

pose that

bindðGÞ > ð2k� 1Þðn� 1Þ
kðn� 2Þ :

Then G is a fractional k-deleted graph.

The purpose of this paper is to weaken the con-

dition on the order of G in Theorem A.
Theorem 1. Let k be an integer with k � 2.

Let G be a graph of order n with n > 4k þ
1� 4

ffiffiffiffiffiffiffiffiffiffiffi

k � 1
p

, and suppose that

bindðGÞ > ð2k� 1Þðn� 1Þ
kðn� 2Þ :

Then G is a fractional k-deleted graph.

Moreover, in the case where k is even, we can

relax the binding number condition as follows:
Theorem 2. Let k be an even integer with k �

2. Let G be a graph of order n with n > 4k þ
1� 4

ffiffiffi

k
p

, and suppose that

bindðGÞ > ð2k� 1Þðn� 1Þ
kðn� 2Þ þ 1

:

Then G is a fractional k-deleted graph.

The following example shows that the bound on
the order of G in Theorem 1 is best possible.

Example 3. Let h be an even non-negative in-

teger, and set k ¼ h2 þ 1, n ¼ 4h2 � 4h þ 5 and a ¼
2h2 � 3h þ 3. Let H be a complete graph of order a,
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and let I be a cycle of order n � a to the power of

h=2. Let G be the graph obtained from H [ I by add-

ing an edge joining vertices x and y for arbitrary

x 2 V ðHÞ and y 2 V ðI Þ. Then jGj ¼ n ¼ 4k þ
1� 4

ffiffiffiffiffiffiffiffiffiffiffi

k � 1
p

, and, by n > 2k þ 1, we see

bindðGÞ ¼ n� 1

n� a� h ¼ 2 >
ð2k� 1Þðn� 1Þ

kðn� 2Þ :

On the other hand, G is not a fractional k-deleted

graph (if we apply Theorem B in Section 2 with

S ¼ V ðHÞ and T ¼ V ðI Þ, then we get �ðS ;TÞ ¼
1 < 2).

The bound on the order of G in Theorem 2 is
also best possible.

Example 4. Let h be an even non-negative

integer, and set k ¼ h2, n ¼ 4h2 � 4h þ 1 and a ¼
2h2 � 3h þ 1. Let H be a complete graph of order a,

and let I be a cycle of order n � a to the power of

h=2. Let G be the graph obtained from H [ I by add-

ing an edge joining vertices x and y for arbitrary

x 2 V ðHÞ and y 2 V ðI Þ. Then jGj ¼ n ¼ 4k þ 1 �
4
ffiffiffi

k
p

, and, by n > 2k � 1, we see

bindðGÞ ¼ n� 1

n� a� h ¼ 2 >
ð2k� 1Þðn� 1Þ
kðn� 2Þ þ 1

;

On the other hand, as in the prceeding paragraph, we

see G is not a fractional k-deleted graph.

The following example shows that the bounding

number condition in Theorem 2 is best possible.
Example 5. Let k be an even non-negative

integer, and let r be an integer with r �
4k þ 1� 4

ffiffiffi

k
p

2k � 1

& ’

. Set l ¼ kr

2
, m ¼ kr � r and n ¼

m þ 2l. Let H be a complete graph of order m, and I

be the union of l complete graphs of order 2. Let G be

the graph obtained from H [ I by adding an edge

joining vertices x and y for arbitrary x 2 V ðHÞ and

y 2 V ðI Þ. Then jGj ¼ n ¼ 2kr � r, and

bindðGÞ ¼ n� 1

kr� 1
¼ ð2k� 1Þðn� 1Þ

kðn� 2Þ þ 1
:

On the other hand, G is not a fractional k-deleted

graph (if we apply Theorem B in Section 2 with S ¼
V ðHÞ and T ¼ V ðI Þ, then we get �ðS;TÞ ¼ 1 < 2).

Our notation is standard possibly except the
following

Let G be a graph. For A, B � V ðGÞ with

A \ B ¼ ;, EðA;BÞ denotes the set of those edges of

G which join a vertex in A and a vertex in B. For
A � V ðGÞ, the graph obtained from G by deleting

all vertices in A together with the edges incident
with them is denoted by G� A. For a subset T of

V ðGÞ, we often identify a induced subgraph on T of

G with its vertex set T .
2. Preliminary results. In this section, we

state preliminary results, which we use in the proof

of the theorems.
First we give the following numerical result

which is applied in the proof of theorems.

Lemma 2.1. Let a, b and c be integers such

that a � 2, 2 � b � a � 1, c ¼ 0 or 1, and let x and y

be nonnegative integers. Suppose that

x � ða� bÞyþ c
2a� bð2:1Þ

and

x >
ða� 1Þyþ c

2a� 1
þ 1� b:ð2:2Þ

Then y � 4a þ 1� 4
ffiffiffiffiffiffiffiffiffiffiffi

a � c
p

.

Proof. By (2.1) and (2.2),

ða� 1Þyþ c
2a� 1

þ 1� b < ða� bÞyþ c
2a� b ;

and hence

y < 4a� 2b� 2þ bþ c
a
� 4a� 2b� 1 < 4a� 2:

Thus
y

2a� 1
< 2, and this implies

y� 2c

2a� 1
< 2:ð2:3Þ

By (2.2), 2x > y� y� 2c

2a� 1
þ 2� 2b, and this together

with (2.3) implies 2x > y� 2b, thus

x � y� 2bþ 1

2
:ð2:4Þ

By (2.1) and (2.4),

(2.5)

y � 4aþ 1� 2 bþ a� c
b

� �

� 4aþ 1� 4
ffiffiffiffiffiffiffiffiffiffiffi

a� c
p

;

as desired. r
The following lemma concerning the binding

number and the minimum degree is well known.
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Lemma 2.2 [3]. Let G be a graph of order n

with bindðGÞ > c. Then �ðGÞ > n � n � 1

c
.

Let k be an integer, and let G be a graph. For

S, T � V ðGÞ with S \ T ¼ ;, we de�ne �ðS; T Þ by

�ðS; T Þ ¼ kjSj þ �y2T ðdegG�SðyÞ � kÞ;

and we de�ne "ðS; T Þ by

"ðS; T Þ ¼

2 (T is not independent),

1 (T is independent,
and jEðT ; V ðGÞ � S � T Þj � 1Þ,

0 (otherwise).

8

>

>

<

>

>

:

The following theorem is essential for our proof.

Theorem B [2]. Let G be a graph. G is a

fractional k-deleted graph if and only if �ðS ;TÞ �
"ðS;TÞ for arbitrary S, T � V ðGÞ with S \ T ¼ ;.

By the de�nition of "ðS; T Þ, we obtain the fol-

lowing lemma easily.

Lemma 2.3. "ðS; T Þ � minf2; jT jg.
Throughout the rest of this section, let k be an

integer with k � 2, and let G be a graph such that

jGj > 4kþ 1� 4
ffiffiffi

k
p

, and bindðGÞ > ð2k� 1Þðn� 1Þ
kðn� 2Þ þ 1

,

and G is not a fractional k-deleted graph. Then, by

Theorem B, there exist S, T � V ðGÞ with S \ T ¼ ;
such that �ðS; T Þ < "ðS; T Þ.

By Lemma 2.3,

�ðS; T Þ � 1;ð2:6Þ

and �ðS; T Þ � jT j � 1:ð2:7Þ

We set n ¼ jGj and h ¼ minfdegG�SðyÞ j y 2 Tg.
Note that we have

jT j � n� jSj:ð2:8Þ

Under these assumptions, we prove the following

three claims.
Claim 2.4. h � k� 1.

Proof. By Lemma 2.2,

�ðGÞ > ðk� 1Þn
2k� 1

þ 1:

Since 4k þ 1 � 4
ffiffiffi

k
p
� 2k � 1, n > 2k � 1. Hence

�ðGÞ > k, thus

�ðGÞ � kþ 1:ð2:9Þ

To prove this claim, we assume that h � k. Then

P

y2T ðdegG�SðyÞ � kÞ � 0, this together with (2.6)

implies kjSj � 1, thus S ¼ ;. Hence, we have

�ðS; T Þ ¼
P

y2T ðdegGðyÞ � kÞ � jT j by (2.9), which

contradicts (2.7). r

Claim 2.5. jS j � ðk � hÞn þ 1

2k � h
. If k is even,

then jSj � ðk � hÞn
2k � h

.

Proof. By (2.6),

kjSj þ
X

y2T
ðdegG�SðyÞ � kÞ � 1;ð2:10Þ

and hence

kjSj þ ðh� kÞjT j � 1:ð2:11Þ

By (2.8), (2.11), and Claim 2.4, we obtain

jSj � ðk� hÞnþ 1

2k� h .

Now we suppose that k is even. Assume for the
moment that h is even. Then the left-hand side of

(2.11) is even, thus

kjSj þ ðh� kÞjT j � 0:ð2:12Þ

By (2.8), (2.12), and Claim 2.4, we obtain jSj �
ðk� hÞn
2k� h . Assume now that h is odd. In the case

where V ðGÞ � S � T 6¼ ;, we have

jT j � n� jSj � 1:ð2:13Þ

By (2.11), (2.13), and Claim 2.4, we obtain jSj �
ðk� hÞn
2k� h . In the case where there exists y 2 T such

that degG�SðyÞ � hþ 1, we have
X

y2T
degG�SðyÞ � hjT j þ 1:ð2:14Þ

By (2.10) and (2.14), we have kjSj þ ðh� kÞjT j � 0.

By arguing as in the case where h is even, we obtain

jSj � ðk� hÞn
2k� h . Now we may assume that V ðGÞ �

S � T ¼ ; and degG�SðyÞ ¼ h for any vertex y 2 T .

Thus, for any vertex y 2 T , degT ðyÞ ¼ h. Since h is
odd, jT j is even. Thus the left-hand side of (2.11) is

even. By arguing as in the case where h is even, we

obtain jSj � ðk� hÞn
2k� h . r

Claim 2.6. h � 1.

Proof. Recall that k � 2. To prove this

claim we assume that h ¼ 0. We set Z ¼ fy 2
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T j degG�SðyÞ ¼ 0g, then Z 6¼ ; and NGðV ðGÞ �
SÞ \ Z ¼ ;. Hence

bindðGÞ � jNGðV ðGÞ � SÞj
jV ðGÞ � Sj � n� jZj

n� jSj :ð2:15Þ

Since
ð2k� 1Þðn� 1Þ
kðn� 2Þ þ 1

¼ ð2k� 1Þðn� 1Þ
kðn� 1Þ � kþ 1

>
2k� 1

k
,

bindðGÞ > 2k� 1

k
:ð2:16Þ

By (2.15) and (2.16),

jSj > ðk� 1Þnþ kjZj
2k� 1

:ð2:17Þ

On the other hand, �ðS; T Þ � kjSj þ ð1� kÞjT j � jZj,
and hence

jSj � ðk� 1Þnþ jZj þ 1

2k� 1

by (2.6) and (2.8), which contradicts (2.17). r
3. Proof of Theorems.

3.1. Proof of Theorem 1. Let k, G, n be

as in Theorem 1. To give a proof by reduction to

absurdity, we assume that G is not a fractional k-
deleted graph, and let S, T , h be as in the paragraph

preceding the statement of Claim 2.4. Since n > 4k þ

1 � 4
ffiffiffi

k
p

and bindðGÞ > ð2k� 1Þðn� 1Þ
kðn� 2Þ þ 1

, Claims 2.4,

2.5 and 2.6 hold. By Claim 2.5,

jSj � ðk� hÞnþ 1

2k� h :ð3:1Þ

By Lemma 2.2, �ðGÞ > ðk� 1Þnþ 1

2k� 1
þ 1: Since

�ðGÞ � jSj þ h,

jSj > ðk� 1Þnþ 1

2k� 1
þ 1� h:ð3:2Þ

By Claims 2.4 and 2.6, 1 � h � k� 1. We assume

that h ¼ 1. Then jSj > ðk� 1Þnþ 1

2k� 1
by (3.2), which

contradicts (3.1). Thus we may assume that 2 �
h � k � 1. Applying Lemma 2.1 with a ¼ k, b ¼ h,
c ¼ 1, x ¼ jSj and y ¼ n, we obtain n � 4k þ 1 �
4
ffiffiffiffiffiffiffiffiffiffiffi

k� 1
p

, which contradicts the assumption that

n > 4kþ 1� 4
ffiffiffiffiffiffiffiffiffiffiffi

k� 1
p

. r
3.2. Proof of Theorem 2. Let k, G, n be as

in Theorem 2. To give a proof by reduction to absur-
dity, we assume that G is not a fractional k-deleted

graph, and let S, T , h be as in the paragraph preced-

ing the statement of Claim 2.4. By Lemma 2.5,

jSj � ðk� hÞn
2k� h :ð3:3Þ

By Lemma 2.2, �ðGÞ > ðk� 1Þn
2k� 1

þ 1: Since �ðGÞ �
jSj þ h,

jSj > ðk� 1Þn
2k� 1

þ 1� h:ð3:4Þ

By Claims 2.4 and 2.6, 1 � h � k� 1. We assume

that h ¼ 1. Then jSj > ðk� 1Þn
2k� 1

by (3.4), which con-

tradicts (3.3). Thus we may assume that 2 � h � k �
1. Applying Lemma 2.1 with a ¼ k, b ¼ h, c ¼ 0,

x ¼ jSj and y ¼ n, we obtain n � 4kþ 1� 4
ffiffiffi

k
p

,

which contradicts the assumption that n > 4k þ
1 � 4

ffiffiffi

k
p

. r
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