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Abstract: In this note, we study square integrable representations of a real reductive Lie

group with admissible restriction to some reductive subgroup. We give a simple condition which

insures admissibility of the restriction, and which allows to compute the branching numbers in
a simple explicit manner by means of partition functions, generalizing the multiplicity formulas

due to Kostant-Heckman and Hecht-Schmid. We consider also the semi-classical analogue of these

results for coadjoint orbits.
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1. Introduction. Let G be a connected re-

ductive Lie group, and H a closed connected reduc-
tive subgroup of G. Recall that a square integrable

representation (also called a discrete series) of G is

an irreducible unitary representation of G which can
be realized as a subspace of the left regular repre-

sentation in L2ðGÞ. We consider a square integrable

representation � of G which has an admissible re-
striction to H. This means that we may express the

restriction � jH as a Hilbert sum

�jH ¼
X

i2N

ni�i;

(here, the �i are classes of irreducible unitary repre-
sentations of H) with 0 � ni <1. The �i for which

ni > 0 are known to be square integrable [11], 8.7.

In this note we present some results on the multi-
plicity (also called branching number)

mð�; �iÞ :¼ ni
of a square integrable representation �i of H in �.

Proofs will appear elsewhere.
A theorem of Harish-Chandra insures that a

connected reductive Lie group admits square integra-

ble representations if and only if it has a compact
Cartan subgroup. Henceforth, we assume that G

and H have a compact Cartan subgroup. We �x a

compact Cartan subgroup T of G, and a maximal
compact subgroup K of G containing T so that:

L :¼ H \K is a maximal compact subgroup of H,

U :¼ H \ T is a compact Cartan subgroup of
H. Let WK denote the Weyl group of K. We use a

similar notation for other compact connected groups.

We denote by V � the dual of a vector space V . We
denote by gR the Lie algebra of G and g the com-

plexi�ed Lie algebra. We use the same system of
notations for any Lie group. We denote by �ðg; tÞ �
it�R � t� the set of roots. If � � �ðg; tÞ is a positive

system of roots, we consider the corresponding sets

of positive compact roots �c :¼ � \ �ðk; tÞ, and of

noncompact roots �n :¼ �n�c . We denote as usual
by �, �c and �n the corresponding half-sums.

Harish-Chandra parameterized the set of equiv-

alence classes of square integrable representations by

means of the set of g-regular � 2 it�R such that e�þ� is

a character of T . We call such a � a G-Harish-Chan-
dra parameter, and denote by �� the corresponding

equivalent class of square integrable representation.
Moreover, �� ¼ ��0 if and only if WK�

0 ¼ WK�.

In the special case of K, we denote by �� the

irreducible representation of K associated with the
K-Harish-Chandra parameter � 2 it�R. It is the irre-

ducible representation of K with in�nitesimal char-
acter de�ned by �.

Similarly, we denote by �� the square integrable

representation of H associated with a H-Harish-
Chandra parameter � 2 iu�R, and by 	
 the irre-

ducible representation of L associated with the

L-Harish-Chandra parameter 
 2 iu�R.

Let � be a G-Harish-Chandra parameter. This

de�nes a positive system of roots

�� ¼ f� 2 �ðg; tÞ : �ðh�Þ > 0g;
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where h� 2 t is the coroot. We recall the formula of
Blattner (proven by Hecht-Schmid [4]) for the mul-

tiplicity mð��; ��Þ of �� in ��. We denote by p��
n

the partition function associated with ��
n. Assuming

that � is in the positive Weyl Chamber for ��
c , we

have:

mð��; ��Þ ¼
X

w2WK

�ðwÞ p��
n
ðw� � �� �nÞ:

There are similar formulas in terms of partition func-
tions, due to Heckman and Kostant [5], for the re-

striction of an irreducible representation of K to L.

We prove that for a square integrable represen-
tation ��, its restriction ��jH to H is admissible if and

only if its restriction ��jL to L is admissible. This

allows a strategy to compute multiplicities in ��jH in

case of admissibility. First, we compute multiplicities

in ��jL , combining the formulas of Blattner and

Heckman-Kostant, and deduce from it the multiplic-

ities in ��jH . We explain the latter step in theorem 5.

However, we obtain nice formulas for the multiplici-

ties in ��jL only with a supplementary assumption

which we call condition (C ).
In section 2 we introduce this condition (C ) for

� and L. Under this condition, we prove that ��jL
is admissible. In sections 3 and 4 we give formulas
for the multiplicities in ��jL and ��jH , in term of a

linear combination of partition functions. Condition

(C ) is only a suf�cient condition of admissibility, but
it allows a tremendous simpli�cation in the computa-

tion of multiplicities. However, for ðG;HÞ a symme-

tric pair we obtain the equivalence: ��jH is admissible

if and only if condition (C) holds for � and L. An
interesting fact is the role of a particular invariant

connected subgroup Z1K1 � K associated to �. We

compare our results with previous works, notably
by Gross-Wallach [3] on small representations, and

Kobayashi [9] on symmetric spaces.
In section 5, we give semi-classical analogues of

these results. We consider the coadjoint orbit � :¼
G� � ig�R. The admissibility of ��jH is equivalent to

the fact that the restriction qh from � to ih�R is

proper, so we may consider the measure on ih�R
which is the push-forward of the Liouville measure
�. Under condition (C ), we give a formula for this

measure in terms of convolution product of Heaviside

functions, generalizing formulas given in [5] for the
pair ðK;LÞ and in [2] for the pair ðG;KÞ.

We say that two square integrable representa-

tions �� and ��0 of G are in the same family if ��

and ��0 are WK-conjugate. There is a similar de-

�nition for the square integrable representations of
H. We conjecture that, for a square integrable repre-

sentation � of G such that �jH is admissible, all

the representations �i which occur in �jH belong to a
unique family of square integrable representations of

H. We prove that this is true under condition (C ):

this follows from our formulas for multiplicities and
for Liouville measures, a convexity result of Wein-

stein [17], and deep results on partition functions, in

particular those of Szenes and Vergne [15].
The problem of �nding branching numbers for

discrete series, or more generally for Aqð�Þ modules,

has received much attention. Let us mention Schmid
[14], Kobayashi [6, 8], Gross-Wallach [3]. For an up-

date on the subject we refer to Kobayashi [12, 13]
and references therein. There exists di�erent types of

formulas for branching numbers. In this note we con-

sider only formulas in terms of partition functions.
Moreover, we do not expect that our results extend

to more singular Aqð�Þ modules. For instance, in

this larger context, the conjecture on the unique fam-
ily stated in the previous paragraph is not always

true: see examples in [6].

2. Condition (C). We shall use multisets S
of vectors of iu�R, that is non ordered lists of vectors,

allowing repetitions. We say that a multiset S is

strict if it is contained in an open half-subspace of
iu�R; in particular all elements of S are non zero. A

submultiset S 0 � S is called a positive system for
S if S 0 is the intersection of S with an open half-

subspace.

Let qu : t� ! u� be the restriction map. Let Z be
the connected component of the centralizer of u in K.

We de�ne �z :¼ �ðz; tÞ. It is the set of � 2 �ðk; tÞ
such that quð�Þ ¼ 0.

For any space V in which u acts, we denote by

�ðV ; uÞ � u� the multiset of non zero roots. For

instance, we have �ðk=l; uÞ ¼ quð�ðk; tÞn�zÞn�ðl; uÞ.
De�nition 1. Consider a positive system � �

�ðg; tÞ. Condition (C ) holds for � and L if there

exists a positive system �ðk=l; uÞ � �ðk=l; uÞ such

that, for each w 2WK ; the multiset

quðw�nÞ [�ðk=l; uÞ

is strict.

Theorem 1. Let � be a G-Harish-Chandra

parameter. If condition (C ) holds for �� and L, then

�� restricted to H, as well to L, is admissible.

Remark 1. Condition (C ) implies in par-

50 M. DUFLO and J. A. VARGAS [Vol. 86(A),



ticular that quð�Þ 6¼ 0 for all non compact roots of

�ðg; tÞ. This is in fact always satis�ed when �� re-

stricted to L is admissible. The rest of condition (C )
is only a suf�cient condition of admissibility|see the

examples given below after the de�nition of K2ð�Þ.
However it is a natural one to consider for the prob-

lem of expressing branching numbers in term of

partition functions.

Hereinafter, for simplicity, we assume that G

is a simple group. We consider some examples. We

denote by ZK the connected component of the center

of K, and zK its Lie algebra. Recall that dim zK � 1,

and that if dim zK ¼ 1|this is the Hermitian

symmetric case|, there are (up to WK-conjugacy)

exactly two positive systems � � �ðg; tÞ such that

�n is WK invariant. They are called holomorphic.
e We suppose that dim zK ¼ 1.

Let U be a subtorus of T and �� a holomorphic

system. Then, condition (C) holds for �� and U if
and only if �� restricted to U is admissible. More-

over, condition (C) holds if U is suf�ciently close to

ZK (see [16]).
For an arbitrary system � condition (C) holds

for � and ZK if and only if � is a holomorphic

system.
e Let Ks denote the semisimple factor of K. Then,

condition (C) holds for � and Ks if and only if

Rþ�n \ iz�K ¼ f0g.
e The fact that condition (C) holds for � and L

implies that condition (C) holds for � and any

subgroup between L and K.
e Let G be a noncompact real form for G2, and

�c ¼ f�1; �2g, with �1 short.

Let L ¼ SU2ð�2Þ, � � �c be the positive system of

roots for which �1 is simple. Then condition (C)
holds and � and L. This is the quaternionic case,

and in particular � is small in the sense of [3].

Let L ¼ SU2ð�1Þ and � � �c be the positive system
of roots for which �2 is simple. Then condition (C)

holds for � and L. In this case � is not small in the

sense of [3].
In the next paragraph we analyze the con-

straints on K when we assume that condition (C)

holds for certain subgroup. To � we associate two
ideals of k. We de�ne

k1ð�ÞC :¼ ideal spanned by
X

�;2�n
CX�þ :

Still assuming for simplicity that g is simple, we

de�ne z1ð�Þ ¼ zK if Rþ�n \ iz�K 6¼ f0g, and z1 ¼ f0g

otherwise. We denote by Z1ð�Þ � ZK and K1ð�Þ �
Ks the corresponding invariant connected subgroups

of K.
Proposition 1. (i) If condition (C ) holds

for � and L, then we have K1ð�Þ � L. If we as-

sume moreover that l ¼ l \ z� l \ ks, then we have

Z1ð�ÞK1ð�Þ � L.

(ii) When K1ð�ÞZ1ð�Þ is included in L, then

condition (C ) holds for � and L.
When Z1ð�Þ 6¼ 1, condition (C) alone does not

imply that L contains Z1ð�Þ. This can been seen

on the holomorphic example with L ¼ U considered
above.

When � is small in the sense of [3], Gross and

Wallach de�ne a speci�c invariant proper subgroup
of K, to which the corresponding discrete series of G

restrict in an admissible manner. In this case, we

check that the group K1ð�ÞZ1ð�Þ coincides with
the group of Gross and Wallach. However, we com-

puted all the positive systems � for which the group

K1ð�Þ is a proper subgroup of ZKKs, and (for classi-
cal g) those for which Z1ð�Þ is a proper subgroup of

ZK . Many of them are not small. We gave above an

example for G ¼ G2.
Let K2ð�Þ � Ks denote the invariant connected

subgroup complementary to K1ð�Þ. We show that

k2ð�Þ is the largest semisimple ideal of ks contained
in the subalgebra generated by the root vectors cor-

responding to the simple compact roots of �, and

their opposite.
The above results imply that �� has an admissi-

ble restriction to the group K1ð��ÞZ1ð��Þ. It is an
interesting fact that it may have also an admissible

restriction to K2ð��Þ. This provides examples where

there is admissibility of restriction, but where condi-

tion (C) is not satis�ed.

Suppose �rst that K2ð��Þ ¼ Ks. Then �� is

holomorphic and one can show that �� restricted to
Ks is admissible if and only if G=K is not a tube

domain.

Suppose now that K2ð��Þ is a proper subgroup

of Ks. We show that �� restricted to K2ð��Þ (and

also to ZKK2ð��Þ) is admissible if and only if

g ¼ spðp; 1Þ and � is quaternionic (that is, k1ð��Þ ¼
spð1Þ and k2ð��Þ ¼ spðqÞ). Note that in the particu-
lar case of spð1; 1Þ ’ soð4; 1Þ, all � are quaternionic.

Next we relate condition (C) to some of the theo-

rems of Kobayashi on admissible restrictions. For the

rest of this section we assume ðG;HÞ is a symmetric
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pair. Let � denote the involution determined by the
symmetric pair ðG;HÞ. We may and do assume that

� stabilizes K and T . Thus ðK;LÞ is again a sym-
metric pair. We choose a �-stable compact Cartan

subgroup B � K such that the space b� :¼ fX 2
b : �X ¼ �Xg is of maximal dimension: it is a
Cartan subspace for the symmetric pair ðK;LÞ. We

�x a system of positive roots � � �ðk; bÞ such that

f�jb� 6¼ 0 : � 2 �g is a system of positive roots for

�ðk; b�Þ.
Let ~� � �ðg; bÞ be a positive system. We say

that ~� satis�es Kobayashi’s condition if we have:

~� � � and Rþ ~�n \ b�� ¼ f0g:

Consider a G-Harish-Chandra parameter � 2 b�

such that the positive system of positive roots ~�� �
�ðg; bÞ contains �. The importance of Kobayashi
condition comes from the following criterium of

admissibility:

Theorem 2. (Kobayashi [7, 9, 10]) The re-

striction of �� to H is admissible if and only if ~��

satis�es Kobayashi’s condition.

We prove:

Proposition 2. Assume Rþ ~�n \ b�� ¼ f0g.
Then K1ð~�Þ is a subgroup of L.

Condition (C) is stated by means of the �-stable
compact Cartan subgroup T , for which the dimen-

sion of t� is minimal. Kobayashi’s condition is ex-

pressed through the �-stable compact Cartan sub-
group B, for which the dimension of b� is maximal.

We relate b and t via a Cayley transform. Consider

a positive system ~� � �ðg; bÞ which contains con-

tains �, and let � � �ðg; tÞ be the positive system

obtained from ~� by Cayley transform. Using propo-

sition 2, we prove:
Proposition 3. Assume ðG;HÞ is a symme-

tric pair. Then condition (C ) for � and L holds if

and only if Kobayashi’s condition holds for ~�.

Corollary 1. Let ðG;HÞ be a symmetric pair.

(i) The restriction of �� to L and H is admissible

if and only if condition (C ) holds for �� and L.

(ii) The restriction of �� to L and H is admis-

sible if and only Z1ð��ÞK1ð��Þ � L.

3. Multiplicity formulas. To express multi-

plicities, it is convenient to use centered partition
functions, that is partitions functions appropriately

shifted. Let S ¼ f�1; 	 	 	 ; �qg be a strict multiset of

elements of iu�R. We denote by pS the corresponding

partition function, by �S the half-sum of elements of
S, and by qS the partition function shifted by �S.

Thus, for 
 2 iu�R, we have qSð
Þ ¼ pSð
 � �SÞ.
We choose a positive system �z � �z, and de-

note by $z the Weyl dimension polynomial for Z:

for � 2 t�

$zð�Þ ¼
Q

�2�z
�ðh�ÞQ

�2�z
��z
ðh�Þ

:

Let � be a G-Harish-Chandra parameter. Let
mð��; ��Þ denote the multiplicity of �� in ��jH , for

all H-Harish-Chandra parameters �, and mð��; 	
Þ
the multiplicity of 	
 in ��jL , for all L-Harish-Chan-
dra parameters 
.

Assume that �� satis�es condition (C) for L,
and choose �ðk=l; uÞ like in de�nition 1. For each

w 2WK , we de�ne SLw :¼ quðw�nÞ [�ðk=l; uÞ and

SHw :¼ SLwn�ðh=l; uÞ. Remark that that for all w 2
WK , SLw is a positive system for �ðg=l; uÞ, and SHw a

positive system for �ðg=h; uÞ.
Theorem 3. Assume that condition (C ) holds

for �� and L. Then we have :

mð��; ��Þ ¼ 

X

w2WZnWK

�ðwÞ$zðw�ÞqSHw ð�� quðw�ÞÞ:

Note that when H ¼ L and � ¼ 
, the theorem

gives the multiplicities mð��; 	
Þ.
We may rewrite theorem 3 using the decom-

position WK ¼ W1 �W2, where Wi ¼WKið��Þ. We

do it in the simplest case, when H and G have the
same rank. Assume that T ¼ U. We may choose

�ðk=l; tÞ � ��. De�ne SH� :¼ ��n�ðh; tÞ. We obtain

mð��; ��Þ ¼ 

X

s2W1; t2W2

�ðstÞ qSH
�
ðs�� t�Þ:

4. Partition functions via discrete Heavi-

side measures. To make the comparison with the
results of the next paragraph easier, we restate theo-

rem 3 in terms of measures on iu�R. For � 2 iu�R let ��
denote the Dirac delta function attached to �. If
� 6¼ 0, we consider the measure

y� ¼
X

n�0

� �
2
þn� ¼ � �

2
þ � �

2
þ� þ � �

2
þ2� þ 	 	 	

Let S ¼ f�1; 	 	 	 ; �qg be a strict multiset of elements

of iu�R. We write � for the convolution product of

measures on iu�R. We consider the measure

yS :¼ y�1
� 	 	 	 � y�q ¼

X

�2 iu�
R

qSð�Þ ��:

52 M. DUFLO and J. A. VARGAS [Vol. 86(A),



Let � be a G-Harish-Chandra parameter. As-

sume that �� satisfy condition (C) for L, and choose
�ðk=l; uÞ like in de�nition 1. We use the notations of

section 3. For 
 2 iu�R, we de�ne mLð�; 
Þ by the

formula
X


 2 iu�
R

mLð�; 
Þ�
 ¼
X

w2WZnWK

�ðwÞ$zðw�Þ�quðw�Þ � ySLw :

For � 2 iu�R, we de�ne mHð�; �Þ similarly.

The function mHð�; :Þ and mLð�; :Þ are skew

invariant under the action of WL. The following is
essentially a reformulation of theorem 3.

Theorem 4. Assume that condition (C ) holds

for �� and L.

(i) mLð�; 
Þ ¼ 0 if 
 is not a L-Harish-Chandra

parameter. If 
 is a L-Harish-Chandra parameter,

we have mð��; 	
Þ ¼ jmLð�; 
Þj.
(ii) mH ð�; �Þ ¼ 0 if � is not a H-Harish-Chan-

dra parameter. If � is a H-Harish-Chandra parame-

ter, we have mð��; ��Þ ¼ jmH ð�; �Þj.
Let us give an outline of the proof of theorem 4.

We consider �rst some special connected subgroups

L0 � K such that condition (C) is satis�ed for ��

and L0, and prove theorem 4 by applying it to the

pairs ðG;KÞ and ðK;L0Þ (where it is known, by [4]

and [5]). Then, as in [5], we use a trick which allows
to deduce the multiplicities for the pair ðG;HÞ from

the multiplicities for the pair ðG;L0Þ, whenever H

contains L0 and L0 contains U , by using product of
di�erence operators associated to the roots in some

positive system �ðh=l 0; uÞ � �ðh=l 0; uÞ. In the partic-

ular case L ¼ L0, it follows from theorem 5 below. To
state this theorem, we introduce some notations.

For � 2 iu�R and S as above, let d� :¼ ���
2
� � �

2
,

and

dS :¼ d�1
� 	 	 	 � d�q :

The operation of convolution by d� is a di�erence

operator, and we have d� � y� ¼ �0 and dS � yS ¼ �0.

Theorem 5. Let Sh=l � �ðh=lÞ be a positive

system of non compact roots for h. Then

dSh = l
�
X


 2 iu�
R

mLð�; 
Þ �
 ¼ 

X

�2 iu�
R

mHð�; �Þ ��:

5. Push forward of Liouville Measure. We

now study the semi-classical analogues of multiplic-

ity functions, as in Heckman [5] and Du	o-Heckman-
Vergne [2]. Consider an element � 2 it�. As usual,

we extend � to a linear functional on g which van-

ishes on each root subspace. The coadjoint orbit
� :¼ G� � ig�R is a symplectic manifold. Let �

denote the Kostant-Kirillov-Liouville measure, nor-
malized as in [1], Chapter VII.

From now on, we assume that � is g-regular. We

denote by qh : g� ! h� the restriction map, and we

de�ne similarly q l.

Proposition 4. The following are equivalent.

(i) q l is proper on �.

(ii) qh is proper on �.

If moreover � is a G-Harish-Chandra parame-

ter, it is also equivalent to

(iii) �� has an admissible restriction to H.

From now on, we assume that qh is proper on �.

To describe qhð�Þ, it is convenient to choose a posi-

tive Weyl Chamber CL � iu�R. The set qhð�Þ � ih�R
is H-invariant, and each H-orbit ! � qhð�Þ meets

CL in exactly one point. According to Weinstein [17],

qhð�Þ \ CL is a convex polyhedron.

This allows to describe the push-forward

ðqhÞ�ð�Þ by means of a measure MH on CL, called

the Duistermaat-Heckman measure. For � 2 iu�, let

!� :¼ H� � ih� be its coadjoint orbit, and !� the

corresponding Liouville measure. Then MH is the

positive measure on qhð�Þ \ CL such that

ðqhÞ�ð�Þ ¼
Z

CL

dMHð�Þ !� :

There is a canonical way to extend MH to a signed
measure on iu�R which is WL-skew invariant.

In analogy with section 4, for � 2 iu�R with

� 6¼ 0, we de�ne the Heaviside measure Y� by

Y�ð’Þ ¼
R1

0 ’ðt�Þdt, and for a strict multiset S ¼
f�1; 	 	 	 ; �qg of elements of iu�R, the measure

YS :¼ Y�1
� 	 	 	 � Y�q :

We also de�ne a measure t� by the formula

t�ð’Þ :¼
Z 1

2

�1
2

’ðt�Þdt;

and tS :¼ t�1
� 	 	 	 � t�q . We have t� � y� ¼ Y� and

tS � yS ¼ YS.

Let � be a G-Harish-Chandra parameter. As-

sume that �� satisfy condition (C) for L, and choose

�ðk=l; uÞ like in de�nition 1. We use the notations
of section 3. We obtain the following analogue of

theorem 4.

Theorem 6. Assume that condition (C ) holds

for �� and L. We have:
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MH ¼ 

X

w2WZnWK

�ðwÞ $zðw�Þ �quðw�Þ � YSHw :

Let S be a positive system for �ðg=h; uÞ. Since

t� ¼ t�� , the measure tS does not depend on the

choice of S, and will be denoted by rg=h. Comparing

theorems 4 and 6, we obtain.

Proposition 5.

rg=h �
X

�2 iu�
R

mHð�; �Þ �� ¼MH:

Theorems about partitions functions due to [15]

and others allow to invert this formula.
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