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Abstract:

Using the Mehler kernel, we give an existence result of the Cauchy Dirichlet

problem for the Hermite heat equation with homogeneous Dirichlet boundary conditions and con-
tinuous and bounded Cauchy data vanishing at x = 0.
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1. Introduction. The existence and unique-
ness problems for the heat equation in both the half
and whole line have been investigated extensively.
Several examples in [1, 5, 7] and the references there-
in are of ample evidences. Similarly uniqueness prob-
lems for parabolic equations in a general setting
have been given in [6] as described by the following
theorem.

Theorem 1.1 ([6], Corollary 8.15 and Exer-
cise 8.22). Let Q be a domain in RY, let T >0
and Q= (0,T) x Q. Assume that the second-order
operator

L(t,z) =Y aij(t,2)05,0: + Y bi(t,2)0s, — V(t, 1)
i,j i

s uniformly elliptic with respect to x. Assume that its
coefficients are real valued and satisfy the following
boundedness condition:

(1.1)
V(t,z) >0, trace a(t,z) +z - b(t,z) < K(1 + |z|*)

for (t,z) € Q. Assume that the function U is con-
tinuous and bounded on Q and satisfies the regular-
ity conditions: for any t the derivatives 0,U(t, ),
02U (t,z) exist and are continuous in @ and the de-
rivative 0y U exists at any point in Q. Let

9'Q = (0,T) x QU {(0,z)|z € O}
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denotes the parabolic boundary of Q. Then the follow-
ing uniform uiqueness estimate holds:

sup |U| < T'sup |0:U — LU| + sup |U].
Q Q 2'Q

In particular, if U =0 on 0'Q and 0,U — LU =0 in
Q, then U=0in Q.

With d =1, Q =[0,00), (a; ;) = unit matrix of
order 1, b;=0 and V(t,x)= \x|2, the following
uniqueness theorem for the Hermite heat equation is
a particular case of Theorem 1.1.

Theorem 1.2. Let U(z,t) be a continuous
function on [0,00) x [0,00) satisfying the following

(‘9 _a;+$2> Uz, t) =0 in (0,00) x (0,00),

for some positive constant M
|U(z,t)] < M in [0,00) X [0,00),

U(z,0)=0 for 0<z<oo and U(0,¢t)=0 for
0<t<oo. Then Uz, t) =0 in [0,00) X [0,00).

To prove that the equations have a solution is
an even more difficult matter than that of proving
uniqueness. Although a hint for finding the solution
of the Caucy Dirichlet problem for the heat equation
is available in [5], the case for the Hermite heat equa-
tion is different and difficult too due to the presence
of the potential term z2.

As a challenging job, the main aim of this paper
is therefore to give a unique solution of the Cauchy
Dirichlet problem for the Hermite heat equation in
the half line with homogeneous Dirichlet boundary
conditions and continuous and bounded Cauchy
data vanishing at = 0. While proving the main the-
orem, we heavily make the use of some derivations
and results on the Mehler kernel.
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2. Preliminaries. As introduced in [2], we
denote by E(x,&,t) the Mehler kernel defined by

—(2k+1)t
E@@ﬂ:{zh () h(©),

0, t<0

t>0

where hj’s are L? — normalized Hermite functions
defined by

(_1)k ez2/2 dx .
NN R A

Moreover the explicit form of F(x,&,t) for ¢t > 0 is

2

hk(.T) = z € R.

114e 4 91— 2

R (z=8)"—

¢ x§

e le I+e—2t

VAL = eh)]

We note that for each £ € R, E(z,&,t) satisfies the
Hermite heat equation.

Since E(z, &, t) = (¢, t)

V2 et
(1_|_e—4f,)§

2

I O T ¢

T2 Ie—4t
V2T

for ,& € R and t > 0, we have the following lemma:
Lemma 2.1 (Lemma 3.1, [3], and Lemma 2.1,
Forany 6 >0

E(z,¢t) =

E(&, x,t) where

11—t o
e 2 1+e*4*£

(2.1) (& t) =

14+e % te
1— 6—41‘)

(2.2) E(&x,t) = (

(4])-

. ) dr =

(2.3) Ap@%wx

(2.4) . E&zt)dr—0
|o- 2] >

uniformly for€ € R ast — 0.

3. Main Result.

Theorem 3.1. Let ¢ be a continuous and
bounded function on [0,00) with $(0) =0. Then
there exists a unique solution of the following Cauchy
Dirichlet problem for the Hermite heat equation

(%__+x)U(z,t):O z>0,t>0,
(3.1 { Ulz,0) = ¢(a) >0,
U(0,t) =0 t>0.
Proof. Let
h(z) = { o(x), x>0
—¢p(—x), x<0.
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Then by hypothesis h(z) is a continuous, bounded
and odd function on R. In view of the Fourier series
of the odd function h on R, it is easy to see that

L ~
Ly [* B DN
T t—0 0 AL,Z,{,t

where Ay, ;¢ equals

h(z)

2 A4t -1
X . onné | 2nme Yz —i; —26?;)
—gin— sin—— ¢ +e .
Zn L M Iayem

As L — oo, we have

h(zx) ~ glim

T t—0

/°° n(z, t)h(£)dE
0 Bz,f,t

where B, ¢, equals

2(1_—dt -1
© ey )
- )\ <3 2(14e~4) d)\
</0 sin Ebml—i—e*‘”e

Considering h only on [0, c0), we have

2 e, O)(E)de
(3.2) ¢(z) ~ — lim /0  Buer
But

1
(3.3) By - 4(H1 )
where

_9 _*2(1*"7“)
e

A2 (1)
2(14e—4) d)\.

H = /Z:cos)\(f—

00 267%1’ _
Hy = Mer=——
2 /_OOCOS (§+1+e4t> ¢

Evaluating the integrals H; and H», we obtain

(=) ( 25*2%)
2(14e—4t) A€ 1e—4t d)\

2
0o MU~
= Re / e ?
—00
2
—at .
_2(1"" ) (A_L 144 (6_29’2%) )
00 4t \2 2y .4 4
Ref e I+ 1-e 1+e d\
—00
- 2
114e e 22ty
62 1—edt 1+edt

2
11+e™4 5725*2'1
T2y 1e— 4t

1—|—e 4

~ Var

Similarly

N2 (1)

: > L 2e 2
— Re /OO e 2+ ) HA (5 ' 1+r1f) d\

o0

_1 1+(>

2
2,
2] At <§+1 e 4t )

1 + ef4f

= Vor 1—e4
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Substituting the values of H; and Hj in (3.3), we ob-
tain from (3.2) that

[ (i, 1) (€)d€
o(x) ~ lim — N - —
=0 Jo {B(e,gt) - Bz, €0}

(3:0) o) =t [ (B.&0-Ble,~0)o()ds
0

where in view of (2.2)

2
114e ¥ 22ty
e (e
~ 1+ e 4t e 2l—r"l‘( 1+r~“>
E(x,££,t) =4/ .
1—e# NG
Let

Ue.t)= | (B 6.t) — Blr,—60)}o(6)de.

Then by (3.4), we have
Prrol Uz, t) = ¢(z).

Moreover, since FE(xz,&,t) and E(x,—¢t) are the
Hermite heat solutions, so is U(z,t). Furthermore

U(0,t) =0for¢t >0
reveals from the fact that

E(0,¢,t) = E(0,—¢,¢) for all £ € R and all ¢ > 0.

Thus U(z,t) is a solution of (3.1). Next by definition
of h on R, it is easy to see that

Ule,t) = / (B, 6, 1) - Bz, —£,0)}0(0)d
- / B, &, O)h(€)dt.
R

Then there exists a constant M; > 0 such that

U, )] < iz £) 1] /R Ew, &, )de
< M in [0,00) X (0,00)

(3.5)

since from (2.1) and (2.3), 7(x, t) is bounded and

/ E(x, & t)dé = 1.
R
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Then

(3.6) |U(z,t)] < M in [0,00) x [0,00)

where M = M; + ||¢]|.- Thus in view of (3.6) and
Theorem 1.2, we conclude that U(x,t) is a unique
solution of (3.1). O
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