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Divisibility of class numbers of non-normal totally real cubic number fields
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Abstract: In this paper, we consider a family of cubic fields {K,},,., associated to the
irreducible cubic polynomials P, (z) = * — ma? — (m + 1)z — 1, (m > 4). We prove that there
are infinitely many {/,},,-,’s whose class numbers are divisible by a given integer n. From this,

we find that there are infinitely many non-normal totally real cubic fields with class number divi-

sible by any given integer n.
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1. Introduction. Let K,, be a field asso-
ciated with the irreducible polynomials

P,=a*—ma®— (m+ 1z -1,
for (m > 4). It is well known that K,, (m >4) are

non-normal totally real cubic number fields with dis-
criminants (See [4])
(1) D, = (m*+m—3)° - 32.

Louboutin in [1] studied the class groups of
{K},,>4 and determined K,, of small class number
or of class group with small exponent.

In this paper, we are interested in the divisibility
of the class numbers of a family {K,,},,-4 by a given
integer n. The following is a result:

Theorem 1.1. There are infinitely many m
for which the ideal class group of K, has a subgroup
isomorphic to Z/nZ.

To prove above theorem, we use Nakano’s
Lemma in [3]:

Lemma 1.2 (Nakano). Let n,m be integers
greater than 1 and ng be the product of all prime divi-
sors of n,

myg = lem{|wg]| | K is a field of degree m},

where wy s the number of roots of unity in K, and
L(n) be the set of all prime divisors | of n. Let
f(z) € Z[z] be a monic irreducible polynomial of de-
gree m, 0 be a root of f(z), K = Q(0), and r be the
free rank of the unit group of K. Suppose there ezist
, ps which are 1 modulo myng and ratio-
-, Ag and Cy, - -+, Cy such that

primes pi, - - -
nal integers t, Ay, - -
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(1) f(A) =+0r, (1<i<s),
(2) (f'(A4),C)=1,(1<i<s),

(3) f(£) =0,f'(t) #0 (mod p;), (1 <7 <s)

(4) (t*p:‘h [: 1, (t;j‘l[>] #1, (1 <j<i<s,le L(n)),

where f'(z) is the derivative of f(z). Then the ideal
class group of K contains a subgroup isomorphic to
(Z/nZ)"".

Since K, is totally real cubic field, the free rank
r of the unit group is 2 and wg,, is 2. We find p;, A;
and C; (1 < ¢ < 3) and ¢ satisfying all the conditions
of Nakano’s Lemma for infinitely many f(z) = P, (z)
to prove the main theorem.

According to Nakano (cf. [3]), for each extension
degree, there are infinitely many totally real number
fields of class number divisible by a given integer n.
A priori we know for each n, there are infinitely
many totally real cubic number fields whose class
number is divisible by n. Since K, are non-normal
totally real cubic number fields, from Theorem 1.1,
we conclude:

Corollary 2.2. There are infinitely many
non-normal totally real cubic number fields whose
class numbers are divisible by any given integer n.

2. Proof of Main Theorem. Firstly, to use
Lemma 1.2, we need the following lemma.

Lemma 2.1. Let n be an integer and ny be n
or 2n according as n % 2 (mod 4) or n =2 (mod 4)
and Ay = —1,45 =0 and A3 = 1. Then there exists
a rational integer t for which there are infinitely
many triple of primes (p1,ps, p3) such that p; =
1 (mod ny) fori=1,2,3 and
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(t_A]) =1 and (t_Al) #1
Di I i l

forle L(n), i #jin{1,2,3} and

(1—t)(2£2+3t+2)
t(t+1)

Di

=1

Proof. Let F = Q((,,), where (,, is an ni-th
root of unity. Since there are infinitely many rational
integers a such that 2a% + 3a + 2 is square free, we
can take an integer B and a rational prime ¢ such
that 2B% 4+ 3B + 2 is square free and

q|2B* + 3B + 2,

q f14n,.

Since only primes dividing n; are ramified in F
over Q, for a prime ideal q € F' lying over ¢, we have

(2) ordq(2B* +3B+2) = 1.

Next, we take three distinct prime ideals q;(#q) € F'
(i =1,2,3) which are relatively prime to 14n; and
rational integers B; (i = 1,2, 3) for which

(3) ordg,(B;)) =1 for1<i<3.

Then we can find a nonzero element T € Of such
that

T=B (modq?),
T—-A;, =B;
Then
(5)
ordq(2T% 4 3T + 2) = ord((2B* + 3B+ 2) = 1,
2T% 43T +2=2A? + 34; +2 (mod q;).
fori =1,2,3.

Since q and q; (i = 1,2, 3) are relatively prime to 14,
form (5) we have

ordg, (2T% + 3T +2) = 0,

ordq(T — A;) =0.

(4) ) .
(mod q;) fori=1,2,3.

(6)

And

(7) ordg,(T — A;) =ordq,(B;) =1 for1l<i<3.

Since q; (i = 1,2, 3) are relatively prime to 2,
ordg,(T'—A;) =0 for1<i#j<3.

Let f:= (272 + 3T +2)°
(T — A3)™. Then

(T — A" (T — Ay)™

Non-normal totally real cubic 39

ordg(B) = a,

ordq,(f) = a;

Thus if 3 € F*!, then we have
a=0 (mod]l),

a; =0 (mod )

It implies that 272 4+3T+2, T — A;, T — A, and
T — Az are independent in F*/F*'. So for ny =
HleL(n) l7

F(VT=A)NE=F (i=123),

fori =1,2,3.

fori=1,2,3.

where
B =] F( "{/T——,axj)F«/(1 - T)y(i;ifT i 2)>
J#i

(i=1,2,3).

By Frobenious density theorem, we know that there
exist infinitely many primes p; in ' which have iner-
tia degree 1 over Q and inert in F( VT — A;) and
completely split in E; for ¢ = 1,2, 3. Let p; be a ratio-
nal prime such that (p;) = Z N p, for i = 1,2, 3. Since

Or/p; =~ Z/(pi),

we can take a rational integer ¢ in 7'+ p; and we

have
(T_Aj> = <t_Aj> fori,j=1,2,3,
P l Di !

and
(1-T)(2T?+3T+2) (1—t)(2£2+3t+2)
T(T+1) _ t(t+1)
b; i

Since the prime ideals p; inert in F('V/T — 4;) and
completely split in E; for ¢ = 1,2, 3, we have

()
o — 17
P; 1

if and only if ¢ # j and

(1-7)(2T°+3T+2)
T(T+1)

P

=1.
n
Moreover since p; (i = 1,2,3) have inertia degree 1

over Q, we have p; =1 (mod n;). This completes
the proof. |
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Now, we come to prove Theorm 1.1.
Proof of Theorem 1.1. Let a be a rational
integer such that

(8) (a,14) = 1.
Put
_—1-a"

m —T
Then
(9) Pp(=1) =-1.
(10) P,(0) = —1.
(11) P,(1)=-1-2m=a".

and from (8), we have
7+ 3a"
(PL(1),a) = (%(Q ~1.

Let us consider P,,(z) to f(z) and 4; = —1, Ay =0,
A3 =1 and Cy =Cy =1, C3 = a. Then they satisfy
the conditions (1) and (2) in Lemma 1.2.

We can take distinct primes p1, po and p3 (> 7)
and a rational integer t satisfying all conditions of
Lemma 2.1 and

(13)

(12)

pi f (L +t— 4t — 98 — 4t + 2 +5)* — 32(¢(¢t +1))".

Since
(1=t)(2£2+3t+2)
t(t+1)
i

n

we can find an integer a such that

(1—t)(2t* + 3t +2)

14 "= )
(14) a D) (mod p;)
fori =1,2,3.
Then we have
(15)  Po(t) =0 (mod p;) fori=1,2,3.

Suppose that Py, (t) =0 (mod p;) then ¢ is a
multiple root of P, (z) (mod p;). Therefore p; divide
the discriminant of P,,(z). So we have
(16)

(m*4+m—3)>—32=0 (mod p;) fori=1,2,3.
Since
—t—1

N m=3r

(mod p;) fori=1,2,3,
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the equation (16) implies that for i = 1,2, 3,
(14t — 42— 98— 4t* +£° +1°)* = 32(t(t +1))" = 0

(mod p;).

It contracidts to (13). Hence
P, (t) £ 0 (mod p;)

Finally, we find the rational integers A;, C; (i =
1,2,3) and ¢ and primes p; (i = 1,2, 3) satisfying all
conditions of Lemma 1.2. Thus we find that the class
group of K ...~ has the subgroup isomorphic to

fori=1,2,3.

Z/nZ, if an integer a satisfy (8), (14). Thus for any
n, we can find m(n) (an integer depending on n)
such that the class number of K, is divisible by
n. Hence for every multiples ns (s =1,2,---) of
n we also find an integer m(n,s) such that the
class number of K, is divisible by ns. The set
{Knn,s) | s =1,2,---} is infinite since the set of class
numbers of K, cannot be finite. From this, we
complete the proof of theorem. O
Corollary 2.2. There infinitely many
non-normal totally real cubic number fields whose
class numbers are divisible by any given integer n.
Remark. The method of the proof is from [2].
In [2], this method is used to prove there are in-
finitely many cubic cyclic fields whose ideal class

are

groups contain a subgroup isomorphic to (Z/ nZ)z.
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