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Abstract: We show that under the heat-bath Glauber dynamics for the ferromagnetic
Ising model on a �nite graph, the single spin expectation at a �xed time starting at the all-up

con�guration is not necessarily an increasing function of coupling constants.
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1. Introduction. The Glauber dynamics for

the ferromagnetic Ising model on a �nite graph has
been widely studied. One of the most interesting

open problems is whether the spectral gap, the

di�erence between the �rst and second largest eigen-
values of the transition matrix of the Glauber dy-

namics is monotone decreasing in each coupling con-

stant in the Hamiltonian, which is conjectured by
Yuval Peres (cf. [6, 7]). For this conjecture, there

has been a result in [7] which shows that the mono-

tonicity holds for cycles of any length. The proof is
based on two facts that the linear subspace spanned

by single spins is invariant under the Glauber dy-
namics and the expectation of a spin is equal to the

survival probability of a certain random walk with

killing. Several correlation inequalities for spin sys-
tems such as GKS and GHS had been intensively

investigated from the late 1960s to early 1980s (cf.

[1{5]). They have many important implications
among which is that the expectation of the product

of spins in the equilibrium is monotone increasing

in each coupling constant for a wide class of ferro-
magnetic Ising models (cf. [8]). Taking this result

into account, it is also natural to ask whether or not

the single site spin expectation for a �xed time in
the relaxation process starting from the all-up con-

�guration is monotone increasing in each coupling

constant. This is a stronger conjecture in the sense
that if it is veri�ed the monotonicity of the spectral

gap follows, as is remarked by Yuval Peres. Since

known correlation inequalities are devised mainly for
the equilibrium states, it does not seem that we can

apply them directly to the �xed time cases; indeed,

we will see that the stronger conjecture does not
hold in general.

2. Result. Let G ¼ ðV ;EÞ be a �nite con-

nected graph. We de�ne a probability measure � on
S ¼ f�1; 1gV by

�ð�Þ ¼ Z�1 exp
X

xy2E
Jxy�x�y

 !
;

where �x 2 f�1; 1g is the spin value at x, Z is the

normalization constant and each coupling constant
Jxy is non-negative. Since the involution � 7! ��
leaves � invariant, it follows that E�½�x� ¼ 0 for any

x 2 V . The transition matrix of the Glauber dynam-
ics on S is then de�ned by

Að�; �Þ ¼

1
jV j

�ð�xÞ
�ð�Þþ�ð�xÞ ; � ¼ �x; x 2 V

1�
P

x2V Að�; �xÞ; � ¼ �
0; otherwise,

8
>>><

>>>:

where �x 2 S is the spin con�guration obtained from

� 2 S by �ipping the spin at x and leaving all other
spins unchanged. The probability measure � is re-

versible under this dynamics in which a vertex is cho-

sen from V uniformly at random and then the spin

on it is �ipped with probability �ð�xÞ
�ð�Þþ�ð�xÞ. The transi-

tion matrix A acts on ‘2ðSÞ as a bounded self-adjoint

operator in a natural manner. Indeed, it is easy to

see that O � A � I since

hðI � AÞf; f i ¼ 1

2jV j
X

�2S

X

x2V

jfð�xÞ � fð�Þj2

�ð�Þ�1 þ �ð�xÞ�1

� 0

and

hAf; f i ¼ 1

2jV j
X

�2S

X

x2V

j�ð�Þfð�Þ þ �ð�xÞfð�xÞj2

�ð�Þ þ �ð�xÞ
� 0;
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where hf; gi ¼
P

�2S fð�Þgð�Þ�ð�Þ. Hence we can

enumerate the eigenvalues of A as

1 ¼ �1 > �2 � � � � � �M�1 > �M ¼ 0;

where M ¼ 2jV j. Note that the eigenfunction corre-

sponding to 0 is given by �Mð�Þ ¼ ð�1Þnð�Þ�ð�Þ�1

where nð�Þ is the number of 1’s in �. The origi-

nal conjecture on the spectral gap mentioned in the
introduction is then phrased as ‘‘the second largest

eigenvalue �2 of the Glauber dynamics for the ferro-

magnetic Ising model on any �nite graph is mono-
tone increasing in each coupling constant Jxy.’’

Now let us consider the case where G is the cycle
Cn of length n, that is, V ¼ f1; 2; . . . ; ng and E ¼
f12; 23; . . . ; n1g. In this case, it is easy to see that

for x 2 V (V being considered in modulo n as Zn)

Aex ¼ 1� 1

n

� �
ex þ

1

n
ð�xex�1 þ �xexþ1Þ;ð2:1Þ

where exð�Þ ¼ �x for � 2 S and

�x ¼
sx�1

cx�1 þ cx
; �x ¼

sx
cx�1 þ cx

with sx ¼ sinhð2Jx;xþ1Þ and cx ¼ coshð2Jx;xþ1Þ (cf.

[7]). We remark that the operator A in (2.1) leaves

the subspace H1 of ‘2ðSÞ spanned by fex; x 2 V g
invariant. We de�ne Qlazy and Q as follows:

Qlazy ¼ 1� 1

n

� �
I þ 1

n
Qð2:2Þ

with

Qðx; yÞ ¼
�x; y ¼ x� 1;

�x; y ¼ xþ 1;

0; otherwise.

8
><

>:
ð2:3Þ

The operator Qlazy and Q are sub-stochastic and

Qlazy is nothing but the restriction of A on the in-

variant subspace H1. Denote by fXt;Qx; 	g and

fXt;Q
lazy
x ; 	g the discrete-time Markov chains on V

with life time 	 associated with Q and Qlazy, respec-

tively. Let 1 2 S be the all-up spin con�guration,

i.e., 1x ¼ 1 for any x 2 V , and �xðtÞ the spin at
x 2 V and at time t 2 Z�0 ¼ f0; 1; 2; . . .g. Our main

concern of this paper is the monotonicity of the spin

expectation E1½�xðtÞ� as a function of coupling con-
stants J ¼ ðJxy; xy 2 EÞ. Here E1 stands for the

expectation with respect to the Glauber dynamics
starting at the all-up con�guration 1. It is easy to

see that the quantity E1½�xðtÞ� is equal to the sur-

vival probability Qlazy
x ð	 > tÞ up to time t of the

lazy Q-Markov chain starting at x since both func-
tions of x 2 V and t satisfy the same linear equation

with the same boundary condition:

�ðx; tþ 1Þ ¼ Qlazy�ðx; tÞ; t 2 Z�0

�ðx; 0Þ � 1

(
ð2:4Þ

where Qlazy acts on the x-variable as A
��
H1

in (2.1).

More directly,

E1½�xðtÞ� ¼ Qlazy
x ð	 > tÞð2:5Þ

¼
X

y2V
ðQlazyÞtðx; yÞ:

The monotonicity problem is then reduced to the

problem of whether Qlazy
x ð	 > tÞ is increasing in each

coupling constant Jx;xþ1.

The main result of this paper is the following

theorem. See also Figures 1 and 2.

Theorem. Suppose a �nite graph G ¼ ðV ;EÞ
has a path of length 3 as a subgraph. Then there

exist a 2 V , pq 2 E, t 2 Z�0 and positive coupling

constants j ¼ fjxy; xy 2 Eg so that E1½�aðtÞ� is de-

creasing near at J ¼ j in the coupling constant Jpq.

In order to prove this theorem, it suf�ces to con-

sider the case of G ¼ P3, the path of length 3, and

�nd a 2 V , pq 2 E, t 2 Z�0 and coupling constants j

at which the derivative of Qlazy
a ð	 > tÞ with respect

to the coupling constant Jpq is negative because of

the following observations: (i) if G has a path of
length 3, say V ¼ f1; 2; 3; 4g and E ¼ f12; 23; 34g,
as a subgraph, we can compute the quantities on P3

from those on G by setting Jxy ¼ 0 except J12; J23

and J34, (ii) the derivative of Qlazy
a ð	 > tÞ with re-

spect to a coupling constant is jointly continuous in
the coupling constants J.

Before showing the theorem, as a warm-up, we

discuss the monotonicity for a smaller graph P2, for
which the conjecture is true.

3. The case of P2. We �rst consider the

case where G ¼ ðV ;E Þ is the path P2 of length 2,
that is, V ¼ f1; 2; 3g and E ¼ f12; 23g. We claim

the following

Proposition 1. Let G ¼ P2. Then, for every
x 2 V and t 2 Z�0, the expectation E1½�xðtÞ� is

increasing in both of coupling constants J12 and J23.

Proof. Since we can regard this example as
the case where G ¼ C3 and the coupling constant

J31 ¼ 0, by putting x1 ¼ 2J12 and x2 ¼ 2J23, it

follows from (2.3) that
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q12 ¼
sinh x1

1þ cosh x1
; q21 ¼

sinh x1

cosh x1 þ cosh x2
;

q23 ¼
sinh x2

cosh x1 þ cosh x2
; q32 ¼

sinh x2

1þ cosh x2
;

where qxy ¼ Qðx; yÞ. Set �xðtÞ ¼ Qxð	 > tÞ, the sur-

vival probability up to time t of the Q-Markov chain
starting at x. We observe that

�2ð0Þ � 1;

�2ð1Þ ¼ q21 þ q23 ¼ tanh
x1 þ x2

2

� �
;

�2ð2Þ ¼ q21q12 þ q23q32

¼ 1� 2

cosh x1 þ coshx2
;

and these are obviously increasing functions of x1

and x2. It follows from the Q-version of (2.4) for

n ¼ 3 and J31 ¼ 0 that

�1ðtþ 1Þ ¼ q12�2ðtÞ

�2ðtþ 1Þ ¼ q21�1ðtÞ þ q23�3ðtÞ

�3ðtþ 1Þ ¼ q32�2ðtÞ

8
>>><

>>>:
ð3:1Þ

and

�2ðtþ 2Þ ¼ �2ð2Þ�2ðtÞ; t 2 Z�0;ð3:2Þ

from which together with the observation above, we

conclude that �2ðtÞ is non-decreasing both in x1 and
x2 for any t 2 Z�0, and hence so are �1ðtÞ and �3ðtÞ
because of (3.1) and the fact that q12 and q32 are

increasing functions of x1 and x2, respectively. From
(2.2) and (2.5), we see that

Qlazy
x ð	 > tÞ ¼

Xt

k¼0

t

k

� �
2

3

� �t�k 1

3

� �k
Qxð	 > kÞ;

and hence Qlazy
x ð	 > tÞ is a positive linear combina-

tion of increasing functions. r
Remark 2. We do not know whether the

same claim holds for the case of C3 instead of P2.

4. Counter example: the case of P3. Now
we consider the case where G ¼ ðV ;EÞ is the

path P3 of length 3, that is, V ¼ f1; 2; 3; 4g and

E ¼ f12; 23; 34g. In the same way as before, by
regarding this example as the case where G ¼ C4

and the coupling constant J41 ¼ 0, it follows from

(2.3) that

q12 ¼
sinh x1

1þ cosh x1
; q21 ¼

sinh x1

cosh x1 þ cosh x2
;

q23 ¼
sinh x2

cosh x1 þ cosh x2
; q32 ¼

sinh x2

cosh x2 þ cosh x3
;

q34 ¼
sinh x3

cosh x2 þ cosh x3
; q43 ¼

sinh x3

1þ cosh x3
;

where qxy ¼ Qðx; yÞ. Set �2ðtÞ ¼ Q2ð	 > tÞ. Then we
see that

�2ð1Þ ¼ q21 þ q23

�2ð2Þ ¼ q21q12 þ q23q32 þ q23q34

�2ð3Þ ¼ ðq21q12 þ q23q32Þðq21 þ q23Þ þ q23q34q43

for the Q-Markov chain starting at the vertex 2. We

can show the following

Proposition 3. As s!1,

@Q2ð	 > kÞ
@x2

���
ðx1; x2; x3Þ¼ð2s; s; sÞ

¼ Oðe�3sÞ ðk ¼ 1; 2Þ

@Q2ð	 > 3Þ
@x2

���
ðx1; x2; x3Þ¼ð2s; s; sÞ

¼ � e
�2s

2
þOðe�3sÞ

Proof. In this proof, f 0 means
@f

@x2
. We easily see

that

q 021 ¼ �q21q23; q 023 ¼
1

2
ð1� q2

21 � q2
23Þ;

q 032 ¼
1

2
ð1� q2

32 � q2
34Þ; q 034 ¼ �q32q34;

and so

� 02ð1Þ ¼ q 021 þ q 023 ¼
1

2
f1� �2ð1Þ2gð4:1Þ

ðq23q34Þ0 ¼ f�02ð1Þ þ q23ðq21 � q32Þgq34:ð4:2Þ

We also rewrite

�2ð2Þ ¼ �2ð1Þq12 þ q23ðq32 þ q34 � q12Þ;ð4:3Þ

�2ð3Þ ¼ ð�2ð2Þ � q23q34Þð�2ð1Þ � q43Þð4:4Þ

þ �2ð2Þq43:

Now we set ðx1; x2; x3Þ ¼ ð2s; s; sÞ and regard func-

tions like fð2s; s; sÞ and f 0ð2s; s; sÞ as those of the

variable u ¼ e�s. Since
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q21 ¼ 1� uþ u2 þOðu3Þ;ð4:5Þ

q23 ¼ u� u2 þOðu4Þ;ð4:6Þ

we have

�2ð1Þ ¼ q21 þ q23 ¼ 1þOðu3Þ;ð4:7Þ

and then it follows from (4.1) that

�02ð1Þ ¼
1

2
f1� �2ð1Þ2g ¼ Oðu3Þ:ð4:8Þ

Next we note that

q32 ¼ q34 ¼
1

2
q12 ¼

1

2
� u2 þOðu4Þ;ð4:9Þ

q 012 � 0; q 032 þ q 034 ¼ 2u2 þOðu4Þ:ð4:10Þ

Then, from (4.3), and (4.6) through (4.10), we obtain

� 02ð2Þ ¼ q23ðq 032 þ q 034Þ þOðu3Þ ¼ Oðu3Þ:ð4:11Þ

From (4.4), (4.7), (4.8), (4.11), and

q43 ¼ 1� 2uð1� uÞ þOðu3Þ; q 043 � 0;

we have

�02ð3Þ ¼ �2uð1� uÞðq23q34Þ0 þOðu3Þ:
On the other hand, from (4.2), (4.5), (4.6), (4.8) and

(4.9), we see that

ðq23q34Þ0 ¼ f� 02ð1Þ þ q23ðq21 � q32Þgq34

¼ u
4
þOðu2Þ:

Consequently, we obtain

�02ð3Þ ¼ �
u2

2
þOðu3Þ: r

Remark 4. By similar computation, we can

also show that for a > 1 and b 2 R

@Q2ð	 > 3Þ
@x2

���
ðx1; x2; x3Þ¼ðas; sþb; sÞ

¼ � e�as

1þ coshðbÞ þOðe
�sminðaþ1;2a�1ÞÞ

as s!1.

Corollary 5. There exists s0 > 0 such that

for any s � s0, Qlazy
2 ð	 > 3Þ

���
ðx1; x2; x3Þ¼ð2s; x2; sÞ

is de-

creasing in x2 near at x2 ¼ s.
Proof. We have already shown the same asser-

tion for Q2ð	 > 3Þ. For a lazy version of the Q-

Markov chain, Qlazy
2 ð	 > 3Þ is a positive linear com-

bination of Q2ð	 > kÞ; k ¼ 0; 1; 2; 3. Indeed, from

(2.2) and (2.5), it is easy to see that

Qlazy
2 ð	 > 3Þ ¼

X3

k¼0

3

k

� �
3

4

� �3�k 1

4

� �k
Q2ð	 > kÞ:

Therefore, from Proposition 3, we obtain

@Qlazy
2 ð	 > 3Þ
@x2

���
ðx1; x2; x3Þ¼ð2s; s; sÞ

¼ � 1

128
e�2s þOðe�3sÞ

as s tends to1. This implies the assertion. r
In Figs. 1, 2 one can see that Q2ð	 > 3Þ and

E1½�2ð3Þ� is decreasing in x2 near at ðx1; x2; x3Þ ¼
ð28; 14; 14Þ.
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Fig. 1. The case of G ¼ P3: the graph of Q2ð	 > 3Þ as a function
of x2 with coupling constants ð28; x2; 14Þ. The constant 
 ¼
1:0� 10�12.

Fig. 2. The case of G ¼ P3: the graph of E1½�2ð3Þ� as a function
of x2 with coupling constants ð28; x2; 14Þ. The constant � ¼
1:0� 10�13.
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