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Abstract: A proper vertex coloring of a simple graph G is k-forested if the subgraph

induced by the vertices of any two color classes is a forest with maximum degree at most k. The k-

forested chromatic number of a graph G, denoted by �a
kðGÞ, is the smallest number of colors in a

k-forested coloring of G. In this paper, it is shown that planar graphs with large enough girth do

satisfy �a
kðGÞ ¼ d�ðGÞ

k e þ 1 for all �ðGÞ > k � 2, and �a
kðGÞ � 3 for all �ðGÞ � k with the bound

3 being sharp. Furthermore, a conjecture on k-frugal chromatic number raised in [1] has been

partially confirmed.
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1. Introduction. In this paper, all graphs

considered are finite, simple and undirected. For a

planar graph G, we use V ðGÞ, EðGÞ, F ðGÞ, �ðGÞ and
�ðGÞ to denote the vertex set, the edge set, the face

set, the minimum degree and the maximum degree

of a graph G, respectively. If uv 2 EðGÞ, then u is

said to be the neighbor of v in G. For a vertex

v 2 V ðGÞ, NGðvÞ denotes the set of neighbors of v in

G. By dGðvÞ ¼ jNGðvÞj (or dðvÞ for simplicity), we

denote the degree of a vertex v in G. The degree

dðfÞ of the face f in a planar graph is the number of

edges that bound the face, where each cut-edge is

counted twice. A k-, ð� kÞ- and ð� kÞ-vertex (or

face) is a vertex (or face) of degree k, at least k and

at most k, respectively. The girth gðGÞ of a graph G

is the length of a shortest cycle of G. The square G2

of a graph G is the graph with the same vertex set in

which two vertices are joined by an edge if their

distance in G is at most two. For a real number x,

let dxe be the smallest integer not less than x.

Any undefined notation follows that of Bondy and

Murty [2].

A proper vertex coloring is acyclic if the union

of any two color classes forms a forest, and is k-

frugal if no color appears more than k times in

the neighborhood of any vertex. The acyclic (or k-

frugal) chromatic number of G, denoted by �aðGÞ
(or �kðGÞ), is the smallest number of colors in an

acyclic coloring (or a k-frugal coloring) of G.

Acyclic coloring problem introduced in [10] has

been extensively studied in many papers. In 1979,

Borodin [3] proved Grünbaum’s conjecture that

every planar graph is acyclically 5-colorable and

this bound is sharp. Now, acyclic coloring problem

has attracted more and more attention since

Coleman et al. [7,8] identified acyclic coloring as

the model for computing a Hessian via a substitu-

tion method.

Frugal vertex coloring was introduced by

Hind et al. in [11,12], as a tool towards improving

results about the total chromatic number of a

graph. It is showed in [11] that a graph with large

enough maximum degree � has a (log5 �)-frugal

coloring using at most �þ 1 colors. By the defi-

nition of k-frugal chromatic number of G, it is

clearly that �1ðGÞ is the chromatic number of G2

and �kðGÞ is the usual chromatic number of G

(denoted by �ðGÞ) while k � �ðGÞ. Regards the k-

frugal chromatic number of a planar graph, in [1],

Amini, Esperet and van den Heuvel raised a

conjecture as follows:

Conjecture 1. Planar graphs with large

enough girth do satisfy �kðGÞ ¼ d�ðGÞ
k e þ 1 for all

k � 1.
However, any non-bipartite planar graph can

not be 2-colorable hence Conjecture 1 does not hold

for k � �ðGÞ. Thus a reasonable modification of

Conjecture 1 should be

Conjecture 2. Planar graphs with large

enough girth do satisfy
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�kðGÞ ¼ d�ðGÞ
k

e þ 1; if �ðGÞ > k � 1;

�ðGÞ � 3; if �ðGÞ � k,

(

Moreover, the bound 3 here is sharp.

Regards the above conjecture, for the case

when k ¼ 1, the best known results are given by

Borodin et al. [4,5]. They showed that �1ðGÞ ¼
�ðGÞ þ 1 if G is a planar graph with �ðGÞ � 30 and

gðGÞ � 7, or �ðGÞ � 16 and gðGÞ � 9. The other

nontrivial case for Conjecture 2 is when k � 2. In

this paper, we want to solve it completely.

Now we start to introduce a concept involving

acyclic coloring and k-frugal coloring. Suppose we

are given a graph G. We want to properly color the

vertices so that the subgraph induced by the union

of any two color classes forms a forest with maxi-

mum degree at most k. Denote by �a
kðGÞ the smallest

integer t so that a t-coloring of G with the require-

ments mentioned above is guaranteed to exist. Such

an integer �a
kðGÞ is called the k-forested chromatic

number and the corresponding coloring is called k-

forested coloring. One can easily see that a k-for-

ested coloring is actually an acyclic k-frugal color-

ing. Here, let us outline the relationships among all

above definitions on many different colorings. The

proofs of them are trivial so we omit them here.

Proposition 3. For any graph G and integer

k � 1, the following hold:

(1) �1ðGÞ ¼ �a
1ðGÞ ¼ �ðG2Þ;

(2) d�ðGÞ
k e þ 1 � �kðGÞ � �a

kðGÞ;
(3) �aðGÞ � �a

kðGÞ;
(4) �kþ1ðGÞ � �kðGÞ and �a

kþ1ðGÞ � �a
kðGÞ;

(5) �kðGÞ ¼ �ðGÞ and �a
kðGÞ ¼ �aðGÞ if k � �ðGÞ.

Now we restrict G to be a planar graph.

Regards k-forested chromatic number of G, if

k ¼ 1, then by Proposition 3(1), �a
1ðGÞ ¼ �ðG2Þ ¼

�ðGÞ þ 1 if �ðGÞ � 30 and gðGÞ � 7 [4], or �ðGÞ �
16 and gðGÞ � 9 [5]. If k ¼ 2, then the parameter

�a
2ðGÞ is also called linear chromatic number, and

the corresponding coloring is called linear coloring.

This special concept was first introduced by Yuster

[14], and has been extensively studied in the past

(cf: [9,13]). In [13], Raspaud and Wang showed that

every planar graph G satisfies �a
2ðGÞ ¼ d�ðGÞ

2 e þ 1 if

�ðGÞ � 3 and gðGÞ � 13.

In this paper, we aim to estimate the value of

k-forested chromatic number of planar graphs with

large enough girth when k � 3. In particular,

we show the following main results in the next

section.

Theorem 4. Given any two integers

M > k � 3, let G be a planar graph with gðGÞ � 10
and �ðGÞ � M, then �a

kðGÞ � dMk e þ 1.

As a corollary of Propositions 3(2), 3(5),

Theorem 4 (setting M ¼ �ðGÞ there) and the

following Lemma 5, we deduce Theorem 6 as

follows.

Lemma 5 [6]. If G is a planar graph with

girth gðGÞ � 7, then �aðGÞ � 3.

Theorem 6. Let G be a planar graph with

maximum degree � and girth gðGÞ � 10. Then

�a
kðGÞ ¼ d�

k
e þ 1; if � > k � 3;

�aðGÞ � 3; if � � k.

(

Remark. For the case � � k in Theorem 6,

the bound 3 there is sharp because any graph that is

not a forest admits no acyclic 2-colorings, hence no

k-forested 2-colorings.

By the above arguments along with

Proposition 3(2) and Theorem 6, we also have the

following corollary on k-frugal chromatic number.

Corollary 7. Let G be a planar graph with

maximum degree � > k. Then �kðGÞ ¼ �a
kðGÞ ¼

d�k e þ 1 if k � 3 and gðGÞ � 10, or k ¼ 2 and

gðGÞ � 13.
Hence, we have confirmed Conjectures 2 for

the case when k � 2. Furthermore, the correspond-

ing k-frugal colorings can also be acyclic for all

k � 1 by Propositions 3(1), 3(2), Theorem 6 and

Corollary 7.

2. Proof of Theorem 4. To begin with, we

introduce some concepts that will be used frequent-

ly in the following proofs. Given a k-forested

coloring c of a graph G using the color set C, we

use CkðvÞ to denote the set of colors that are each

used by c on exactly k neighbors of v. An ðr; sÞ-type
2-vertex is a 2-vertex with one neighbor of degree r

and the other of degree s. Without loss of general-

ity, we always set r � s.

In what follows, a graph G with �ðGÞ � M and

M > k � 3 is called critical if �a
kðGÞ > dMk e þ 1, but

for any proper subgraph H � G, �a
kðHÞ � dMk e þ 1.

The following many lemmas are dedicated to the

structures of the critical graph G. For brevity

we will write q ¼ dMk e þ 1 in the proofs of these

lemmas.

Lemma 8. There is no 1-vertex or ð� 3; 2Þ-
type 2-vertex in critical graph G.

Proof. Suppose G contain a 1-vertex v. Let

H ¼ G� v. Since jHj < jGj and G is critical,
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�a
kðHÞ � q. Let c be a k-forested q-coloring of H

using color set C. Now we extend c to v as follows

and hence form a contradiction to the fact that

�a
kðGÞ > q, which completes the proof of this lemma.

Denote the neighbor of v by u. We define a list of

available colors for v as follows:

LðvÞ :¼ CnðfcðuÞg [ CkðuÞÞ:

Since jCkðuÞj � bdH ðuÞk c ¼ bdGðuÞ�1
k c � b��1

k c �
bM�1

k c ¼ dMk e � 1 and jCj ¼ dMk e þ 1, we have

jLðvÞj � 1. So we can color v with a color in

LðvÞ.
Suppose G contains a 2-vertex v who is

adjacent to a 2-vertex u and a ð� 3Þ-vertex w.

Consider the subgraph H ¼ G� v. Since jHj < jGj
and G is critical, �a

kðHÞ � q. Let c be a k-forested q-

coloring of H using color set C. Now we extend c to

v. Denote another neighbor of u by x. We define a

list of available colors for v as follows:

LðvÞ :¼
CnfcðuÞ; cðxÞg; if cðuÞ ¼ cðwÞ;
CnfcðuÞ; cðwÞg; if cðuÞ 6¼ cðwÞ.

�

Since jCj ¼ dMk e þ 1 � dkþ1
k e þ 1 ¼ 3, jLðvÞj � 1. So

we can color v with a color in LðvÞ. �

Lemma 9. Let G be a critical graph. If a 4-

vertex in G is adjacent to four 2-vertices and three

of them are ð4; 2Þ-type, then the rest one must be

ð� 5; 4Þ-type.
Proof. Suppose that the lemma is false. Let

dðvÞ ¼ 4. Denote x; y; z to be three neighbors of v

who are ð4; 2Þ-type 2-vertices and w to be the

fourth neighbor of v who is ð4;� 4Þ-type 2-vertex.

Let x1; y1; z1; w1 be the other neighbor of x; y; z; w,

respectively. Then dðx1Þ ¼ dðy1Þ ¼ dðz1Þ ¼ 2. De-

note the other neighbor of x1; y1 and z1 by x2; y2
and z2 respectively. Since w is ð4;� 4Þ-type 2-

vertex, without loss of generality, we may assume

dðw1Þ ¼ 4 and w2; w3; w4 be another three neigh-

bors of w1. Choose H ¼ G� fv; x; wg. Since G is

critical, �a
kðHÞ � q. Let c be a k-forested q-coloring

of H using color set C. Now we extend c to

fv; x; wg. Suppose cðyÞ 6¼ cðzÞ. Without loss of

generality, we assume cðyÞ ¼ 1 and cðzÞ ¼ 2. If

cðy1Þ 6¼ 2, we recolor y by 2. If cðz1Þ 6¼ 1, we re-

color z by 1. So we assume cðy1Þ ¼ 2 and cðz1Þ ¼ 1.

Then we recolor both y and z by 3 (it is possible

since dMk e þ 1 � dkþ1
k e þ 1 ¼ 3). Thus, we can al-

ways assume that cðyÞ ¼ cðzÞ. Without loss of

generality, assume both y and z receive the color 3

in c.

Case 1. We can color w by 3.

Without loss of generality, we assume

cðz1Þ ¼ 1. Next, we divide the proof of this case

into two subcases.

Subcase 1.1. cðy1Þ ¼ 1.
Now we color v by 2. Suppose cðx1Þ ¼ 2 or

cðx1Þ ¼ 3, we can color x by 1. So we assume that

cðx1Þ ¼ 1. Then one of y2 and z2 must be colored by

3. For otherwise, we can recolor v by 1 and color

x by 2. Without loss of generality, we assume

cðy2Þ ¼ 3. Then we can recolor y and z by 2 and

then v by 1. So we can color x by a color in

Cnfcðx1Þ; cðx2Þg at last (recall that jCj � 3).

Subcase 1.2. cðy1Þ 6¼ 1.
Without loss of generality, we assume

cðw1Þ ¼ 1. Then we color v by 2. Suppose cðx1Þ ¼
2 or cðx1Þ ¼ 3. We can color x by 1. So we assume

that cðx1Þ ¼ 1. By the similar proof as in Subcase

1:1, we have cðz2Þ ¼ 3. Then we recolor z by 2

and then v by 1. So we can color x by a color in

Cnfcðx1Þ; cðx2Þg again.

Case 2. We can not color w by 3.

Without loss of generality, we assume cðwÞ ¼ 1.

In this case, we can not recolor w by 3. This implies

two subcases.

Subcase 2.1. cðw1Þ ¼ 3.

Suppose cðy1Þ 6¼ 2 or cðz1Þ 6¼ 2, we can color v

by 2. If cðx1Þ ¼ 2, we can color x by a color in

Cnfcðx1Þ; cðx2Þg. Else, cðx1Þ 6¼ 2, we can also color

x by a color in Cnfcðx1Þ; cðvÞg. So we assume

cðy1Þ ¼ cðz1Þ ¼ 2. Then we have cðy2Þ ¼ cðz2Þ ¼ 3
(for otherwise we can again color v by 2. Then x can

be easily colored as before). Now we recolor y by 1.

Then we can color v by 2 again. Similarly, we can

also color x properly.

Subcase 2.2. k ¼ 3 and cðw2Þ ¼ cðw3Þ ¼
cðw4Þ ¼ 3.

By the similar proof as in Subcase 2.1, we

have cðy1Þ ¼ cðz1Þ ¼ 2 and cðy2Þ ¼ cðz2Þ ¼ 3. Now

we recolor y by 1. Then we can color v by 2 again.

Similarly as before, we can also color x properly.�

Lemma 10. Let G be a critical graph. If a

4-vertex in G is adjacent to four 2-vertices and

two of them are ð4; 2Þ-type, then either at least one

of another two neighbors is ð� 5; 4Þ-type or both of

them are ð4; 4Þ-type.
Proof. Suppose that the lemma is false. Let

dðvÞ ¼ 4. Denote w; x to be two neighbors of v who

are ð4; 2Þ-type 2-vertices and y; z to be another

two neighbors of v. Without loss of generality, we
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assume y is ð4; 3Þ-type 2-vertex and z is ð4; 4Þ-type
2-vertex (the case when both y and z are ð4; 3Þ-type
2-vertices can be dealt with similarly but much

easierly). Let x1; y1; z1; w1 be the other neighbor of

x; y; z; w, respectively. Then dðw1Þ ¼ 2, dðy1Þ ¼ 3,
dðz1Þ ¼ 4. Denote the other neighbor of w1 by w2

and another three neighbors of z1 by z2; z3; z4.

Choose H ¼ G� fv; w; xg. Since G is critical,

�a
kðHÞ � q. Let c be an k-forested q-coloring of H

using color set C. Now we extend c to fv; w; xg.
Case 1. cðyÞ ¼ cðzÞ.
Without loss of generality, we assume cðyÞ ¼

cðzÞ ¼ 1.

Subcase 1.1. cðw1Þ ¼ 1.
Now we color w by 2. Suppose cðy1Þ 6¼ 3 or

cðz1Þ 6¼ 3. Then we can color v by 3. If cðx1Þ ¼ 3, we

can color x by a color in Cnfcðx1Þ; cðx2Þg. Else

if cðx1Þ 6¼ 3, we can color x by a color in

Cnfcðx1Þ; cðvÞg. So we assume cðy1Þ ¼ cðz1Þ ¼ 3.

We recolor y by 2 (it is possible since dðy1Þ ¼ 3
and k � 3) and color v by 3. Then x can be similarly

colored as before.

Subcase 1.2. cðw1Þ 6¼ 1.

Without loss of generality, we assume

cðw1Þ ¼ 2. Then we color w by 3. By the similar

proof as in Subcase 1:1, we must have cðy1Þ ¼
cðz1Þ ¼ 2. Then we recolor y by 3. Suppose

cðw2Þ 6¼ 3, we can color v by 2. Then x can be

easily colored. So we assume cðw2Þ ¼ 3. Then we

recolor w by 1 and color v by 2. At last, x can be also

easily colored as before.

Case 2. cðyÞ 6¼ cðzÞ.
Without loss of generality, we assume cðyÞ ¼ 1

and cðzÞ ¼ 2. Then we must have cðy1Þ ¼ 2. For

otherwise, we can recolor y by 2 and come back to

Case 1. Similarly, we have cðz1Þ ¼ 1 or cðz2Þ ¼
cðz3Þ ¼ cðz4Þ ¼ 1 since for otherwise we can recolor

z by 1 and then come back to Case 1 again. In each

case, we can color w by a color in f1; 2gnfcðw1Þg and

then color v by 3. Similarly as before, we can color x

properly at last. �

Lemma 11. Let G be a critical graph. If a 3-

vertex in G is adjacent to three 2-vertices and one of

them is ð3; 3Þ-type, then at least one of another two

neighbors is ð� 5; 3Þ-type.
Proof. Suppose that the lemma is false. Let

dðvÞ ¼ 3. Denote x; y; z to be neighbors of v of degree

2. Let x1; y1; z1 be the other neighbor of x; y; z,

respectively. Suppose y is ð3; 3Þ-type while x; z are

both ð� 4; 3Þ-type. Without loss of generality, we

assume dðx1Þ ¼ dðz1Þ ¼ 4 (that is, x; z are both

ð4; 3Þ-type). Let Nðx1Þ ¼ fx; x2; x3; x4g and Nðz1Þ ¼
fz; z2; z3; z4g. Choose H ¼ G� fv; x; yg. Since G is

critical, �a
kðHÞ � q. Let c be an k-forested q-coloring

of H using color set C. Now we extend c to fv; x; yg.
Case 1. cðy1Þ 6¼ cðzÞ.
Without loss of generality, we assume cðy1Þ ¼ 1

and cðzÞ ¼ 2. Then we color y by 2 and then v by

3. Suppose cðx1Þ ¼ 3. If k ¼ 3 and cðx2Þ ¼ cðx3Þ ¼
cðx4Þ ¼ 1, we can color x by 2, otherwise we can

color x by 1. So cðx1Þ 6¼ 3. Suppose cðx1Þ ¼ 1. If

k ¼ 3 and cðx2Þ ¼ cðx3Þ ¼ cðx4Þ ¼ 2, we recolor y by

3 and then v by 1. Then we color x by 3. Otherwise,

we can color x by 2. So cðx1Þ 6¼ 1. Similarly, we have

cðx1Þ 6¼ 2. Thus, cðx1Þ 2 Cnf1; 2; 3g (if exists). Since

dðx1Þ ¼ 4, jCkðx1Þj � 1. So we can color x by

f1; 2gnfCkðx1Þg.
Case 2. cðx1Þ 6¼ cðzÞ.
Without loss of generality, we assume cðx1Þ ¼ 1

and cðzÞ ¼ 2.
Subcase 2.1. we can color x by 2.

Now we color v by 3. If cðy1Þ ¼ 3, we can color y

by 1. Else if cðy1Þ 6¼ 3, we can color y by a color in

CnfcðvÞ; cðy1Þg.
Subcase 2.2. we can not color x by 2.

This subcase implies that k ¼ 3 and cðx2Þ ¼
cðx3Þ ¼ cðx4Þ ¼ 2. Then we color x by 3 and v by 1.

If cðy1Þ ¼ 1, we can color y by 3. Else if cðy1Þ 6¼ 1, we
can color y by a color in CnfcðvÞ; cðy1Þg.

Case 3. cðx1Þ ¼ cðy1Þ ¼ cðzÞ.
Without loss of generality, we assume cðx1Þ ¼

cðy1Þ ¼ cðzÞ ¼ 1. Then we color y by 2 and v by 3. If

k ¼ 3 and cðx2Þ ¼ cðx3Þ ¼ cðx4Þ ¼ 2, we recolor y by

3 and v by 2. Then x can be colored by 3. Otherwise,

we can color x by 2. �

In the following, we will complete the proof of

Theorem 4.

Proof of Theorem 4. We prove it by contra-

diction. Suppose that the theorem is false. We

choose G to be critical with gðGÞ � 10 and use the

discharging method on G in the following argument.

For a planar graph one can easily deduce the

following identity by the well-known Euler’s for-

mulaX
v2V ðGÞ

ð4dðvÞ � 10Þ þ
X

f2F ðGÞ
ðdðfÞ � 10Þ ¼ �20:

Let wðxÞ be the initial charge defined on x 2
V ðGÞ [ F ðGÞ. Define wðvÞ ¼ 4dðvÞ � 10 for each v 2
V ðGÞ and wðfÞ ¼ dðfÞ � 10 for each f 2 F ðGÞ. Then
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we have �x2V ðGÞ[F ðGÞwðxÞ ¼ �20. Now we state our

discharging rules and perform them on vertices and

faces of G. Let w0ðxÞ be the charge of x 2 V ðGÞ [
F ðGÞ once the discharging is finished.

R1. Each ð� 5Þ-vertex gives 2 to each adjacent

2-vertex.

R2. Each 4-vertex gives 2 to each adjacent

ð4; 2Þ-type 2-vertex, 4
3 to each adjacent ð4; 3Þ-type 2-

vertex, 1 to each adjacent ð4; 4Þ-type 2-vertex.

R3. Each 3-vertex gives 1 to each adjacent

ð3; 3Þ-type 2-vertex, 2
3 to each adjacent ð4; 3Þ-type 2-

vertex.

Let f 2 F ðGÞ. Since gðGÞ � 10, dðfÞ � 10.

Thus, w0ðfÞ ¼ wðfÞ ¼ dðfÞ � 10 � 0.
Let v 2 EðGÞ. Then dðvÞ � 2 by Lemma 8.

Suppose dðvÞ ¼ 2, we have wðvÞ ¼ �2. If v is ð4; 2Þ-
type, w0ðvÞ ¼ wðvÞ þ 2 ¼ 0; If v is ð� 5; 2Þ-type,
w0ðvÞ ¼ wðvÞ þ 2 ¼ 0; If v is ð3; 3Þ-type, w0ðvÞ ¼
wðvÞ þ 1� 2 ¼ 0; If v is ð4; 3Þ-type, w0ðvÞ ¼ wðvÞ þ
4
3 þ 2

3 ¼ 0; If v is ð� 5; 3Þ-type, w0ðvÞ ¼ wðvÞ þ 2 ¼ 0;
If v is ð4; 4Þ-type, w0ðvÞ ¼ wðvÞ þ 1� 2 ¼ 0; If v

is ð� 5; 4Þ-type or ð� 5;� 5Þ-type, w0ðvÞ � wðvÞ þ
2 ¼ 0.

Suppose dðvÞ ¼ 3. Then wðvÞ ¼ 2. If v is adja-

cent to at most two 2-vertices, since v gives out

at most 1 to each neighbor by R3, then we have

w0ðvÞ � wðvÞ � 1� 2 ¼ 0. If v is adjacent to three

2-vertices but none of them is ð3; 3Þ-type. Then by

R3, v gives out at most 2
3 to each neighbor. Thus,

w0ðvÞ � wðvÞ � 3� 2
3 ¼ 0. If v is adjacent to three 2-

vertices and at least one of them is ð3; 3Þ-type, then
by Lemma 11 and R3, v gives out charge to at most

two neighbors. Thus, w0ðvÞ � wðvÞ � 2� 1 ¼ 0.

Suppose dðvÞ ¼ 4. Then wðvÞ ¼ 6. If v is adja-

cent to at most three 2-vertices. Since v gives out at

most 2 to each neighbor by R2, w0ðvÞ � wðvÞ �
3� 2 ¼ 0. If v is adjacent to four 2-vertices and

three of them are ð4; 2Þ-type, then by Lemma 9 and

R2, v gives out charge to at most three neighbors.

Thus, w0ðvÞ � wðvÞ � 3� 2 ¼ 0. If v is adjacent to

four 2-vertices and two of them are ð4; 2Þ-type.
Then by Lemma 10, either one of another two

neighbors of v is ð� 5; 4Þ-type or both of them

are ð4; 4Þ-type. Thus, w0ðvÞ � minfwðvÞ � 2� 2� 2;

wðvÞ � 2� 2� 1� 2g ¼ 0. If v is adjacent to four

2-vertices but at most of them are ð4; 2Þ-type. Then
by R2, we have w0ðvÞ � minfwðvÞ � 2� 3� 4

3 ;

wðvÞ � 4� 4
3g ¼ 0.

Suppose dðvÞ � 5. By R1, we have w0ðvÞ �
wðvÞ � 2dðvÞ ¼ 4dðvÞ � 10� 2dðvÞ ¼ 2dðvÞ � 10 � 0.

Till now we have proved that w0ðxÞ � 0 for

all x 2 V ðGÞ
S
F ðGÞ. So �x2V ðGÞ[F ðGÞw

0ðxÞ � 0. But
�x2V ðGÞ[F ðGÞw

0ðxÞ ¼ �x2V ðGÞ[F ðGÞwðxÞ ¼ �20 because

our rules only move charge around, and do not affect

the sum. This contradiction completes the proof of

the theorem. �

Acknowledgements. The authors appreci-

ate the anonymous referees sincerely for their

helpful comments and suggestions. This work was

partially supported by NSFC grants 10871119,

10971121, 61070230 and RFDP grant

200804220001 of China.

References

[ 1 ] O. Amini, L. Esperet and J. van den Heuvel, Frugal
Colouring of Graphs. http://arxiv.org/pdf/
0705.0422v1

[ 2 ] J. A. Bondy and U. S. R. Murty, Graph theory
with applications, American Elsevier Publishing
Co., Inc., New York, 1976.

[ 3 ] O. V. Borodin, On acyclic colorings of planar
graphs, Discrete Math. 25 (1979), no. 3, 211–
236.

[ 4 ] O. V. Borodin et al., Sufficient conditions for
planar graphs to be 2-distance ð�þ 1Þ-colora-
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