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Abstract:

A proper vertex coloring of a simple graph G is k-forested if the subgraph

induced by the vertices of any two color classes is a forest with maximum degree at most k. The k-
forested chromatic number of a graph G, denoted by x§(G), is the smallest number of colors in a
k-forested coloring of G. In this paper, it is shown that planar graphs with large enough girth do
satisfy x{(G) = f#} + 1 for all A(G) > k> 2, and x%(G) < 3 for all A(G) < k with the bound
3 being sharp. Furthermore, a conjecture on k-frugal chromatic number raised in [1] has been

partially confirmed.
Key words:

1. Introduction. In this paper, all graphs
considered are finite, simple and undirected. For a
planar graph G, we use V(G), E(G), F(G), 6(G) and
A(G) to denote the vertex set, the edge set, the face
set, the minimum degree and the maximum degree
of a graph G, respectively. If uv € E(G), then w is
said to be the neighbor of v in G. For a vertex
v € V(G), Ng(v) denotes the set of neighbors of v in
G. By dg(v) = |Ng(v)] (or d(v) for simplicity), we
denote the degree of a vertex v in G. The degree
d(f) of the face f in a planar graph is the number of
edges that bound the face, where each cut-edge is
counted twice. A k-, (> k)- and (< k)-vertex (or
face) is a vertex (or face) of degree k, at least k and
at most k, respectively. The girth g(G) of a graph G
is the length of a shortest cycle of G. The square G?
of a graph G is the graph with the same vertex set in
which two vertices are joined by an edge if their
distance in G is at most two. For a real number =z,
let [x] be the smallest integer not less than wx.
Any undefined notation follows that of Bondy and
Murty [2].

A proper vertex coloring is acyclic if the union
of any two color classes forms a forest, and is k-
frugal if no color appears more than k times in
the neighborhood of any vertex. The acyclic (or k-
frugal) chromatic number of G, denoted by x“(G)
(or xx(G)), is the smallest number of colors in an
acyclic coloring (or a k-frugal coloring) of G.
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Acyclic coloring problem introduced in [10] has
been extensively studied in many papers. In 1979,
Borodin [3] proved Griinbaum’s conjecture that
every planar graph is acyclically 5-colorable and
this bound is sharp. Now, acyclic coloring problem
has attracted more and more attention since
Coleman et al. [7,8] identified acyclic coloring as
the model for computing a Hessian via a substitu-
tion method.

Frugal vertex coloring was introduced by
Hind et al. in [11,12], as a tool towards improving
results about the total chromatic number of a
graph. It is showed in [11] that a graph with large
enough maximum degree A has a (log’ A)-frugal
coloring using at most A+ 1 colors. By the defi-
nition of k-frugal chromatic number of G, it is
clearly that x;(G) is the chromatic number of G?
and xx(G) is the usual chromatic number of G
(denoted by x(G)) while k > A(G). Regards the k-
frugal chromatic number of a planar graph, in [1],
Amini, Esperet and van den Heuvel raised a
conjecture as follows:

Conjecture 1. Planar graphs with large
enough girth do satisfy xx(G) = [%] +1 for all
k> 1.

However, any non-bipartite planar graph can
not be 2-colorable hence Conjecture 1 does not hold
for k> A(G). Thus a reasonable modification of
Conjecture 1 should be

Conjecture 2. Planar graphs
enough girth do satisfy

with large
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X(G) <3, if A(G)<k

Moreover, the bound 3 here is sharp.

Regards the above conjecture, for the case
when k=1, the best known results are given by
Borodin et al. [4,5]. They showed that xi(G) =
A(G) + 1if G is a planar graph with A(G) > 30 and
9(G) > 17, or A(G) > 16 and g(G) > 9. The other
nontrivial case for Conjecture 2 is when k£ > 2. In
this paper, we want to solve it completely.

Now we start to introduce a concept involving
acyclic coloring and k-frugal coloring. Suppose we
are given a graph G. We want to properly color the
vertices so that the subgraph induced by the union
of any two color classes forms a forest with maxi-
mum degree at most k. Denote by x{(G) the smallest
integer t so that a t-coloring of G with the require-
ments mentioned above is guaranteed to exist. Such
an integer x§(G) is called the k-forested chromatic
number and the corresponding coloring is called k-
forested coloring. One can easily see that a k-for-
ested coloring is actually an acyclic k-frugal color-
ing. Here, let us outline the relationships among all
above definitions on many different colorings. The
proofs of them are trivial so we omit them here.

Proposition 3. For any graph G and integer

k> 1, the following hold:

(1) x1(G) = x4(G) = x(G?);

(2) A +1 < xi(G) < XEG);

(3) x(G) < xi(G);

4) x#+1(G) < xk(G) and xi,,(G) < xHG);

(5) xx(G) = x(G) and x{(G) = x“(G) if k > A(G).

Now we restrict G to be a planar graph.
Regards k-forested chromatic number of G, if
k=1, then by Proposition 3(1), x4(G) = x(G?) =
A(G)+1if A(G) > 30 and ¢g(G) > 7 [4], or A(G) >
16 and g(G) > 9 [5]. If k=2, then the parameter
X53(G) is also called linear chromatic number, and
the corresponding coloring is called linear coloring.
This special concept was first introduced by Yuster
[14], and has been extensively studied in the past
(cf: [9,13]). In [13], Raspaud and Wang showed that
every planar graph G satisfies x§(G) = f%} +1if
A(G) > 3 and ¢(G) > 13.

In this paper, we aim to estimate the value of
k-forested chromatic number of planar graphs with
large enough girth when k> 3. In particular,
we show the following main results in the next
section.
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Theorem 4. Given any two  integers
M >k >3, let G be a planar graph with g(G) > 10
and A(G) < M, then x(G) < 4]+ 1.

As a corollary of Propositions 3(2), 3(5),
Theorem 4 (setting M = A(G) there) and the
following Lemma 5, we deduce Theorem 6 as
follows.

Lemma 5 [6]. If G is a planar graph with
girth g(G) > 7, then x*(G) < 3.

Theorem 6. Let G be a planar graph with
mazimum degree A and girth g(G) > 10. Then

arn BT+, if A> k> 3;
X’“(G){x“(G)S& if A<k

Remark. For the case A <k in Theorem 6,
the bound 3 there is sharp because any graph that is
not a forest admits no acyclic 2-colorings, hence no
k-forested 2-colorings.

By the above arguments along with
Proposition 3(2) and Theorem 6, we also have the
following corollary on k-frugal chromatic number.

Corollary 7. Let G be a planar graph with
mazimum degree A > k. Then xi(G) = xU(G) =
(2141 if k>3 and g(G)>10, or k=2 and
9(G) > 13.

Hence, we have confirmed Conjectures 2 for
the case when k > 2. Furthermore, the correspond-
ing k-frugal colorings can also be acyclic for all
k> 1 by Propositions 3(1), 3(2), Theorem 6 and
Corollary 7.

2. Proof of Theorem 4. To begin with, we
introduce some concepts that will be used frequent-
ly in the following proofs. Given a k-forested
coloring ¢ of a graph G using the color set C, we
use Ci(v) to denote the set of colors that are each
used by ¢ on exactly k neighbors of v. An (r, s)-type
2-vertex is a 2-vertex with one neighbor of degree r
and the other of degree s. Without loss of general-
ity, we always set r > s.

In what follows, a graph G with A(G) < M and
M > k> 3 is called critical if x{(G) > [4] + 1, but
for any proper subgraph H C G, x#(H) < [41] + 1.
The following many lemmas are dedicated to the
structures of the critical graph G. For brevity
we will write ¢ =[45] +1 in the proofs of these
lemmas.

Lemma 8. There is no l-vertex or (< 3,2)-
type 2-vertex in critical graph G.

Proof. Suppose G contain a 1-vertex v. Let
H=G-wv. Since |H|<|G| and G is critical,
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Xi{(H) < gq. Let ¢ be a k-forested g-coloring of H
using color set C. Now we extend ¢ to v as follows
and hence form a contradiction to the fact that
X¢(G) > g, which completes the proof of this lemma.
Denote the neighbor of v by u. We define a list of
available colors for v as follows:

L(v) := C\({c(w)} U Ci(u)).

1 di (u da(u)— _
Since |Ci(u)] < |9 = |G < | A7) <
ML =[¥] -1 and [C|=TH]+1, we have
|L(v)] > 1. So we can color v with a color in
L(v).

Suppose G contains a 2-vertex v who is
adjacent to a 2-vertex w and a (< 3)-vertex w.
Consider the subgraph H = G — v. Since |H| < |G]|
and G is critical, x{(H) < q. Let ¢ be a k-forested ¢-
coloring of H using color set C. Now we extend c to
v. Denote another neighbor of u by z. We define a
list of available colors for v as follows:

[ O\{e(u), (@)}, if e(u) = c(w);
L(v) := {C\{C(u),c(w)}’ if e(u) # c(w).

Since |C] =[]+ 1> [HL]+1=3, |L(v)| > 1. So
we can color v with a color in L(v). O

Lemma 9. Let G be a critical graph. If a 4-
vertex in G is adjacent to four 2-vertices and three
of them are (4,2)-type, then the rest one must be
(> 5,4)-type.

Proof. Suppose that the lemma is false. Let
d(v) = 4. Denote x,y, z to be three neighbors of v
who are (4,2)-type 2-vertices and w to be the
fourth neighbor of v who is (4, < 4)-type 2-vertex.
Let x1,y1, 21, w; be the other neighbor of z,y, z, w,
respectively. Then d(z1) = d(y1) = d(z1) = 2. De-
note the other neighbor of xi,y; and z; by zs9, ¥y
and z» respectively. Since w is (4,< 4)-type 2-
vertex, without loss of generality, we may assume
d(wy) =4 and ws,ws,ws; be another three neigh-
bors of w;. Choose H =G — {v,z,w}. Since G is
critical, x%(H) < g. Let ¢ be a k-forested g-coloring
of H using color set C. Now we extend c to
{v,z,w}. Suppose c(y)# c(z). Without loss of
generality, we assume c¢(y) =1 and c¢(z) =2. If
c(y1) # 2, we recolor y by 2. If ¢(z) # 1, we re-
color z by 1. So we assume c(y;) = 2 and ¢(z;) = 1.
Then we recolor both y and z by 3 (it is possible
since [{#]+1> [52]+1=3). Thus, we can al-
ways assume that c¢(y) = c(z). Without loss of
generality, assume both y and z receive the color 3
in c.
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Case 1. We can color w by 3.

Without loss of generality, we assume
¢(z1) = 1. Next, we divide the proof of this case
into two subcases.

Subcase 1.1. ¢(y1) = 1.

Now we color v by 2. Suppose c¢(z1) =2 or
¢(x1) =3, we can color z by 1. So we assume that
¢(z1) = 1. Then one of yo and z; must be colored by
3. For otherwise, we can recolor v by 1 and color
x by 2. Without loss of generality, we assume
¢(y2) = 3. Then we can recolor y and z by 2 and
then v by 1. So we can color = by a color in
C\{c(z1), c(x2)} at last (recall that |C| > 3).

Subcase 1.2. ¢(y1) # 1.

Without loss of generality, we assume
¢(wy) = 1. Then we color v by 2. Suppose c(z1) =
2 or ¢(x1) = 3. We can color z by 1. So we assume
that ¢(z1) = 1. By the similar proof as in Subcase
1.1, we have c¢(z3) =3. Then we recolor z by 2
and then v by 1. So we can color = by a color in
C\{c(z1), c(z2)} again.

Case 2. We can not color w by 3.

Without loss of generality, we assume c¢(w) = 1.
In this case, we can not recolor w by 3. This implies
two subcases.

Subcase 2.1. c(w;) = 3.

Suppose ¢(y1) # 2 or ¢(z1) # 2, we can color v
by 2. If ¢(x1) =2, we can color x by a color in
C\{c(z1), c(x2)}. Else, c(x1) # 2, we can also color
x by a color in C\{c(z1),c(v)}. So we assume
c(y1) = ¢(z1) = 2. Then we have c¢(ys) = ¢(22) = 3
(for otherwise we can again color v by 2. Then x can
be easily colored as before). Now we recolor y by 1.
Then we can color v by 2 again. Similarly, we can
also color x properly.

Subcase 2.2. k=3
c(wy) = 3.

By the similar proof as in Subcase 2.1, we
have c(y1) = c(z1) =2 and ¢(y2) = ¢(z2) = 3. Now
we recolor y by 1. Then we can color v by 2 again.
Similarly as before, we can also color x properly.

Lemma 10. Let G be a critical graph. If a
4-vertex in G is adjacent to four 2-vertices and
two of them are (4,2)-type, then either at least one
of another two neighbors is (> 5,4)-type or both of
them are (4,4)-type.

Proof. Suppose that the lemma is false. Let
d(v) = 4. Denote w, z to be two neighbors of v who
are (4,2)-type 2-vertices and y,z to be another
two neighbors of v. Without loss of generality, we

and  c(we) = c(ws) =
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assume y is (4, 3)-type 2-vertex and z is (4,4)-type
2-vertex (the case when both y and z are (4, 3)-type
2-vertices can be dealt with similarly but much
easierly). Let x1,y1,21,w; be the other neighbor of
x,y, z,w, respectively. Then d(wy) =2, d(y1) =3,
d(z1) = 4. Denote the other neighbor of w; by ws
and another three neighbors of 2z; by 29,23, 24.
Choose H =G — {v,w,z}. Since G is critical,
Xi{(H) < g. Let ¢ be an k-forested g-coloring of H
using color set C. Now we extend ¢ to {v, w,z}.

Case 1. ¢(y) = ¢(2).

Without loss of generality, we assume c(y) =
c(z) = 1.

Subcase 1.1. ¢(w;) = 1.

Now we color w by 2. Suppose c(y1) #3 or
¢(z1) # 3. Then we can color v by 3. If ¢(z1) = 3, we
can color z by a color in C\{c(x1),c(z2)}. Else
if c(z1)#3, we can color =z by a color in
C\{c(z1),c(v)}. So we assume c(y;) =c(z1) = 3.
We recolor y by 2 (it is possible since d(y;) =3
and k > 3) and color v by 3. Then z can be similarly
colored as before.

Subcase 1.2. c(w;) # 1.

Without loss of generality, we assume
¢(wy) = 2. Then we color w by 3. By the similar
proof as in Subcase 1.1, we must have c(y1) =
¢(z1) =2. Then we recolor y by 3. Suppose
c(wg) # 3, we can color v by 2. Then z can be
easily colored. So we assume c(wy) = 3. Then we
recolor w by 1 and color v by 2. At last, x can be also
easily colored as before.

Case 2. c(y) # c(2).

Without loss of generality, we assume c(y) = 1
and ¢(z) = 2. Then we must have c¢(y;) =2. For
otherwise, we can recolor y by 2 and come back to
Case 1. Similarly, we have c¢(z1) =1 or ¢(z3) =
¢(z3) = ¢(z4) = 1 since for otherwise we can recolor
z by 1 and then come back to Case 1 again. In each
case, we can color w by a color in {1, 2}\{c(w)} and
then color v by 3. Similarly as before, we can color z
properly at last. O

Lemma 11. Let G be a critical graph. If a 3-
vertez in G is adjacent to three 2-vertices and one of
them is (3,3)-type, then at least one of another two
neighbors is (> 5,3)-type.

Proof. Suppose that the lemma is false. Let
d(v) = 3. Denote z,y, z to be neighbors of v of degree
2. Let x1,y1,21 be the other neighbor of z,y, z,
respectively. Suppose y is (3,3)-type while z, z are
both (< 4,3)-type. Without loss of generality, we
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assume d(x;) =d(z1) =4 (that is, z,z are both
(4,3)-type). Let N(z1) = {x, x9, 3,24} and N(z1) =
{z, 22, 23, 24}. Choose H = G — {v,z,y}. Since G is
critical, x%(H) < q. Let ¢ be an k-forested g-coloring
of H using color set C. Now we extend ¢ to {v,z, y}.

Case 1. c(y1) # c(2).

Without loss of generality, we assume c(y;) = 1
and ¢(z) = 2. Then we color y by 2 and then v by
3. Suppose c(xz1) =3. If k=3 and c(xq) = c(z3) =
c(xzy) =1, we can color x by 2, otherwise we can
color = by 1. So ¢(x1) # 3. Suppose c(x;) =1. If
k=3 and c¢(x2) = c¢(x3) = ¢(x4) = 2, we recolor y by
3 and then v by 1. Then we color z by 3. Otherwise,
we can color z by 2. So ¢(x1) # 1. Similarly, we have
c(x1) # 2. Thus, c(z1) € C\{1, 2,3} (if exists). Since
d(z1) =4, |Ci(z1)] <1. So we can color z by
(1,20 {Culan)}-

Case 2. ¢(z1) # ¢(2).

Without loss of generality, we assume ¢(z1) = 1
and c(z) = 2.

Subcase 2.1. we can color x by 2.

Now we color v by 3. If ¢(y;) = 3, we can color y
by 1. Else if ¢(y1) # 3, we can color y by a color in
C\e®), e(n)}-

Subcase 2.2. we can not color x by 2.

This subcase implies that k=3 and c(xs) =
c(x3) = ¢(x4) = 2. Then we color z by 3 and v by 1.
If ¢(y1) = 1, we can color y by 3. Else if ¢(y1) # 1, we
can color y by a color in C\{c(v), c(y1)}.

Case 3. c(z1) = c(y1) = ¢(2).

Without loss of generality, we assume ¢(x1) =
¢(y1) = ¢(z) = 1. Then we color y by 2 and v by 3. If
k=3 and c(x2) = c(x3) = c(z4) = 2, we recolor y by
3 and v by 2. Then x can be colored by 3. Otherwise,
we can color x by 2. (I

In the following, we will complete the proof of
Theorem 4.

Proof of Theorem 4. We prove it by contra-
diction. Suppose that the theorem is false. We
choose G to be critical with g(G) > 10 and use the
discharging method on G in the following argument.
For a planar graph one can easily deduce the
following identity by the well-known Euler’s for-
mula

> (Ad(v) = 10)+ Y (d(f) - 10) = —20.
veV(G) fEF(G)
Let w(x) be the initial charge defined on z €
V(G) U F(Q). Define w(v) = 4d(v) — 10 for each v €
V(G) and w(f) = d(f) — 10 for each f € F(G). Then



No. 10]

we have X,cy@ur@w(z) = —20. Now we state our
discharging rules and perform them on vertices and
faces of G. Let w'(x) be the charge of z € V(G) U
F(G) once the discharging is finished.

R1. Each (> 5)-vertex gives 2 to each adjacent
2-vertex.

R2. Each 4-vertex gives 2 to each adjacent
(4,2)-type 2-vertex, % to each adjacent (4, 3)-type 2-
vertex, 1 to each adjacent (4,4)-type 2-vertex.

R3. Each 3-vertex gives 1 to each adjacent
(3,3)-type 2-vertex, % to each adjacent (4, 3)-type 2-
vertex.

Let fe F(G). Since g¢(G)>10, d(f) > 10.
Thus, W' (f) = w(f) =d(f) — 10 > 0.

Let v € E(G). Then d(v) >2 by Lemma 8.
Suppose d(v) = 2, we have w(v) = —2. If v is (4,2)-
type, w'(v) =ww)+2=0; If v is (> 5,2)-type,
w'(v) =wv)+2=0; If v is (3,3)-type, w'(v)=
w(v) +1x2=0; If v is (4,3)-type, w'(v) =w(v)+
34+2=0;Ifvis (> 5,3)-type, w'(v) = w(v) + 2 = 0;
If vis (4,4)-type, w'(v) =ww)+1x2=0; If v
is (>5,4)-type or (>5,>5)-type, w'(v) > w(v) +
2=0.

Suppose d(v) = 3. Then w(v) = 2. If v is adja-
cent to at most two 2-vertices, since v gives out
at most 1 to each neighbor by R3, then we have
w'(v) > wv) —1x2=0. If v is adjacent to three
2-vertices but none of them is (3,3)-type. Then by
R3, v gives out at most % to each neighbor. Thus,
w'(v) > w(v) — 3 x 2 = 0. If v is adjacent to three 2-
vertices and at least one of them is (3, 3)-type, then
by Lemma 11 and R3, v gives out charge to at most
two neighbors. Thus, w'(v) > w(v) =2 x 1 =0.

Suppose d(v) = 4. Then w(v) = 6. If v is adja-
cent to at most three 2-vertices. Since v gives out at
most 2 to each neighbor by R2, w'(v) > w(v) —
3x2=0. If v is adjacent to four 2-vertices and
three of them are (4, 2)-type, then by Lemma 9 and
R2, v gives out charge to at most three neighbors.
Thus, w'(v) > w(v) —3 x 2=0. If v is adjacent to
four 2-vertices and two of them are (4,2)-type.
Then by Lemma 10, either one of another two
neighbors of v is (> 5,4)-type or both of them
are (4,4)-type. Thus, w'(v) > min{w(v) — 2 x 2 — 2,
w(v) —2x 2—1x2}=0. If v is adjacent to four
2-vertices but at most of them are (4,2)-type. Then
by R2, we have w/'(v) > min{w(v)—2—3x 3,
w(v) —4 x 3} =0.

Suppose d(v) > 5. By R1, we have w'(v) >
w(v) — 2d(v) = 4d(v) — 10 — 2d(v) = 2d(v) — 10 > 0.
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Till now we have proved that w'(z) >0 for
all z € V(G)U F(G). So Esevcur@w' (z) > 0. But
Yeevieure) W' (2) = Seeviaur@w(z) = —20 because
our rules only move charge around, and do not affect
the sum. This contradiction completes the proof of
the theorem. O
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