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Abstract:

This note deals with a generalization of the famous Lyapunov inequality giving

a necessary condition for the existence of solutions to a boundary value problem for an ordinary
differential equation. The problem we consider is closely related to a well-known problem on an
asymptotic behavior of positive solutions of a class of semilinear elliptic equations of nearly

critical Sobolev growth.
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Introduction. Motivated by the study of
nonlinear boundary value problems at resonance,
in [4], the authors considered the following linear
boundary value problem
1) u"(x) + a(z)u(z) =0,
u(Ll) = ’U,(LQ) = 0,
where a(z) € Ag and Ay is defined by

Ay = {a S C[Ll,LQ] \ {0} :

Problem (1) has a nontrivial solution}.

S (Ll,LQ),

Note that the well-known Lyapunov inequality [10]
states that if a(z) € Ao, then necessarily

Lo 4
/ la(x)| de > ———.
L Ly — Ly

This inequality is sharp in the sense that the
constant on the right cannot be replaced by a larger
number. Thus,

B = inf flaf,, = —

= in =

! a€lhy @l L2 — L1 ’

and the value of 3 is not attained. A. Caiiada, J. A.
Montero and S. Villegas generalized this result by
considering the quantity

= inf
By Jnf llall,,

for all p, 1 <p<oo, and obtaining an explicit
expression for 3, in terms of p, L; and Ly. In their
further work [5], they treated an analogous problem
for partial differential equations. More precisely,
the following problem was considered
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{ —Au(z) = a(z)u(z) ze€Q
u(r) =0 x € 09,

where Q CRY (N >2) is a smooth bounded
domain, a € L1(Q)), for some ¢ > 1, and the qual-
itative study of the quantity

By = inf

1<p<oo,
acANL?

o Nl
where A is defined similarly to Ay, was made (see
also [5, Remark 5]). The dimension of the problem
plays an important réle in this instance. In partic-
ular, A. Canada, J. A. Montero and S. Villegas
showed that when NV = 2, the constant 3, > 0 if, and
only if, 1 < p <oo.If N > 3, then 8, > 0if, and only
if, %Spgoo. Moreover, ifN22and%<p§OO,
then 3, is attained. Note that a complete study of
the critical case corresponding to the value of p = %
is left open in [5]. In the present paper we provide a
detailed treatment, when N > 3, of this critical case.

In conclusion, mention may be made of the fact
that our result is a generalization of some results
from [8] and [12] on an asymptotic behavior of posi-
tive solutions to a well-known class of semilinear
elliptic equations with nearly critical nonlinearity.

The main result. Let 2 be a smooth bound-
ed domain in RY, N > 3. Consider the following
Dirichlet boundary value problem

{ —Au(z) = a(z) u(x)
u(r) =0

z e

2

@) x € 09,

where the function a : 2 — R belongs to the set
A={aecL?*)\{0}:

Problem (2) has a nontrivial solution}.

The eigenvalues of the eigenvalue problem
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=lu(z) z€Q

{ o x € 0N

u(z) =0
belong to the set A. Hence the quantity
=1 f
By = Il lally

is well defined.

Theorem 1. The value of Bx is given by
2

ﬁg = S,
where Sy is the best Sobolev constant in RY:
r(N/2)1N
Sy =7N(N — 2
v=mNw 2|

and ﬁ\ is not attained.

Proof Let a € A, and u € H}(Q) be a corre-
sponding nontrivial solution of Problem (2). Multi-
plying the equation in (2) by u, and integrating by
parts using the boundary condition, we obtain

(3) /Q\Vu|2:/gau2.

It follows from the Holder inequality that

/|Vu|2§ lla||x |Ju
0 2

g [

Note that the exponent 2N /(N — 2) is critical
for the embedding of the Sobolev space H}(£2) into
Lebesgue spaces.

From the last inequality we have

[ Jwe

@ lally > in -
K || o LEH \{0} HUH 2
-2
Therefore,
(5) By = inf [lally > Sy.
2 acA 2
Consider now the problem

—Au(z) = N(N -2)u’(z) z€Q
(6) u(z) >0 x €N

u(r) =0 x € 09,
where p=(N+2)/(N—2) and ¢ >0. It is well

known that when € > 0 Problem (6) has a solution
u.. Hence for any e >0 the functions a.(x):=
N(N —2) u~'*(z) belong to the set A. Note
that if € =0 the existence of solutions of Problem
(6) depends on the topological properties of the
domain €. In particular, when 2 is starshaped it is
proved in [11] that (6) does not have any solution.

[Vol. 86(A),

The asymptotic behavior of solutions of Problem
(6) as £ goes to zero was studied in the papers
[8,12,13] (see also [1,2] for the case of spherical
domains).

Let u. be a solution of Problem (6), and assume
that {u.}.., is a minimizing sequence for the
Sobolev inequality, i.e.

/ |VuE

o eI

(7)

pt+l—e

Multiplying (6) by u. and integrating by parts, we

obtain
/|Vu5\2 = —2)/1@“’8
Q Q

Then, from the assumption (7) we have

lim N (N~ 2)|Jue 1

€
€

= lim|| N (N — 2)u?"¢|| e = Sw.
e—0 p—1l-e
Hence
laclly = llacllpa = [[N(N = 2)ul™ ||
2 p—1 p—1
=Sv+o(l) as e€—0.
Therefore

By = inf afly <limlac|x = Sy,
2 ac 2 e—0 2

which together with (5) gives
(8) B% = Sn.

Now, let {a,},cn be an arbitrary minimizing
sequence for Au, i.e.
2

lim ||a,||x = By = inf||a|/x.
n—00 2 2 acA 2

For any n € N, denote by u, a nontrivial solution of
(2) corresponding to the function a,. Then from (4)

and (8) we have
/ |V, |
= lim

lim lan|x =
n—00 n—00 ||unH 2N

Thus {up},cn i a minimizing sequence for the
Sobolev inequality. It is well known that the best
Sobolev constant Sy is never achieved on a bounded
domain (see, e.g., [15,16]). Hence we deduce from
(4) that Oy is not attained. O

Theorem 2. For any point xy € Q0 there
exists a mzmmzzmg sequence {an},cn for By such
that {|an|™’ *},.en converges in the sense of measures
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to S’x/z&co, where 6, denotes the Dirac mass con-
centrated at the point xg.

Proof. Let xy be an arbitrary point of Q. We
choose @ to be a C(Q)NC3*(Q) non-negative
function which has zy as its unique (non-degener-
ate) maximum point in Q. Let

Q= maxQ(z) =

zeN

Q(fﬂo)

Recall that an asymptotic behavior of solutions of
the following boundary value problem was inves-
tigated in [6],

—Au =
9)
u=20 x € 01,

where p=(N+2)/(N—-2), 0 €[l,p), €>0, and
the function @ can be taken as above. The existence
of at least one positive solution of (9) was establish-
ed in [7] for o = 1 and ¢ less than the first eigenvalue
of —A with zero Dirichlet boundary condition.

We take now o =1 and note that for € small
enough the functions a.(z) = Q(a)|u-(z)]" " +e,
where u. is a least energy solution of Problem (9),
belong to the set A. Therefore, using the Minkowski
inequality and the fact that N/2=(p+1)/(p—1)
we have

Q)|ulf 'u+elu) My ze

Sy < lim [lac||x = lim||Q(@)[u< (=)~ + ¢ v
e—0 2 e—0 2

N 2/N
< hm[ Q(xmug(:fswﬂ]
Q

e—0

N 2/N
< g%[czif g Q(xﬂm(mﬂﬂ

GgN/2 2/N
_ [Q(Nm N g
M (N=2)/2 N-
Qu
The value of the last limit is calculated in [6, (2.8)].

Thus

(10) lim [|ac ||y = Sv.

In particular, we see that a.(z) = Q(z)|u-(z)["" +
g, € > 0, is a minimizing sequence for Gy.
2

Under the assumed conditions on the function

@, Theorem 1.1 in [6] asserts that (after passing to a
subsequence)

e — QNP SN26,,  as

in the sense of measures, where we recall that z( is
the unique maximum point of the function . This
fact, together with (10), implies that (after passing
to a subsequence)

e—0
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N2 5N e—0

| Qe | Zo as

in the sense of measures, and the theorem
follows. (]

Remark. In a forthcoming paper [3] we give
a different, more constructive proof of the last
theorem, revealing the nature of blow-up behavior
of minimizing sequences for 51\/ Employing the
knowledge on the minimizing Sequences for the best
Sobolev constant Sy from [9,14], we also prove that
any minimizing sequence for Sy converges in the
sense of measures to a multipleQOf the Dirac mass
centered at some point zy € Q. In addition, when
N =1 we show that the blowing-up occurs only at
one point of the domain, the center of the interval,
pointing out a deep difference with respect to the
multidimensional case.

In the two-dimensional case, N =2, the L;-
norm in the expression of 8y is not natural from the
viewpoint of the limiting2 cases of the Sobolev
embedding theorem. We observe a rather degener-
ate behavior of minimizing sequences here, in the
sense that the concentration may occur at any finite
number of points of the domain. Consequently, we
redefine the constant 5\ by changing the L;-norm
by a suitable Orlicz norin Il - |l 4 stemming from the
Moser-Trudinger inequality, the latter giving the
critical growth in the two-dimensional situation.
The norm || - ||4 is defined by means of a Young
function A(t) = '™ — 4nt — 1, ¢t > 0. We show that
this new quantity (4 is bounded away from zero,
and the following estimate is valid

1
ﬁA Z 1 > Oa
202

where

V= sup / (64”“2 —dmu? — 1).
ueH} (), || Vull,=1 /Q
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